1
|
Ezerskyte E, Butkiene G, Katelnikovas A, Klimkevicius V. Development of Biocompatible, UV and NIR Excitable Nanoparticles with Multiwavelength Emission and Enhanced Colloidal Stability. ACS MATERIALS AU 2025; 5:353-364. [PMID: 40093831 PMCID: PMC11907297 DOI: 10.1021/acsmaterialsau.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 03/19/2025]
Abstract
The development of functional nanoprobes for biomedical applications is highly important in the field of modern nanotechnology. Due to strict requirements, such as the ability to be excited using irradiation, which allows deep tissue penetration, nonblinking behavior, and good optical and colloidal stability, the choice of nanoparticles is limited, and their synthesis is challenging. Among all of the functional nanoprobes for biomedical purposes, upconverting nanoparticles, especially those with more complex architectures (e.g., core-shell or core-shell-shell), are the most promising candidates. This study demonstrates advanced synthetic routes for constructing biocompatible nanoprobes with tunable optical properties and colloidal stability. The core-shell-shell architecture of the nanoprobes allows excitation from at least four sources, such as 272 and 394 nm of near-ultraviolet (near-UV) irradiation and 980 and 808 nm near-infrared (NIR) lasers. Furthermore, Gd-matrix-based nanoprobes doped with lanthanide ions (Nd3+, Yb3+, Tm3+, and Eu3+) are known for their paramagnetic properties for magnetic resonance imaging (MRI) imaging as well as upconversion luminescence with diverse emission bands across the entire visible spectrum. This feature is highly desirable for photodynamic therapy applications, as the upconversion emission of the proposed nanoprobes could overlap with the absorption band of commonly used photosensitizers and could potentially result in an efficient energy transfer process and enhanced generation of reactive oxygen species or singlet oxygen.
Collapse
Affiliation(s)
- Egle Ezerskyte
- Institute
of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
- Biomedical
Physics Laboratory, National Cancer Institute, Baublio 3b, LT-08406 Vilnius, Lithuania
| | - Greta Butkiene
- Biomedical
Physics Laboratory, National Cancer Institute, Baublio 3b, LT-08406 Vilnius, Lithuania
| | - Arturas Katelnikovas
- Institute
of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Vaidas Klimkevicius
- Institute
of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
- Biomedical
Physics Laboratory, National Cancer Institute, Baublio 3b, LT-08406 Vilnius, Lithuania
| |
Collapse
|
2
|
Irfan M, Jeshurun A, Mallikharjuna Reddy B. Microwave-assisted synthesis of dual responsive luminomagnetic rare earth metal ions (Nd 3+, Dy 3+) co-doped nanohydroxyapatite for biomedical applications. Dalton Trans 2025; 54:3774-3795. [PMID: 39871604 DOI: 10.1039/d4dt02664k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The existing demand for the development of innovative multimodal imaging nanomaterial probes for biomedical applications stems from their unique combination of dual response modalities, i.e., photoluminescence (PL) and magnetic resonance imaging (MRI). In this study, for the first time, neodymium (Nd3+) and dysprosium (Dy3+) rare earth (RE) metal ions were co-doped into a hydroxyapatite (HAp) crystal lattice using a simple microwave-assisted synthesis technique to incorporate the essential properties of both the lanthanides in HAp. Theoretical as well as experimental studies were performed on novel Nd:Dy:HAp nanoparticles (NPs) to understand their photoluminescence and magnetic behaviour. Through co-precipitation, RE (Nd3+, Dy3+) ions were effectively integrated into the HAp crystal lattice, where they preferentially occupied the calcium ion (Ca2+) sites. The as-synthesized HAp, Nd:HAp, Dy:HAp, and Nd:Dy:HAp samples were characterized using different analytical tools. The PL and magnetic characteristics of Nd:Dy:HAp were dependent on the RE dopant ion type and concentration. In comparison with the pure HAp, the RE co-doped (Nd:Dy:HAp) NPs displayed multimodal features due to efficient energy transfer from the Nd3+ (sensitizer) to the Dy3+ (activator) ions. Furthermore, Nd:Dy:HAp NPs had good antimicrobial properties and they also displayed low cell toxicity effects. Hence, Nd:Dy:HAp NPs are attractive biomaterials for PL and MRI applications (e.g. permanent bone and tooth implants) and they can effectively be utilized in the biomedical industry for target-specific drug delivery, bioimaging, functional antimicrobial coatings etc. due to their tunable PL, magnetic, antimicrobial, and biocompatible capabilities.
Collapse
Affiliation(s)
- Mohammad Irfan
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, AP, 517619, India.
| | - Ashok Jeshurun
- Department of Mechanical Engineering, Indian Institute of Technology Madras, TN, 600036, India
| | - Bogala Mallikharjuna Reddy
- Center for Research, Innovation, Development, and Applications (CRIDA), Jaiotec Labs (OPC) Private Limited, Amaravati, AP, 522503, India
| |
Collapse
|
3
|
Gitty P, Deepti A, Prabeesh P, Anjana AS, Anila EI, Mani KP, Baby Chakrapani PS, Nampoori VPN, Kailasnath M. Luminescent Tb 3+/Sm 3+ co-doped hydroxyapatite nanoparticles as an imaging probe in N2a cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125334. [PMID: 39547140 DOI: 10.1016/j.saa.2024.125334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/28/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024]
Abstract
This work reports the synthesis of hydroxyapatite (HAp) nanoparticles co-doped with trivalent terbium (Tb3+) and samarium (Sm3+) ions by a surfactant free chemical precipitation method. Co-doping enables to combine the optical properties of Tb3+ and Sm3+ ions. Characterization techniques like X-Ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, inductively coupled plasma-optical emission spectroscopy (ICP-OES), energy dispersive X-ray spectroscopy (EDX) were used to determine the crystalline and structural properties. These studies confirmed that the lanthanide ions Tb3+ and Sm3+ were successfully doped onto the HAp lattice. The photoluminescence emission spectra exhibited intense emissions from both the lanthanide ions. The Sm3+ photoluminescence spectra showed enhanced emission,indicating that energy is being transferred from the Tb3+ to Sm3+ ions. To examine the cell viability, N2a cellswere subjected to the MTT cytotoxicity assay. As demonstrated by the cell imaging on N2a cells, the synthesised nanoparticles are ideal candidates for fluorescent labelling using lanthanide ions. Furthermore, thestrong cytocompatibility of Tb3+/Sm3+ co-doped hydroxyapatitesuggests that it is a promising nanoscale biomaterial.
