1
|
Jakopec S, Hamzic LF, Bočkor L, Car I, Perić B, Kirin SI, Sedić M, Raić-Malić S. Coumarin-modified ruthenium complexes: Synthesis, characterization, and antiproliferative activity against human cancer cells. Arch Pharm (Weinheim) 2024; 357:e2400271. [PMID: 38864840 DOI: 10.1002/ardp.202400271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/13/2024]
Abstract
Among ruthenium complexes studied as anticancer metallodrugs, NKP-1339, NAMI-A, RM175, and RAPTA-C have already entered clinical trials due to their potent antitumor activity demonstrated in preclinical studies and reduced toxicity in comparison with platinum drugs. Considering the advantages of ruthenium-based anticancer drugs and the cytostatic activity of organometallic complexes with triazole- and coumarin-derived ligands, we set out to synthesize Ru(II) complexes of coumarin-1,2,3,-triazole hybrids (L) with the general formula [Ru(L)(p-cymene)(Cl)]ClO4. The molecular structure of the complex [Ru(2a)(p-cymene)(Cl)]ClO4 (2aRu) was determined by single-crystal X-ray diffraction, which confirmed the coordination of the ligand to the central ruthenium(II) cation by bidentate mode of coordination. Coordination with Ru(II) resulted in the enhancement of cytostatic activity in HepG2 hepatocellular carcinoma cells and PANC-1 pancreatic cancer cells. Coumarin derivative 2a positively regulated the expression and activity of c-Myc and NPM1 in RKO colon carcinoma cells, while the Ru(II) half-sandwich complex 2cRu induced downregulation of AKT and ERK signaling in PANC-1 cells concomitant with reduced intracellular levels of reactive oxygen species. Altogether, our findings indicated that coumarin-modified half-sandwich Ru(II) complexes held potential as anticancer agents against gastrointestinal malignancies.
Collapse
Affiliation(s)
- Silvio Jakopec
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Lejla F Hamzic
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Luka Bočkor
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Iris Car
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Berislav Perić
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Srećko I Kirin
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Mirela Sedić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Silvana Raić-Malić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Giacomazzo GE, Doria S, Revilla-Cuesta A, De Monte N, Pagliai M, Pietraperzia G, Valtancoli B, Torroba T, Conti L, Di Donato M, Giorgi C. Photosensitizers Based on Bichromophoric Dyads Combining Ru(II)-Polypyridyl Complexes and Dissymmetric Perylene Monoimide Derivatives: The Nontrivial Role of Ligand Substitution. Inorg Chem 2024; 63:6248-6259. [PMID: 38533555 DOI: 10.1021/acs.inorgchem.3c04569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The covalent modification of Ru(II) polypyridyl complexes (RPCs) with organic chromophores is a powerful strategy to obtain metal-based photosensitizer agents (PSs) with improved performance for application in photodynamic therapy (PDT). In this respect, perylene-imides are of particular interest due to their rich chemical-physical repertoire, and it is therefore quite surprising that their combination with RPCs has been poorly considered so far. Herein, we report on the photophysical behavior of two newly synthesized RPCs bearing a perylene monoimide appendant (PMI-Ad). Differently from the majority of RPCs-perylene-imides dyads, these chromophores are dissymmetric and are tethered to the metal centers through a single C-C bond in the 3- or 5-position of 1,10-phenanthroline (Ru-3PMI-Ad and Ru-5PMI-Ad). Both compounds show excellent singlet oxygen photosensitizing activity, with quantum yields reaching >90% in the case of Ru-3PMI-Ad. A combined spectroscopic and theoretical analysis, also involving transient absorption and luminescence lifetime measurements, demonstrates that both compounds undergo intersystem crossing on a very fast time scale (tens of picoseconds) and with high efficiency. Our results further demonstrate that the increased electron delocalization between the metal center and the PMI-Ad chromophore observed for Ru-3PMI-Ad additionally contributes to increase the singlet oxygen quantum yields by prolonging the lifetime of the triplet state.
