1
|
Moreira AC, Fernandes CP, Oliveira MVD, Duailibi MT, Ribeiro AA, Duailibi SE, Kfouri FDÁ, Mantovani IF. The effect of pores and connections geometries on bone ingrowth into titanium scaffolds: an assessment based on 3D microCT images. Biomed Mater 2021; 16. [PMID: 34492651 DOI: 10.1088/1748-605x/ac246b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/07/2021] [Indexed: 11/11/2022]
Abstract
In order to support bone tissue regeneration, porous biomaterial implants (scaffolds) must offer chemical and mechanical properties, besides favorable fluid transport. Titanium implants provide these requirements, and depending on their microstructural parameters, the osteointegration process can be stimulated. The pore structure of scaffolds plays an essential role in this process, guiding fluid transport for neo-bone regeneration. The objective of this work was to analyze geometric and morphologic parameters of the porous microstructure of implants and analyze their influences in the bone regeneration process, and then discuss which parameters are the most fundamental. Bone ingrowths into two different sorts of porous titanium implants were analyzed after 7, 14, 21, 28, and 35 incubation days in experimental animal models. Measurements were accomplished with x-ray microtomography image analysis from rabbit tibiae, applying a pore-network technique. Taking into account the most favorable pore sizes for neo-bone regeneration, a novel approach was employed to assess the influence of the pore structure on this process: the analyses were carried out considering minimum pore and connection sizes. With this technique, pores and connections were analyzed separately and the influence of connectivity was deeply evaluated. This investigation showed a considerable influence of the size of connections on the permeability parameter and consequently on the neo-bone regeneration. The results indicate that the processing of porous scaffolds must be focused on deliver pore connections that stimulate the transport of fluids throughout the implant to be applied as a bone replacer.
Collapse
Affiliation(s)
- Anderson Camargo Moreira
- Department of Mechanical Engineering (EMC/PGMAT), Federal University of Santa Catarina (UFSC), Laboratory of Porous Media and Thermophysical Properties (LMPT), Florianópolis, Brazil
| | - Celso Peres Fernandes
- Department of Mechanical Engineering (EMC/PGMAT), Federal University of Santa Catarina (UFSC), Laboratory of Porous Media and Thermophysical Properties (LMPT), Florianópolis, Brazil
| | - Marize Varella de Oliveira
- Laboratory of Powder Technology, Division of Materials, National Institute of Technology, Rio de Janeiro, Brazil
| | - Monica Talarico Duailibi
- Tissue Engineering and Biofabrication Lab, Cellular and Molecular Technology Center, Federal University of São Paulo, CTCMol-UNIFESP, São Paulo, Brazil
| | - Alexandre Antunes Ribeiro
- Laboratory of Powder Technology, Division of Materials, National Institute of Technology, Rio de Janeiro, Brazil
| | - Silvio Eduardo Duailibi
- Tissue Engineering and Biofabrication Lab, Cellular and Molecular Technology Center, Federal University of São Paulo, CTCMol-UNIFESP, São Paulo, Brazil
| | - Flávio de Ávila Kfouri
- Tissue Engineering and Biofabrication Lab, Cellular and Molecular Technology Center, Federal University of São Paulo, CTCMol-UNIFESP, São Paulo, Brazil
| | - Iara Frangiotti Mantovani
- Department of Mechanical Engineering (EMC/PGMAT), Federal University of Santa Catarina (UFSC), Laboratory of Porous Media and Thermophysical Properties (LMPT), Florianópolis, Brazil
| |
Collapse
|
2
|
Agarwal G, Agrawal AK, Fatima A, Srivastava A. X-ray tomography analysis reveals the influence of graphene on porous morphology of collagen cryogels. Micron 2021; 150:103127. [PMID: 34419716 DOI: 10.1016/j.micron.2021.103127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/18/2022]
Abstract
X-ray micro-tomography based analysis of porous hydrogel has gained a wide attention recently. It provides an advantage in three-dimensional analysis of pore morphometric and interconnection within the hydrogel network. We have fabricated highly elastic graphene crosslinked collagen hydrogel using cryogelation technique. The influence of graphene as a nano-crosslinker on the overall porosity and inter-connections between the pores in collagen cryogels was determined using X-ray micro-tomography. We have evaluated the effect of different concentration of amino-functionalized graphene nano-crosslinker on collagen cryogels porosity, pore volume, interconnectivity density, fractal dimensions and pore wall thickness. This study, reveals that the use of graphene as a nano-crosslinker have improved micro-architecture as compare to collagen cryogels in the absence of graphene for tissue engineering applications.