Collapse
Affiliation(s)
- Pooja Gitty
- International School of Photonics, Cochin University of Science and Technology, Cochin 22, Kerala, India.
| | - Ayswaria Deepti
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin 22, Kerala, India
| | - P Prabeesh
- Department of Mathematics, Physics and Electrical Engineering, C101, Ellison Building, Newcastle upon Tyne, Northumbria University, NE1 8ST, UK
| | - A S Anjana
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin 22, Kerala, India
| | - E I Anila
- Optoelectronics Nanomaterials Research Laboratory, Department of Physics, Union Christian College, Aluva 683102, Kerala, India
| | - Kamal P Mani
- International School of Photonics, Cochin University of Science and Technology, Cochin 22, Kerala, India
| | - P S Baby Chakrapani
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin 22, Kerala, India
| | - V P N Nampoori
- International School of Photonics, Cochin University of Science and Technology, Cochin 22, Kerala, India
| | - M Kailasnath
- International School of Photonics, Cochin University of Science and Technology, Cochin 22, Kerala, India
| |
Collapse
|
4
|
Atta H, Mahmoud KR, Salim ESI, Elmohsnawy E, El-Shaer A. Correlation between positron annihilation lifetime and photoluminescence measurements for calcined Hydroxyapatite. Sci Rep 2024; 14:10370. [PMID: 38710708 DOI: 10.1038/s41598-024-59855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Hydroxyapatite (HAp) Ca10(PO4)6(OH)2 is a compound that has stable chemical properties, composition, and an affinity for human bone. As a result, it can be used in odontology, cancer treatment, and orthopedic grafts to repair damaged bone. To produce calcined HAp at 600 °C with different pH values, a wet chemical precipitation method was employed. All synthesized HAp samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), photoluminescence (PL), Zeta potential, and positron annihilation lifetime spectroscopy (PALS). The XRD results revealed that all calcined HAp samples were formed in a hexagonal structure with a preferred (002) orientation at different pH values. The crystal size of the samples was determined using the Scherrer equation, which ranged from 16 to 25 nm. The SEM and TEM results showed that the morphology of the samples varied from nanorods to nanospheres and rice-like structures depending on the pH value of the sample. The PL measurements indicated that the blue and green emission peaks of HAp were due to defects (bulk, surface, and interface) in the samples, which created additional energy levels within the band gap. According to Zeta potential measurements, the charge carrier changed from a positive to negative value, ranging from 3.94 mV to - 2.95 mV. PALS was used to understand the relationship between the defects and the photoluminescence (PL) properties of HAp. Our results suggest that HAp nanoparticles have excellent potential for developing non-toxic biomedical and optical devices for phototherapy.
Collapse
Affiliation(s)
- Hoda Atta
- Physics Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Kamal R Mahmoud
- Physics Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - El Sayed I Salim
- Research Lab. of Molecular Carcinogenesis, Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Eithar Elmohsnawy
- Department of Botany, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Abdelhamid El-Shaer
- Physics Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
5
|
İsen F, Kaygili O, Bulut N, Ates T, Osmanlıoğlu F, Keser S, Tatar B, Özcan İ, Ates B, Ercan F, Ercan I, Kareem RO. Experimental and theoretical characterization of Dy-doped hydroxyapatites. JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY 2023; 59:849-864. [DOI: 10.1007/s41779-023-00878-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 01/12/2025]
|
6
|
De Lama-Odría MDC, del Valle LJ, Puiggalí J. Lanthanides-Substituted Hydroxyapatite for Biomedical Applications. Int J Mol Sci 2023; 24:3446. [PMID: 36834858 PMCID: PMC9965831 DOI: 10.3390/ijms24043446] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Lately, there has been an increasing demand for materials that could improve tissue regenerative therapies and provide antimicrobial effects. Similarly, there is a growing need to develop or modify biomaterials for the diagnosis and treatment of different pathologies. In this scenario, hydroxyapatite (HAp) appears as a bioceramic with extended functionalities. Nevertheless, there are certain disadvantages related to the mechanical properties and lack of antimicrobial capacity. To circumvent them, the doping of HAp with a variety of cationic ions is emerging as a good alterative due to the different biological roles of each ion. Among many elements, lanthanides are understudied despite their great potential in the biomedical field. For this reason, the present review focuses on the biological benefits of lanthanides and how their incorporation into HAp can alter its morphology and physical properties. A comprehensive section of the applications of lanthanides-substituted HAp nanoparticles (HAp NPs) is presented to unveil the potential biomedical uses of these systems. Finally, the need to study the tolerable and non-toxic percentages of substitution with these elements is highlighted.
Collapse
Affiliation(s)
- María del Carmen De Lama-Odría
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain
| | - Luis J. del Valle
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer Baldiri i Reixac 11–15, 08028 Barcelona, Spain
| |
Collapse
|
7
|
Somoza M, Rial R, Liu Z, Llovo IF, Reis RL, Mosqueira J, Ruso JM. Microfluidic Fabrication of Gadolinium-Doped Hydroxyapatite for Theragnostic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:501. [PMID: 36770462 PMCID: PMC9921701 DOI: 10.3390/nano13030501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Among the several possible uses of nanoparticulated systems in biomedicine, their potential as theragnostic agents has received significant interest in recent times. In this work, we have taken advantage of the medical applications of Gadolinium as a contrast agent with the versatility and huge array of possibilities that microfluidics can help to create doped Hydroxyapatite nanoparticles with magnetic properties in an efficient and functional way. First, with the help of Computational Fluid Dynamics (CFD), we performed a complete and precise study of all the elements and phases of our device to guarantee that our microfluidic system worked in the laminar regime and was not affected by the presence of nanoparticles through the flow requisite that is essential to guarantee homogeneous diffusion between the elements or phases in play. Then the obtained biomaterials were physiochemically characterized by means of XRD, FE-SEM, EDX, confocal Raman microscopy, and FT-IR, confirming the successful incorporation of the lanthanide element Gadolinium in part of the Ca (II) binding sites. Finally, the magnetic characterization confirmed the paramagnetic behaviour of the nanoparticles, demonstrating that, with a simple and automatized system, it is possible to obtain advanced nanomaterials that can offer a promising and innovative solution in theragnostic applications.