Collapse
Affiliation(s)
- Gina Elena Giacomazzo
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino (FI) 50019, Italy
| | - Sandra Doria
- European Laboratory for Non-Linear Spectroscopy (LENS), Via N. Carrara 1, Sesto Fiorentino (FI) 50019, Italy
- CNR-ICCOM, via Madonna del Piano 10, Sesto Fiorentino (FI) 50019, Italy
| | - Andrea Revilla-Cuesta
- Department of Chemistry, University of Burgos, Pza. Misael Bañuelos s/n, Burgos 09001, Spain
| | - Nicola De Monte
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino (FI) 50019, Italy
| | - Marco Pagliai
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino (FI) 50019, Italy
| | - Giangaetano Pietraperzia
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino (FI) 50019, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS), Via N. Carrara 1, Sesto Fiorentino (FI) 50019, Italy
| | - Barbara Valtancoli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino (FI) 50019, Italy
| | - Tomás Torroba
- Department of Chemistry, University of Burgos, Pza. Misael Bañuelos s/n, Burgos 09001, Spain
| | - Luca Conti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino (FI) 50019, Italy
| | - Mariangela Di Donato
- European Laboratory for Non-Linear Spectroscopy (LENS), Via N. Carrara 1, Sesto Fiorentino (FI) 50019, Italy
- CNR-ICCOM, via Madonna del Piano 10, Sesto Fiorentino (FI) 50019, Italy
| | - Claudia Giorgi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino (FI) 50019, Italy
| |
Collapse
|
3
|
Yan X, Xue J, Wang Y. Synthesis and Theoretical and Photophysical Study on a Series of Neutral Ruthenium(II) Complexes with Donor-Metal-Accepter Configuration. Inorg Chem 2023; 62:1476-1487. [PMID: 36657168 DOI: 10.1021/acs.inorgchem.2c03602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In order to construct a new type of ruthenium(II) terpyridine complexes with activated triplet metal-centered (3MC) states, as well as stabilized triplet metal-to-ligand charge transfer (3MLCT) states, conducive to fine emissive performances, Ru-1, Ru-2, Ru-3, and Ru-4 were synthesized. Compared with the [Ru(terpyridine)2]2+ prototype (0.25 ns), this series of ruthenium(II) terpyridine complexes exhibit lengthened excited state lifetime (43.3 ns for Ru-1, 52.7 ns for Ru-2, 43.6 ns for Ru-3, and 53.4 ns for Ru-4). Interfragment charge transfer analysis illustrates the electron transfer direction of the four complexes, manifesting their intramolecular charge transfer characteristic. When excited, their lowest-lying triplet states are assigned as 3MLCT based on spin-density surface distribution. The singlet excited states and 3MLCT states were thoroughly studied by UV-visual absorption and nanosecond time-resolved transient absorption spectra, respectively. Photoluminescence spectra revealed their weak broadband near-infrared emission at room temperature and red phosphorescence at 77 K. The low molecular weight and the good thermal stability make Ru-1 and Ru-2 suitable for vaporization coating, while the fine solubility in common organic solvents makes Ru-3 and Ru-4 suitable for solution processing. Furthermore, the intrinsic electroneutrality and favorable energy levels endow them with new potential to be applied in the optoelectronic field.