Collapse
Affiliation(s)
- Gopal Agarwal
- National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat, India
| | | | - Anis Fatima
- Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Akshay Srivastava
- National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat, India.
| |
Collapse
|
3
|
Mullick P, Das G, Aiyagari R. Probiotic bacteria cell surface-associated protein mineralized hydroxyapatite incorporated in porous scaffold: In vitro evaluation for bone cell growth and differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112101. [PMID: 34082927 DOI: 10.1016/j.msec.2021.112101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/18/2021] [Accepted: 04/03/2021] [Indexed: 02/06/2023]
Abstract
There is a high demand for synthesis of biocompatible hydroxyapatite nanoparticle (HANP), which is a key component in bone tissue engineering scaffolds. The present study describes a facile route of HANP synthesis through mineralization of the cell surface-associated protein (CSP) from the human probiotic lactic acid bacteria (LAB) Lactobacillus rhamnosus GG. CSP extract from the LAB (consisting of ~66 kDa, ~47 kDa, ~40 kDa and ~25 kDa protein) was mineralized to yield spindle-shaped HANPs having an average particle length of 371 nm as evidenced in FETEM analysis. CSP-mineralized HANPs (CSP-HANPs) were characterized by FTIR and BET analysis, while XRD and SAED analysis indicated their crystalline nature. Mechanistic studies suggested the key role of ~25 kDa CSP (F4SP) in mineralization. In contrast to CSP-HANPs, F4SP-mineralized crystalline HA was plate-shaped having an average length of 1.68 μm and breadth of 0.95 μm. HANP mineralization at the whole-cell (WC) level resulted in clusters of aggregated HANPs (WC-HANPs) adhering onto L. rhamnosus GG cells as evident in FETEM, FESEM and AFM analysis. FETEM analysis revealed that the desorbed WC-HANPs recovered by cell lysis were needle-shaped, with a particle size distribution of 70-110 nm. Given that CSP-HANPs were non-toxic to cultured HEK 293 cells and osteoblast-like MG-63 cells, chitosan-gelatin (CG) scaffold incorporated with 15% w/v CSP-HANP (H-CG) was generated and tested for bone cell growth. H-CG exhibited a favorable pore size distribution (160-230 μm), overall porosity (~84%) and biodegradation profile. H-CG scaffold was conducive to osteogenesis and rendered enhanced proliferation, alkaline phosphatase (ALP) activity, calcium mineralization and heightened marker gene expression (ALP, Col I, Runx2 and OCN) in seeded MG-63 cells. CSP sourced from a safe probiotic LAB is thus a viable and effective mineralization template for synthesis of biocompatible HANPs that can be leveraged for bone tissue engineering applications.