Collapse
Affiliation(s)
- Manuel Somoza
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ramón Rial
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark—Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga, Portugal
| | - Zhen Liu
- Department of Physics and Engineering, Frostburg State University, Frostburg, MD 21532, USA
| | - Iago F. Llovo
- QMatterPhotonics, Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Institute of Materials (iMATUS), Department of Applied Physics, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark—Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga, Portugal
| | - Jesús Mosqueira
- QMatterPhotonics, Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Institute of Materials (iMATUS), Department of Applied Physics, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Juan M. Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
8
|
Hydroxyapatite Nanoparticles for Improved Cancer Theranostics. J Funct Biomater 2022; 13:jfb13030100. [PMID: 35893468 PMCID: PMC9326646 DOI: 10.3390/jfb13030100] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022] Open
Abstract
Beyond their well-known applications in bone tissue engineering, hydroxyapatite nanoparticles (HAp NPs) have also been showing great promise for improved cancer therapy. The chemical structure of HAp NPs offers excellent possibilities for loading and delivering a broad range of anticancer drugs in a sustained, prolonged, and targeted manner and thus eliciting lower complications than conventional chemotherapeutic strategies. The incorporation of specific therapeutic elements into the basic composition of HAp NPs is another approach, alone or synergistically with drug release, to provide advanced anticancer effects such as the capability to inhibit the growth and metastasis of cancer cells through activating specific cell signaling pathways. HAp NPs can be easily converted to smart anticancer agents by applying different surface modification treatments to facilitate the targeting and killing of cancer cells without significant adverse effects on normal healthy cells. The applications in cancer diagnosis for magnetic and nuclear in vivo imaging are also promising as the detection of solid tumor cells is now achievable by utilizing superparamagnetic HAp NPs. The ongoing research emphasizes the use of HAp NPs in fabricating three-dimensional scaffolds for the treatment of cancerous tissues or organs, promoting the regeneration of healthy tissue after cancer detection and removal. This review provides a summary of HAp NP applications in cancer theranostics, highlighting the current limitations and the challenges ahead for this field to open new avenues for research.
Collapse
|
9
|
Gu M, Li W, Jiang L, Li X. Recent Progress of Rare Earth Doped Hydroxyapatite Nanoparticles: Luminescence Properties, Synthesis and Biomedical Applications. Acta Biomater 2022; 148:22-43. [PMID: 35675891 DOI: 10.1016/j.actbio.2022.06.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 12/12/2022]
Abstract
Hydroxyapatite nanoparticles (HAP NPs) are host materials and can be modified with various substrates and dopants. Among them, rare earth (RE) ions doped HAP NPs have gathered attention due to their unique physicochemical and imaging properties. Compared to other fluorescence probes, RE-doped HAP NPs display advantages in high brightness, high contrast, photostability, nonblinking, and narrow emission bands. Meanwhile, their intrinsic features (composition, morphology, size, crystallinity, and luminescence intensity) can be adjusted by changing the dopant ratio, synthesizing temperature, reaction time, and techniques. And they have been used in various biomedical applications, including imaging probe, drug delivery, bone tissue engineering, and antibacterial studies. This review surveys the luminescent properties, fluorescence enhancement, synthetic methods, and biocompatibility of various RE-doped HAP NPs consolidated from different research works, for their employments in biomedical applications. For this literature review, an electronic search was conducted in the Pubmed, Web of Science, Google Scholar, Scopus and SciFinder databases, using the keywords: hydroxyapatite, rare earth, lanthanide, fluorescence, and imaging. Literature searches of English-language publications from 1979 with updates through April, 2022, and a total of 472 potential papers were identified. In addition, a few references were located by noting their citation in other studies reviewed. STATEMENT OF SIGNIFICANCE: Hydroxyapatite nanoparticles (HAP NPs) have a broad range of promising biological applications. Although prospective biomedical applications are not limited to rare earth-doped hydroxyapatite nanoparticles (RE-doped HAP NPs), some cases do make use of the distinctive features of RE-elements to achieve the expected functions for HAP families. This review surveys the luminescent properties, synthetic methods, and biocompatibility of various RE-doped HAP NPs consolidated from different research works, for their employments in biomedical applications, including imaging probe, drug delivery, bone tissue repair and tracking, and anti-bacteria. Overall, we expect to shed some light on broadening the research and application of RE-doped HAP NPs in biomedical field.
Collapse
|
10
|
Fluorescence conjugated nanostructured cobalt-doped hydroxyapatite platform for imaging-guided drug delivery application. Colloids Surf B Biointerfaces 2022; 214:112458. [PMID: 35306345 DOI: 10.1016/j.colsurfb.2022.112458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/23/2022]
Abstract
Multifunctional nanomaterials developed from hydroxyapatite (HAp) with enhanced biological characteristics have recently attracted attention in the biomedical field. The goal of this study is to investigate the potential applications of cobalt-doped HAp (Co-HAp) in the biomedical imaging and therapeutic applications. The co-precipitation approach was used to substitute different molar concentrations of Ca2+ ions with cobalt (Co2+) in HAp structure. The synthesized Co-HAp nanoparticles were studied using various sophisticated techniques to verify the success rate of the doping method. The specific crystal structure, functional groups, size, morphology, photoluminescence property, and thermal stability of the Co-HAp nanoparticles were analyzed based on the characterization results. The computational modelling of doped and undoped HAp reveals the difference in crystal structure parameters. The cytotoxicity study (MTT assay and AO/PI/Hoechst fluorescence staining) reveals the non-toxic characteristics of Co-HAp nanoparticles on MDA-MB-231 breast cancer cell lines. The DOX was loaded onto Co-HAp, showing the maximum drug loading capacity for 2.0 mol% Co-HAp. Drug release was estimated in five different pH environments with various time intervals over 72 h. Furthermore, 2.0 mol% Co-HAp shows excellent fluorescence sensitivity with FITC-conjugated MDA-MB-231 cell lines. These results suggest that cobalt improved the fluorescence intensity of FITC-labeled HAp nanoparticles. This work highlights the promising application of Co-HAp nanoparticles with significant enhanced fluorescence activity for imaging-guided drug delivery system.