Collapse
Affiliation(s)
- Xianju Yan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jianan Xue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,Jihua Hengye Electronic Materials CO. LTD. Foshan, Guangdong Province 528200, P. R. China
| |
Collapse
|
4
|
Combination of light and Ru(II) polypyridyl complexes: Recent advances in the development of new anticancer drugs. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
de Almeida PSVB, de Arruda HJ, Sousa GLS, Ribeiro FV, de Azevedo-França JA, Ferreira LA, Guedes GP, Silva H, Kummerle AE, Neves AP. Cytotoxicity evaluation and DNA interaction of Ru II-bipy complexes containing coumarin-based ligands. Dalton Trans 2021; 50:14908-14919. [PMID: 34609400 DOI: 10.1039/d1dt01567b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although there are various treatment options for cancer, this disease still has caused an increasing number of deaths, demanding more efficient, selective and less harmful drugs. Several classes of ruthenium compounds have been investigated as metallodrugs for cancer, mainly after the entry of imidazolH [trans-RuCl4-(DMSO-S)(imidazole)] (NAMI-A) and indazolH [trans-RuCl4-(Indazol)2] (KP1019) in clinical trials. In this sense, RuII complexes with general formula [Ru(L1-3)(bipy)2]PF6 (1-3) (L1 = ethyl 3-(6-methyl-2-oxo-2H-chromen-3-yl)-3-oxopropanoate, L2 = ethyl 3-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)-3-oxopropanoate, L3 = ethyl 3-(8-methoxy-2-oxo-2H-chromen-3-yl)-3-oxopropanoate and bipy = bipyridine) have been synthesized. The crystal structure of 2 revealed that the RuII atom lies on a distorted octahedral geometry with the deprotonated ligand (L2-) coordinated through β-ketoester group oxygen atoms. In vitro cytotoxic activity of the compounds was evaluated against 4T1 (murine mammary carcinoma) and B16-F10 (murine metastatic melanoma) tumor cells, and the non-tumor cell line BHK-21 (baby hamster kidney). Coordination with RuII resulted in expressive enhancement of cytotoxic activity. The precursors were inactive below 100 μM and the final RuII complexes (1-3) showed IC50 ranging from 2.0 to 12.8 μM; 2 being the most potent compound. DNA interaction studies revealed a greater capacity of the complexes to interact with DNA than the ligands, where, 2 exhibited the highest Kb constant of 2.2 × 104 M-1. Fluorescence investigation demonstrated that 1-3 are capable of quenching the fluorescence emission of the EtdBr-DNA complex up to 40%. Molecular docking showed that the interaction of 1-3 between the DNA base pairs from the coumarin portion was with scores of 67.28, 68.62 and 64.88, respectively, and 75.45 for ellipticine, suggesting an intercalative mode of binding. Our findings show that the RuII complexes are eligible for continuing to be investigated as potential antitumor compounds.
Collapse
Affiliation(s)
- Patrícia S V B de Almeida
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | - Henrique Jefferson de Arruda
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | - Gleyton Leonel S Sousa
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | - Felipe Vitório Ribeiro
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | | | - Larissa A Ferreira
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | - Guilherme P Guedes
- Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Heveline Silva
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, MG, Brazil
| | - Arthur E Kummerle
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | - Amanda P Neves
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| |
Collapse
|
6
|
Liu R, Yuan C, Feng Y, Qian J, Huang X, Chen Q, Zhou S, Ding Y, Zhai B, Mei W, Yao L. Microwave-assisted synthesis of ruthenium(ii) complexes containing levofloxacin-induced G2/M phase arrest by triggering DNA damage. RSC Adv 2021; 11:4444-4453. [PMID: 35424377 PMCID: PMC8694345 DOI: 10.1039/d0ra09418h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022] Open