Collapse
Affiliation(s)
- Priya Mullick
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Ramesh Aiyagari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
4
|
He X, Tang K, Li X, Wang F, Liu J, Zou F, Yang M, Li M. A porous collagen-carboxymethyl cellulose/hydroxyapatite composite for bone tissue engineering by bi-molecular template method. Int J Biol Macromol 2019; 137:45-53. [PMID: 31220495 DOI: 10.1016/j.ijbiomac.2019.06.098] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/17/2022]
Abstract
Inspired by the mechanism of bone formation, a porous collagen-carboxymethyl cellulose/hydroxyapatite (Col-CMC/HA) composite was designed and fabricated using a biomimetic template of Col and CMC protein-polysaccharide bi-molecules. The morphology, composition and physical properties of Col-CMC/HA composites were characterized systematically. It was found that the nano-HA homogenously distributed on the surface of Col-CMC bi-templates while the composite presented 3D porous structure with pore size from 100 μm to 300 μm. The porosities of composites were located at the range of 71%-85%. Besides, the compressive strength of composites was highly depended on the ratio of Col to CMC in the organic template. The optimized composite in respect to physical properties showed a compressive strength as high as 7.06 MPa, quite close to that of natural bone. The high relative growth rate of wild-type mouse embryonic fibroblasts cells was found for the composite, indicating a good biocompatibility. The organic-inorganic composite also behaved good in collagenase resistance and could be biodegraded in 8 weeks, with about 50% of initial weight left at the ratio of Col to CMC of 1:9. The results demonstrated that the Col-CMC/HA composite by bi-molecular template method was a rational and safe method to prepare biomaterials with tunable properties.
Collapse
Affiliation(s)
- Xichan He
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, PR China
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, PR China.
| | - Xiumin Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, PR China
| | - Fang Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, PR China
| | - Jie Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, PR China
| | - Fangfang Zou
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, PR China
| | - Mengyuan Yang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, PR China
| | - Meixuan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, PR China
| |
Collapse
|
5
|
Novel calcium phosphate/PCL graded samples: Design and development in view of biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:336-346. [DOI: 10.1016/j.msec.2018.12.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 11/07/2018] [Accepted: 12/13/2018] [Indexed: 01/23/2023]
|
6
|
Korokin VZ, Bulanov EN, Knyazev AV. Synthesis of Biomimetic Materials from Collagen and Hydroxyapatite. RUSS J APPL CHEM+ 2019. [DOI: 10.1134/s107042721903011x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Yang X, Sun A, Ju BF, Xu S. A rotary scanning method to evaluate grooves and porosity for nerve guide conduits based on ultrasound microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:073705. [PMID: 30068110 DOI: 10.1063/1.5004783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
Grooved nerve guide conduits (NGCs) have been effective in the clinical treatment of peripheral nerve injury. They are generally fabricated from a micro-structured spinneret using a spinning process, which easily can cause a variety of pores and morphological deviation. The topography of internal grooves as well as the porosity can greatly influence the therapeutic effect. Traditional optical or scanning electron microscopy (SEM) methods can be used to image the grooves; however, these methods are destructive and require slicing NGCs to prepare specimens suitable for imaging. Moreover, lengthy experiments and large batches of NGCs are required to ensure reliable results from both in vitro experiments and clinical studies. In this paper, a non-destructive method for evaluating the grooves and porosity of NGCs is proposed using ultrasonic imaging combined with rotary scanning and an image analysis algorithm. Two ultrasonic methods were used: a 25-MHz point-focus ultrasonic transducer applied to observe axial cross sections of the conduits and a 100-MHz point-focus ultrasonic transducer to detect large pores caused by defects. Furthermore, a theoretical algorithm for detecting the local porosity of a conduit based on density is proposed. Herein, the proposed acoustic method and traditional optical methods are evaluated and compared. A parameter representing the specific surface area of the internal grooves is introduced and computed for both the optical and acoustic methods, and the relative errors of the computed parameter values for three different NGCs were 7.0%, 7.9%, and 15.3%. The detected location and shape of pores were consistent between the acoustic and optical methods, and greater porosity was observed in the middle of the conduit wall. In this paper, the results of the acoustic and optical methods are presented and the errors relating to the acoustic factors, device characteristics, and image processing method are further analyzed.
Collapse
Affiliation(s)
- Xiaoyu Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Anyu Sun
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Bing-Feng Ju
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Shaoning Xu
- Zhejiang Information Institute of Machinery Industry, Hangzhou 310027, People's Republic of China
| |
Collapse
|