Collapse
|
11
|
Gitty P, Mani KP, Deepti A, Baby Chakrapani PS, Prabeesh P, Nampoori VPN, Kailasnath M. Structural and optical properties of dysprosium doped hydroxyapatite nanoparticles and its bioimaging probe in human cells. LUMINESCENCE 2022; 37:758-765. [PMID: 35199460 DOI: 10.1002/bio.4218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/07/2022] [Accepted: 02/18/2022] [Indexed: 11/12/2022]
Abstract
In this work, the hydroxyapatite nanoparticle doped with trivalent dysprosium ions were synthesized by co-precipitation method. The characterization techniques like X-Ray diffraction (XRD), Transmission Electron Microscopy (TEM), Energy Dispersive X-Ray Spectroscopy (EDX) were carried to determine the crystalline and structural properties. The Rietveld structural refinement of the XRD patterns confirmed the purity of the phase formation of the synthesized nanoparticles. The photoluminescence emission spectra exhibited intense emissions in the blue region at 450 nm and 476 nm along with less intense yellow emission at 573 nm which can be attributed to the magnetic dipole and electric dipole transitions of dysprosium respectively. In order to evaluate the color tunability of the emitted light CIE chromaticity coordinate values were calculated. The intense blue emissions from the synthesized sample were found to be favourable for bioimaging. The images obtained from the fluorescence microscopy revealed that the dysprosium doped hydroxyapatite nanoparticles are potential bioimaging probes in human cells.
Collapse
Affiliation(s)
- Pooja Gitty
- International School of Photonics, Cochin University of Science and Technology, Cochin-22, Kerala, India
| | - Kamal P Mani
- International School of Photonics, Cochin University of Science and Technology, Cochin-22, Kerala, India
| | - Ayswaria Deepti
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin-22, Kerala, India
| | - P S Baby Chakrapani
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin-22, Kerala, India
| | - P Prabeesh
- Laboratory for Photovoltaics and Solid State Physics (LAPS), University of Verona, Strada Le Grazie 15, Verona, Italy
| | - V P N Nampoori
- International School of Photonics, Cochin University of Science and Technology, Cochin-22, Kerala, India
| | - M Kailasnath
- International School of Photonics, Cochin University of Science and Technology, Cochin-22, Kerala, India
| |
Collapse
|
12
|
Effects of sintering temperature and doping content on luminescence properties of rare earth (Sm+3, Eu3+, and Dy3+) doped natural fluorapatite. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Rouchota M, Adamiano A, Iafisco M, Fragogeorgi E, Pilatis I, Doumont G, Boutry S, Catalucci D, Zacharioudaki A, Kagadis GC. Optimization of In Vivo Studies by Combining Planar Dynamic and Tomographic Imaging: Workflow Evaluation on a Superparamagnetic Nanoparticles System. Mol Imaging 2021; 2021:6677847. [PMID: 33746630 PMCID: PMC7953590 DOI: 10.1155/2021/6677847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022] Open
Abstract
Molecular imaging holds great promise in the noninvasive monitoring of several diseases with nanoparticles (NPs) being considered an efficient imaging tool for cancer, central nervous system, and heart- or bone-related diseases and for disorders of the mononuclear phagocytic system (MPS). In the present study, we used an iron-based nanoformulation, already established as an MRI/SPECT probe, as well as to load different biomolecules, to investigate its potential for nuclear planar and tomographic imaging of several target tissues following its distribution via different administration routes. Iron-doped hydroxyapatite NPs (FeHA) were radiolabeled with the single photon γ-emitting imaging agent [99mTc]TcMDP. Administration of the radioactive NPs was performed via the following four delivery methods: (1) standard intravenous (iv) tail vein, (2) iv retro-orbital injection, (3) intratracheal (it) instillation, and (4) intrarectal installation (pr). Real-time, live, fast dynamic screening studies were performed on a dedicated bench top, mouse-sized, planar SPECT system from t = 0 to 1 hour postinjection (p.i.), and consequently, tomographic SPECT/CT imaging was performed, for up to 24 hours p.i. The administration routes that have been studied provide a wide range of possible target tissues, for various diseases. Studies can be optimized following this workflow, as it is possible to quickly assess more parameters in a small number of animals (injection route, dosage, and fasting conditions). Thus, such an imaging protocol combines the strengths of both dynamic planar and tomographic imaging, and by using iron-based NPs of high biocompatibility along with the appropriate administration route, a potential diagnostic or therapeutic effect could be attained.
Collapse
Affiliation(s)
- Maritina Rouchota
- 3dmi Research Group, Department of Medical Physics, School of Medicine, University of Patras, Greece
| | - Alessio Adamiano
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Italy
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Italy
| | - Eirini Fragogeorgi
- Institute of Nuclear & Radiological Sciences, Technology, Energy & Safety, NCSR “Demokritos”, Greece
| | - Irineos Pilatis
- Department of Biomedical Engineering, University of West Attica, Greece
| | - Gilles Doumont
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Rue Adrienne Bolland 8, B-6041 Charleroi (Gosselies), Belgium
| | - Sébastien Boutry
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Rue Adrienne Bolland 8, B-6041 Charleroi (Gosselies), Belgium
| | - Daniele Catalucci
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), UOS Milan, Italy
- Humanitas Clinical and Research Center, IRCCS, Rozzano (Milan), Italy
| | | | - George C. Kagadis
- 3dmi Research Group, Department of Medical Physics, School of Medicine, University of Patras, Greece
| |
Collapse
|
14
|
Strutynska N, Livitska O, Prylutska S, Yumyna Y, Zelena P, Skivka L, Malyshenko A, Vovchenko L, Strelchuk V, Prylutskyy Y, Slobodyanik N, Ritter U. New nanostructured apatite-type (Na+,Zn2+,CO32−)-doped calcium phosphates: Preparation, mechanical properties and antibacterial activity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128932] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Ortiz-Gómez I, Ramírez-Rodríguez GB, Capitán-Vallvey LF, Salinas-Castillo A, Delgado-López JM. Highly stable luminescent europium-doped calcium phosphate nanoparticles for creatinine quantification. Colloids Surf B Biointerfaces 2020; 196:111337. [PMID: 32949922 DOI: 10.1016/j.colsurfb.2020.111337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 11/28/2022]
Abstract
The determination of creatinine levels is essential for the detection of renal and muscular dysfunction. Luminescent nanoparticles are emerging as fast, cheap and highly selective sensors for the detection and quantification of creatinine. Nevertheless, current nanosensors only have a short shelf life due to their poor chemical and colloidal stability, which limits their clinical functionality. In this work, we have developed a highly stable, selective and sensitive nanosensor based on europium-doped, amorphous calcium phosphate nanoparticles (Eu-ACP) for the determination of creatinine by luminescence spectroscopy. The colloidal stability of Eu-ACP nanoparticles in aqueous solutions was optimised to ensure a constant signal after up to 4 months in storage. The luminescence intensity of Eu-ACP decreased linearly with the creatinine concentration over the range of 1-120 μM (R2 = 0.995). This concentration-response relationship was used to determine creatinine levels in real urine samples resulting in good recovery percentages. Significantly, selectivity assays indicated that none of the potential interfering species provoked discernible changes in the luminescence intensity.