Abstract
Ru(ii) complexes have attracted increasing attention as promising antitumor agents for their relatively low toxicity, high affinity to DNA molecules, and correlation with multiple targets. Meanwhile, quinolones are synthetic antibacterial agents widely used in the clinical practice. In this paper, two novel Ru(ii) complexes coordinated by levofloxacin (LOFLX), [Ru(bpy)2(LOFLX)]·2ClO4 (1), and [Ru(dmbpy)2(LOFLX)]·2ClO4 (2) (bpy = 2,2′-bipyridine, dmbpy = 4,4′-dimethyl-2,2′-bipyridine) were synthesized with high efficiency under microwave irradiation and characterized by ESI-MS, 1H NMR, and 13C NMR. The binding behavior of these complexes with double-strand calf thymus DNA(CT-DNA) was investigated using spectroscopy, molecular docking, and density functional theory calculations. Results showed that 2 exhibited higher binding affinity than 1 and LOFLX. Further studies showed that 2 could induce the G2/M phase arrest of A549 cells via DNA damage. In summary, these results indicated that 2 could be developed as a potential anticancer agent in treatment of lung cancer through the induction of cell cycle arrest at G2/M phase by triggering DNA damage. This study showed that levofloxacin-based ruthenium(ii) complex 2 effectively inhibited the growth of A549 cells by inducing G2/M phase arrest through triggering DNA damage.![]()
Collapse
Affiliation(s)
- Ruotong Liu
- The First Affiliation Hospital of Guangdong Pharmaceutical University
- Guangzhou 510062
- China
- School of Pharmacy
- Guangdong Pharmaceutical University
| | - Chanling Yuan
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Yin Feng
- The First Affiliation Hospital of Guangdong Pharmaceutical University
- Guangzhou 510062
- China
| | - Jiayi Qian
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Xiaoting Huang
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Qiutong Chen
- School of Politics and Public Administration
- South China Normal University
- Guangzhou
- China
| | - Shuyuan Zhou
- Guangdong Province Engineering Technology Centre for Molecular Probe and Bio-Medical Imaging
- Guangzhou 510006
- China
| | - Yin Ding
- The First Affiliation Hospital of Guangdong Pharmaceutical University
- Guangzhou 510062
- China
| | - Bingbing Zhai
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Wenjie Mei
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
- Guangdong Province Engineering Technology Centre for Molecular Probe and Bio-Medical Imaging
| | - Liangzhong Yao
- The First Affiliation Hospital of Guangdong Pharmaceutical University
- Guangzhou 510062
- China
| |
Collapse
|
7
|
Hua W, Xu G, Zhao J, Wang Z, Lu J, Sun W, Gou S. DNA‐Targeting Ru
II
‐Polypyridyl Complex with a Long‐Lived Intraligand Excited State as a Potential Photodynamic Therapy Agent. Chemistry 2020; 26:17495-17503. [DOI: 10.1002/chem.202003031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/28/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Wuyang Hua
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center School of Chemistry and Chemical, Engineering Southeast University Nanjing 211189 P.R. China
| | - Gang Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center School of Chemistry and Chemical, Engineering Southeast University Nanjing 211189 P.R. China
| | - Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center School of Chemistry and Chemical, Engineering Southeast University Nanjing 211189 P.R. China
| | - Z. Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center School of Chemistry and Chemical, Engineering Southeast University Nanjing 211189 P.R. China
| | - Jiapeng Lu
- Department of Chemistry and Biochemistry North Dakota State University Fargo North Dakota 58108-6050 USA
| | - Wenfang Sun
- Department of Chemistry and Biochemistry North Dakota State University Fargo North Dakota 58108-6050 USA