Collapse
Affiliation(s)
- Inmaculada Ortiz-Gómez
- Department of Analytical Chemistry, University of Granada, Faculty of Science, Av. Fuente Nueva, s/n, 18071 Granada, Spain; Unit of Excellence in Chemistry applied to Biomedicine and the Environment of the University of Granada, Spain
| | - Gloria B Ramírez-Rodríguez
- Department of Inorganic Chemistry, University of Granada, Faculty of Science, Av. Fuente Nueva, s/n, 18071 Granada, Spain; Unit of Excellence in Chemistry applied to Biomedicine and the Environment of the University of Granada, Spain.
| | - Luis F Capitán-Vallvey
- Department of Analytical Chemistry, University of Granada, Faculty of Science, Av. Fuente Nueva, s/n, 18071 Granada, Spain; Unit of Excellence in Chemistry applied to Biomedicine and the Environment of the University of Granada, Spain
| | - Alfonso Salinas-Castillo
- Department of Analytical Chemistry, University of Granada, Faculty of Science, Av. Fuente Nueva, s/n, 18071 Granada, Spain; Unit of Excellence in Chemistry applied to Biomedicine and the Environment of the University of Granada, Spain
| | - José M Delgado-López
- Department of Inorganic Chemistry, University of Granada, Faculty of Science, Av. Fuente Nueva, s/n, 18071 Granada, Spain; Unit of Excellence in Chemistry applied to Biomedicine and the Environment of the University of Granada, Spain.
| |
Collapse
|
16
|
Characterization and Luminescence of Eu3+- and Gd3+-Doped Hydroxyapatite Ca10(PO4)6(OH)2. CRYSTALS 2020. [DOI: 10.3390/cryst10090806] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Luminescence properties of europium-doped Ca10-xEux(PO4)6(OH)2 (xEu = 0, 0.01, 0.02, 0.10 and 0.20) and gadolinium-doped hydroxyapatite Ca9.80Gd0.20(PO4)6(OH)2 (HA), synthesized via solid-state reaction at T = 1300 °C, were investigated using scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR), and luminescence spectroscopy. Crystal structure characterization (from unit cell parameters determination to refined atomic positions) was achieved in the P63/m space group. FTIR analyses show only slight band shifts of (PO4) modes as a function of the rare earth concentration. Structural refinement, achieved via the Rietveld method, and luminescence spectroscopy highlighted the presence of dopant at the Ca2 site. Strong luminescence was observed for all Eu- and Gd-doped samples. Our multi-methodological study confirms that rare-earth (RE)-doped synthetic hydroxyapatites are promising materials for bio-imaging applications.
Collapse
|
17
|
Warncke P, Fink S, Wiegand C, Hipler UC, Fischer D. A shell-less hen's egg test as infection model to determine the biocompatibility and antimicrobial efficacy of drugs and drug formulations against Pseudomonas aeruginosa. Int J Pharm 2020; 585:119557. [PMID: 32565284 DOI: 10.1016/j.ijpharm.2020.119557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/20/2022]
Abstract
A shell-less hen's egg based infection test with Pseudomonas aeruginosa was established to investigate the antimicrobial efficacy of drugs and drug formulations close to the in vivo situation. The test system using preincubated fertilized chicken eggs transferred in petri dishes was optimized with respect to the controlled local application of liquid materials and bacteria as well as the bacterial cultivation conditions. The applicability of the ex ovo infection model was confirmed with antimicrobial susceptibility tests using tobramycin, ciprofloxacin and meropenem. The validity of the ex ovo data was demonstrated by correlation with in vitro data of the CellTiter®-Blue and the microplate laser nephelometry assay. Real-time imaging of the progress of infection and the efficacy of the treatment could be realized by the MolecuLight i:X™ technique. Furthermore, in a proof-of-concept efficacy, biocompatibility and even the presence of irritants were determined side-by-side using commercial ophthalmics. In conclusion, this egg based infection model could bridge the gap between in vitro and in vivo models for the evaluation of antimicrobial susceptibility to reduce animal tests according to the 3R concept.
Collapse
Affiliation(s)
- Paul Warncke
- Pharmaceutical Technology and Biopharmacy, Friedrich-Schiller-University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Sarah Fink
- Department of Dermatology, University Medical Center Jena, Erfurter Str 35, 07740 Jena, Germany
| | - Cornelia Wiegand
- Department of Dermatology, University Medical Center Jena, Erfurter Str 35, 07740 Jena, Germany
| | - Uta-Christina Hipler
- Department of Dermatology, University Medical Center Jena, Erfurter Str 35, 07740 Jena, Germany
| | - Dagmar Fischer
- Pharmaceutical Technology and Biopharmacy, Friedrich-Schiller-University Jena, Lessingstraße 8, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Humboldtstraße 10, 07743 Jena, Germany.
| |
Collapse
|
18
|
Effect of the Fluorine Substitution for –OH Group on the Luminescence Property of Eu3+ Doped Hydroxyapatite. CRYSTALS 2020. [DOI: 10.3390/cryst10030191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study, different fluoridated hydroxyapatite doped with Eu3+ ion nanoparticles were prepared by the hydrothermal method. The relationship between luminescence enhancement of Eu3+ ions and a fluorine substitution ratio for hydroxyl group in hydroxyapatite was discussed. Moreover, the effect of fluorine substitution for a hydroxyl group on phase composition, crystallinity, and crystal size was studied. Phase composition and chemical structures were identified by X-ray diffraction (XRD) and Fourier Transform Infrared (FT-IR) Spectroscopy analyses. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) patterns were performed to analyze the morphology and particle size. X-ray Photoelectron Spectroscopy (XPS) patterns were observed to analyze fluorine substitution for the hydroxyl group and chemical state of Eu3+ ions in fluoridated hydroxyapatite. The results of these experiments indicated that the samples with a different fluorine substitution ratio were prepared successfully by maintaining the apatite structure. With an increasing fluorine substitution ratio, the morphology maintained a rod-like structure but the aspect ratio tended to decrease. XPS patterns displayed that the fluorine replaced the hydroxyl group and brought environmental variation. The fluorine ions could affect the crystal field environment and promote luminescence conversion. There was a linear relationship between the fluorine substitution ratio and luminescence enhancement.
Collapse
|
19
|
El Khouri A, Zegzouti A, Elaatmani M, Capitelli F. Bismuth-substituted hydroxyapatite ceramics synthesis: Morphological, structural, vibrational and dielectric properties. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Rare-earth (Gd 3+,Yb 3+/Tm 3+, Eu 3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging. Sci Rep 2019; 9:16305. [PMID: 31705047 PMCID: PMC6841688 DOI: 10.1038/s41598-019-52885-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/23/2019] [Indexed: 11/09/2022] Open
Abstract
Taking advantage of the flexibility of the apatite structure, nano- and micro-particles of hydroxyapatite (HAp) were doped with different combinations of rare earth ions (RE3+ = Gd, Eu, Yb, Tm) to achieve a synergy among their magnetic and optical properties and to enable their application in preventive medicine, particularly diagnostics based on multimodal imaging. All powders were synthesized through hydrothermal processing at T ≤ 200 °C. An X-ray powder diffraction analysis showed that all powders crystallized in P63/m space group of the hexagonal crystal structure. The refined unit-cell parameters reflected a decrease in the unit cell volume as a result of the partial substitution of Ca2+ with smaller RE3+ ions at both cation positions. The FTIR analysis additionally suggested that a synergy may exist solely in the triply doped system, where the lattice symmetry and vibration modes become more coherent than in the singly or doubly doped systems. HAp:RE3+ optical characterization revealed a change in the energy band gap and the appearance of a weak blue luminescence (λex = 370 nm) due to an increased concentration of defects. The "up"- and the "down"-conversion spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders showed characteristic transitions of Tm3+ and Eu3+, respectively. Furthermore, in contrast to diamagnetic HAp, all HAp:RE3+ powders exhibited paramagnetic behavior. Cell viability tests of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders in human dental pulp stem cell cultures indicated their good biocompatibility.
Collapse
|
21
|
Andronescu E, Predoi D, Neacsu IA, Paduraru AV, Musuc AM, Trusca R, Oprea O, Tanasa E, Vasile OR, Nicoara AI, Surdu AV, Iordache F, Birca AC, Iconaru SL, Vasile BS. Photoluminescent Hydroxylapatite: Eu 3+ Doping Effect on Biological Behaviour. NANOMATERIALS 2019; 9:nano9091187. [PMID: 31443424 PMCID: PMC6780766 DOI: 10.3390/nano9091187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/10/2019] [Accepted: 08/18/2019] [Indexed: 12/15/2022]
Abstract
Luminescent europium-doped hydroxylapatite (EuXHAp) nanomaterials were successfully obtained by co-precipitation method at low temperature. The morphological, structural and optical properties were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR), UV-Vis and photoluminescence (PL) spectroscopy. The cytotoxicity and biocompatibility of EuXHAp were also evaluated using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)) assay, oxidative stress assessment and fluorescent microscopy. The results reveal that the Eu3+ has successfully doped the hexagonal lattice of hydroxylapatite. By enhancing the optical features, these EuXHAp materials demonstrated superior efficiency to become fluorescent labelling materials for bioimaging applications.
Collapse
Affiliation(s)
- Ecaterina Andronescu
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Daniela Predoi
- Multifunctional Materials and Structures Laboratory, National Institute of Materials Physics, 077125 Magurele, Romania
| | - Ionela Andreea Neacsu
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Andrei Viorel Paduraru
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Adina Magdalena Musuc
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Ilie Murgulescu Institute of Physical Chemistry, 060021 Bucharest, Romania
| | - Roxana Trusca
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Ovidiu Oprea
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Eugenia Tanasa
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Otilia Ruxandra Vasile
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Adrian Ionut Nicoara
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Adrian Vasile Surdu
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Florin Iordache
- Faculty of Veterinary Medicine, Department of Biochemistry, University of Agronomic Science and Veterinary Medicine, 011464 Bucharest, Romania
| | - Alexandra Catalina Birca
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Simona Liliana Iconaru
- Multifunctional Materials and Structures Laboratory, National Institute of Materials Physics, 077125 Magurele, Romania
| | - Bogdan Stefan Vasile
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania.
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania.
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania.
| |
Collapse
|
22
|
The Comprehensive Approach to Preparation and Investigation of the Eu 3+ Doped Hydroxyapatite/poly(L-lactide) Nanocomposites: Promising Materials for Theranostics Application. NANOMATERIALS 2019; 9:nano9081146. [PMID: 31405106 PMCID: PMC6724068 DOI: 10.3390/nano9081146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022]
Abstract
In response to the need for new materials for theranostics application, the structural and spectroscopic properties of composites designed for medical applications, received in the melt mixing process, were evaluated. A composite based on medical grade poly(L-lactide) (PLLA) and calcium hydroxyapatite (HAp) doped with Eu3+ ions was obtained by using a twin screw extruder. Pure calcium Hap, as well as the one doped with Eu3+ ions, was prepared using the precipitation method and then used as a filler. XRPD (X-ray Powder Diffraction) and IR (Infrared) spectroscopy were applied to investigate the structural properties of the obtained materials. DSC (Differential Scanning Calorimetry) was used to assess the Eu3+ ion content on phase transitions in PLLA. The tensile properties were also investigated. The excitation, emission spectra as well as decay time were measured to determine the spectroscopic properties. The simplified Judd–Ofelt (J-O) theory was applied and a detailed analysis in connection with the observed structural and spectroscopic measurements was made and described.