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center School of Chemistry and Chemical, Engineering Southeast University Nanjing 211189 P.R. China
| |
Collapse
|
8
|
Li S, Zhao J, Wang X, Xu G, Gou S, Zhao Q. Design of a Tris-Heteroleptic Ru(II) Complex with Red-Light Excitation and Remarkably Improved Photobiological Activity. Inorg Chem 2020; 59:11193-11204. [DOI: 10.1021/acs.inorgchem.0c01860] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shuang Li
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, People’s Republic of China
| | - Xinyi Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Gang Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, People’s Republic of China
| |
Collapse
|
9
|
Oberhofer KE, Musheghyan M, Wegscheider S, Wörle M, Iglev ED, Nikolova RD, Kienberger R, Pekov PS, Iglev H. Individual control of singlet lifetime and triplet yield in halogen-substituted coumarin derivatives. RSC Adv 2020; 10:27096-27102. [PMID: 35515756 PMCID: PMC9055543 DOI: 10.1039/d0ra05737a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/01/2020] [Accepted: 07/07/2020] [Indexed: 11/21/2022] Open
Abstract
The photophysical properties of three 3-diethylphosphonocoumarin derivatives are studied by transient absorption spectroscopy and DFT calculations. The measured lifetime of the first excited singlet state changes upon halogen substitution at the 6-position from 40 ps for the unsubstituted compound to 100 ps for Cl and 24 ps for Br. This observation is in clear contradiction with the estimated singlet–triplet quantum yield, which increases with atomic weight of the substituted atom and is usually referred as a heavy-atom effect. The DFT calculations give evidence that the main reason for this behavior is the different composition of the HOMO, while the LUMO is similar for all three compounds. The optical excitation leads to intramolecular charge transfer from the halogen lone pairs to the π* molecular orbital and thus to a significant change in the molecular dipole moment. Hence, the latter phenomenon in combination with the heavy-atom effect enables an independent control of singlet lifetime and singlet–triplet quantum yield in the studied 3-diethylphosphonocoumarin derivatives. The photophysical properties of three 3-diethylphosphonocoumarin derivatives are studied by transient absorption spectroscopy and DFT calculations.![]()
Collapse
Affiliation(s)
| | | | | | - Martin Wörle
- Physics Department E11
- Technical University of Munich
- Germany
| | - Eleonora D. Iglev
- Physics Department E11
- Technical University of Munich
- Germany
- W. L. Gore & Associates GmbH
- 85640 Putzbrunn
| | | | | | - Petko St. Pekov
- Faculty of Chemistry and Pharmacy
- University of Sofia
- 1164 Sofia
- Bulgaria
| | - Hristo Iglev
- Physics Department E11
- Technical University of Munich
- Germany
| |
Collapse
|
10
|
Barnsley JE, Findlay JA, Shillito GE, Pelet WS, Scottwell SØ, McIntyre SM, Tay EJ, Gordon KC, Crowley JD. Long-lived MLCT states for Ru(ii) complexes of ferrocene-appended 2,2'-bipyridines. Dalton Trans 2019; 48:15713-15722. [PMID: 31549707 DOI: 10.1039/c9dt02025j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we present two ruthenium(ii) diimine complexes appended with ferrocene which show metal to ligand charge transfer 3MLCT emission lifetimes around 630 ns. We also present a similar complex with two ferrocene units which has decreased emission. These complexes have been studied by electrochemical, electronic absorption, and Raman, resonance Raman and transient resonance Raman means, coupled with density functional theoretical approaches. For these systems, the optical spectra are dominated by a low energy ruthenium(ii) MLCT transition; which can be modulated by the presence of pendant ferrocene units and the extent of conjugation of the ferrocenyl bipyridine backbone. Tuning of the lowest energy transition in terms of intensity (4 to 18 × 10-3 M-1 cm-1) and energy (535 to 563 nm) was achieved by these means.