Collapse
|
23
|
Applová L, Karlíčková J, Warncke P, Macáková K, Hrubša M, Macháček M, Tvrdý V, Fischer D, Mladěnka P. 4-Methylcatechol, a Flavonoid Metabolite with Potent Antiplatelet Effects. Mol Nutr Food Res 2019; 63:e1900261. [PMID: 31343835 DOI: 10.1002/mnfr.201900261] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/12/2019] [Indexed: 12/11/2022]
Abstract
SCOPE Intake of flavonoids from the diet can be substantial, and epidemiological studies suggest that these compounds can decrease the incidence of cardiovascular diseases by involvement with increased platelet aggregation. Although parent flavonoids possess antiplatelet effects, the clinical importance is disputable due to their very low bioavailability. Most of them are metabolized by human colon bacteria to smaller phenolic compounds, which reach higher plasma concentrations than the parent flavonoids. In this study, a series of 29 known flavonoid metabolites is tested for antiplatelet potential. METHODS AND RESULTS Four compounds appear to have a biologically relevant antiplatelet effect using whole human blood. 4-Methylcatechol (4-MC) is clearly the most efficient being about 10× times more active than clinically used acetylsalicylic acid. This ex vivo effect is also confirmed using a potentially novel in-vivo-like ex ovo hen's egg model of thrombosis, where 4-MC significantly increases the survival of the eggs. The mechanism of action is studied and it seems that it is mainly based on the influence on intracellular calcium signaling. CONCLUSION This study shows that some flavonoid metabolites formed by human microflora have a strong antiplatelet effect. This information can help to explain the antiplatelet potential of orally given flavonoids.
Collapse
Affiliation(s)
- Lenka Applová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jana Karlíčková
- Department of Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Paul Warncke
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich-Schiller-University Jena, Lessingstr. 8, 07743, Jena, Germany
| | - Kateřina Macáková
- Department of Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Marcel Hrubša
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Miloslav Macháček
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Václav Tvrdý
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Dagmar Fischer
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich-Schiller-University Jena, Lessingstr. 8, 07743, Jena, Germany
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| |
Collapse
|
24
|
Kataoka T, Abe S, Tagaya M. Surface-Engineered Design of Efficient Luminescent Europium(III) Complex-Based Hydroxyapatite Nanocrystals for Rapid HeLa Cancer Cell Imaging. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8915-8927. [PMID: 30730134 DOI: 10.1021/acsami.8b22740] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We synthesized hydroxyapatite nanocrystals under the existence of tris(2,2,6,6-tetramethyl-3,5-heptanedionato)europium(III) (EuTH) complex to form inorganic/organic hybrid nanocrystal (EHA). Then, the folic acid derivative (folate N-hydroxysuccinimidyl ester (FA-NHS)) as the targeting ligand for the HeLa cancer cells was immobilized on the EHA by the mediation of both 3-aminopropyltriethoxysilane and methyltriethoxysilane molecules. Here, we investigated the photofunctions based on the interfacial interactions between the FA-NHS and EHA nanohybrids for preparing the novel bioimaging nanomaterials. As a result, the photofunctions could be changed by the FA-NHS molecular occupancy on the EHA. When the molecular occupancy ratio to the EHA surfaces is at around 3-5%, the intense luminescence from the f-f transition of the Eu3+ ions as well as the charge transfer between the EuTH-FA-NHS was observed to exhibit higher quantum efficiency. Moreover, effective dispersibility in phosphate-buffered saline was confirmed with immobilizing the positively charged FA-NHS. The cytotoxicity against the HeLa cells was also evaluated to verify whether the nanohybrids can be the candidate for cell imaging. The affinity and noncytotoxicity between the FA-NHS-immobilized EHA nanohybrids and cells were monitored for 3 days. Red luminescence from the cells could be observed, and the labels with following the cellular shapes were achieved by an additional culture time of 1 h after injecting the FA-NHS-immobilized EHA nanohybrids to the spheres, indicating the rapid bioimaging process. Therefore, this is the first successful report to describe the synthesis of inorganic-organic nanohybrid systems for controlling the EuTH-FA-NHS interactions. The photofunction of the interfacial interactions was successfully designed to provide "efficient luminescent ability" as well as "rapid targeting to the cancer cells" in one particle.
Collapse
Affiliation(s)
- Takuya Kataoka
- Department of Materials Science and Technology , Nagaoka University of Technology , Kamitomioka 1603-1 , Nagaoka , Niigata 940-2188 , Japan
| | - Shigeaki Abe
- Graduate School of Dental Medicine , Hokkaido University , Sapporo 060-8586 , Japan
| | - Motohiro Tagaya
- Department of Materials Science and Technology , Nagaoka University of Technology , Kamitomioka 1603-1 , Nagaoka , Niigata 940-2188 , Japan
| |
Collapse
|
25
|
Neacsu IA, Stoica AE, Vasile BS, Andronescu E. Luminescent Hydroxyapatite Doped with Rare Earth Elements for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E239. [PMID: 30744215 PMCID: PMC6409594 DOI: 10.3390/nano9020239] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
One new, promising approach in the medical field is represented by hydroxyapatite doped with luminescent materials for biomedical luminescence imaging. The use of hydroxyapatite-based luminescent materials is an interesting area of research because of the attractive characteristics of such materials, which include biodegradability, bioactivity, biocompatibility, osteoconductivity, non-toxicity, and their non-inflammatory nature, as well their accessibility for surface adaptation. It is well known that hydroxyapatite, the predominant inorganic component of bones, serves a substantial role in tissue engineering, drug and gene delivery, and many other biomedical areas. Hydroxyapatite, to the detriment of other host matrices, has attracted substantial attention for its ability to bind to luminescent materials with high efficiency. Its capacity to integrate a large assortment of substitutions for Ca2+, PO₄3-, and/or OH- ions is attributed to the versatility of its apatite structure. This paper summarizes the most recently developed fluorescent materials based on hydroxyapatite, which use rare earth elements (REEs) as dopants, such as terbium (Tb3+), erbium (Er3+), europium (Eu3+), lanthanum (La3+), or dysprosium (Dy3+), that have been developed in the biomedical field.