Collapse
Affiliation(s)
- Jonathan E Barnsley
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand. keith.gordon@.otago.ac.nz
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Guan S, Pan T, Zhang Y, Zeng Z, Mu L, Zhu D, Chang B, Zheng K, Qian J, Xie Q, Mei W, Tang W, Bai M. Synthesis, DNA-binding, and antitumor activity of polypyridyl-ruthenium(II) complexes [Ru(L)2(DClPIP)] (L = bpy, phen; DClPIP = 2-(2,4-dichlorophenyl)-1H-imidazo[4,5-f][1, 10]phenanthroline). J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1630614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shouhai Guan
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Pan
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanyang Zhang
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaolin Zeng
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Luwen Mu
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Duo Zhu
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Boyang Chang
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kangdi Zheng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiesheng Qian
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiang Xie
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenjie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenjie Tang
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingjun Bai
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Liu X, Zhao X, Li Y, Zheng K, Wu Q, Mei W. Microwave-Assisted Synthesis, Characterisation, and DNA-Binding Properties of RuII Complexes Coordinated by Norfloxacin as Potential Tumour Inhibitors. Aust J Chem 2019. [DOI: 10.1071/ch18637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Three novel norfloxacin-based ruthenium(ii) complexes, [Ru(bpy)2(NFLX)]Cl·2H2O (1), [Ru(phen)2(NFLX)]Cl·2H2O (2), and [Ru(dmbpy)2(NFLX)]Cl·2H2O (3) (bpy=2,2′-bipyridine, phen=1,10-phenanthroline, dmbpy=4,4′-dimethyl-2,2′-bipyridine, and NFLX=norfloxacin), were synthesised and characterised with electrospray ionisation mass spectrometry and 1H and 13C NMR spectroscopy. The antitumour properties were evaluated by MTT assay, and the data revealed that 2 can inhibit the growth of human lung adenocarcinoma A549 efficiently. Furthermore, the DNA-binding behaviours of these complexes were investigated by a multiple spectroscopy assay and viscosity study. The results indicated that these complexes interact with calf thymus DNA through electrostatic interactions with a strong binding affinity in the order 2>3>1. Therefore, these results suggested that 2 might be a suitable anticancer agent due to its excellent DNA-binding abilities.
Collapse
|
13
|
Costa DF, Mendes LP, Torchilin VP. The effect of low- and high-penetration light on localized cancer therapy. Adv Drug Deliv Rev 2019; 138:105-116. [PMID: 30217518 DOI: 10.1016/j.addr.2018.09.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/30/2018] [Accepted: 09/07/2018] [Indexed: 12/21/2022]
Abstract
The design of a delivery system allowing targeted and controlled drug release has been considered one of the main strategies used to provide individualized cancer therapy, to improve survival statistics, and to enhance quality-of-life. External stimuli including low- and high-penetration light have been shown to have the ability to turn drug delivery on and off in a non-invasive remotely-controlled fashion. The success of this approach has been closely related to the development of a variety of drug delivery systems - from photosensitive liposomes to gold nanocages - and relies on multiple mechanisms of drug release activation. In this review, we make reference to the two extremes of the light spectrum and their potential as triggers for the delivery of antitumor drugs, along with the most recent achievements in preclinical trials and the challenges to an efficient translation of this technology to the clinical setting.
Collapse
|
14
|
Keane PM, Kelly JM. Transient absorption and time-resolved vibrational studies of photophysical and photochemical processes in DNA-intercalating polypyridyl metal complexes or cationic porphyrins. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.02.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Guo H, Zhu L, Dang C, Zhao J, Dick B. Synthesis and photophysical properties of ruthenium(ii) polyimine complexes decorated with flavin. Phys Chem Chem Phys 2018; 20:17504-17516. [DOI: 10.1039/c8cp02358a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phosphorescent emission from a flavin localized triplet excited state (3IL) is observed for the first time in a flavin decorated tris(dipyridine) Ru(ii) complex with strong visible light absorption.
Collapse
Affiliation(s)
- Huimin Guo
- State Key Laboratory of Fine Chemicals
- School of Chemistry
- Dalian University of Technology
- Dalian
- P. R. China
| | - Lijuan Zhu
- State Key Laboratory of Fine Chemicals
- School of Chemistry
- Dalian University of Technology
- Dalian
- P. R. China
| | - Can Dang
- State Key Laboratory of Fine Chemicals
- School of Chemistry
- Dalian University of Technology
- Dalian
- P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals
- School of Chemistry
- Dalian University of Technology
- Dalian
- P. R. China
| | - Bernhard Dick
- Institut für Physikalische und Theoretische Chemie
- Universität Regensburg
- Regensburg
- Germany
| |
Collapse
|