Collapse
Affiliation(s)
- Ionela Andreea Neacsu
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1-7 Polizu Street,Bucharest, 011061, Romania.
| | | | | | | |
Collapse
|
26
|
Zhu MM, Zhang Z, Ren N, Wang SP, Zhang JJ. Rare earth complexes with 3,4-dimethylbenzoic acid and 2,2:6′,2″-terpyridine: Synthesis, crystal structures, luminescence and thermodynamic properties. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.09.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Tite T, Popa AC, Balescu LM, Bogdan IM, Pasuk I, Ferreira JMF, Stan GE. Cationic Substitutions in Hydroxyapatite: Current Status of the Derived Biofunctional Effects and Their In Vitro Interrogation Methods. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2081. [PMID: 30355975 PMCID: PMC6266948 DOI: 10.3390/ma11112081] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/13/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022]
Abstract
High-performance bioceramics are required for preventing failure and prolonging the life-time of bone grafting scaffolds and osseous implants. The proper identification and development of materials with extended functionalities addressing socio-economic needs and health problems constitute important and critical steps at the heart of clinical research. Recent findings in the realm of ion-substituted hydroxyapatite (HA) could pave the road towards significant developments in biomedicine, with an emphasis on a new generation of orthopaedic and dentistry applications, since such bioceramics are able to mimic the structural, compositional and mechanical properties of the bone mineral phase. In fact, the fascinating ability of the HA crystalline lattice to allow for the substitution of calcium ions with a plethora of cationic species has been widely explored in the recent period, with consequent modifications of its physical and chemical features, as well as its functional mechanical and in vitro and in vivo biological performance. A comprehensive inventory of the progresses achieved so far is both opportune and of paramount importance, in order to not only gather and summarize information, but to also allow fellow researchers to compare with ease and filter the best solutions for the cation substitution of HA-based materials and enable the development of multi-functional biomedical designs. The review surveys preparation and synthesis methods, pinpoints all the explored cation dopants, and discloses the full application range of substituted HA. Special attention is dedicated to the antimicrobial efficiency spectrum and cytotoxic trade-off concentration values for various cell lines, highlighting new prophylactic routes for the prevention of implant failure. Importantly, the current in vitro biological tests (widely employed to unveil the biological performance of HA-based materials), and their ability to mimic the in vivo biological interactions, are also critically assessed. Future perspectives are discussed, and a series of recommendations are underlined.
Collapse
Affiliation(s)
- Teddy Tite
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
| | - Adrian-Claudiu Popa
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
- Army Centre for Medical Research, RO-010195 Bucharest, Romania.
| | | | | | - Iuliana Pasuk
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
| | - José M F Ferreira
- Department of Materials and Ceramics Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - George E Stan
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
| |
Collapse
|
28
|
Li X, Zou Q, Chen L, Li W. A ternary doped single matrix material with dual functions of bone repair and multimodal tracking for applications in orthopedics and dentistry. J Mater Chem B 2018; 6:6047-6056. [PMID: 32254815 DOI: 10.1039/c8tb02041h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hydroxyapatite (HA) has been broadly used for the repair of human hard tissues due to its bioactivity and similarity to the mineral of bones and teeth. We prepared a fluorine (F), ytterbium (Yb) and holmium (Ho) ternary doped HA (HYH-F) material and investigated its dual functions of bone repair and multimodal tracking. The results showed that the HYH-F material could display clear X-ray micro-computed tomography (Micro-CT) images based on Yb ions, and Ho ions due to its superparamagnetic properties for magnetic resonance imaging (MRI), while the F ions could enhance the upconversion (UC) fluorescence of the Yb/Ho combination. The ternary doped HYH-F material shows good compatibility with cells and bone tissue. A joint usage of Micro-CT imaging and UC fluorescence imaging distinctly and synergistically demonstrated the distribution state and degradation of the HYH-F material during new bone reconstruction. The single matrix HA material with ternary doping will be beneficial for future biomedical investigation and applications, and it can not only be a bone repair biomaterial, but also provide lifelong multimodal tracking efficacy.
Collapse
Affiliation(s)
- Xiyu Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | | | | | | |
Collapse
|
29
|
Oesterle A, Boehm AV, Müller FA. Photoluminescent Eu 3+-Doped Calcium Phosphate Bone Cement and Its Mechanical Properties. MATERIALS 2018; 11:ma11091610. [PMID: 30181495 PMCID: PMC6163723 DOI: 10.3390/ma11091610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/16/2018] [Accepted: 09/03/2018] [Indexed: 12/30/2022]
Abstract
Calcium phosphate cements (CPC) are well-established bone replacement materials that have been used in dentistry and orthopedics for more than 25 years. The monitoring of bone cements and the associated healing processes in the human body is difficult and so far has often been achieved using cytotoxic X-ray contrast agent additives. These additives have a negative effect on the mechanical properties and setting time of the bone cement. In this paper, we present a novel approach to prepare contrastive CPC by the incorporation of luminescent Eu3+-doped hydroxyapatite (Eu:HAp) nanoparticles. Eu-doped CPC (Eu:CPC) exhibited enhanced mechanical properties compared to pure CPC. Furthermore, the red photoluminescence of Eu:CPC may allow the observation of CPC-related healing processes without the use of harmful ionizing radiation.
Collapse
Affiliation(s)
- Annemarie Oesterle
- Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany.
| | - Anne V Boehm
- Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany.
| | - Frank A Müller
- Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany.
| |
Collapse
|
30
|
Adamiano A, Iafisco M, Sandri M, Basini M, Arosio P, Canu T, Sitia G, Esposito A, Iannotti V, Ausanio G, Fragogeorgi E, Rouchota M, Loudos G, Lascialfari A, Tampieri A. On the use of superparamagnetic hydroxyapatite nanoparticles as an agent for magnetic and nuclear in vivo imaging. Acta Biomater 2018; 73:458-469. [PMID: 29689381 DOI: 10.1016/j.actbio.2018.04.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 12/14/2022]
Abstract
The identification of alternative biocompatible magnetic NPs for advanced clinical application is becoming an important need due to raising concerns about iron accumulation in soft issues associated to the administration of superparamagnetic iron oxide nanoparticles (NPs). Here, we report on the performance of previously synthetized iron-doped hydroxyapatite (FeHA) NPs as contrast agent for magnetic resonance imaging (MRI). The MRI contrast abilities of FeHA and Endorem® (dextran coated iron oxide NPs) were assessed by 1H nuclear magnetic resonance relaxometry and their performance in healthy mice was monitored by a 7 Tesla scanner. FeHA applied a higher contrast enhancement, and had a longer endurance in the liver with respect to Endorem® at iron equality. Additionally, a proof of concept of FeHA use as scintigraphy imaging agent for positron emission tomography (PET) and single photon emission computed tomography (SPECT) was given labeling FeHA with 99mTc-MDP by a straightforward surface functionalization process. Scintigraphy/x-ray fused imaging and ex vivo studies confirmed its dominant accumulation in the liver, and secondarily in other organs of the mononuclear phagocyte system. FeHA efficiency as MRI-T2 and PET-SPECT imaging agent combined to its already reported intrinsic biocompatibility qualifies it as a promising material for innovative nanomedical applications. STATEMENT OF SIGNIFICANCE The ability of iron-doped hydroxyapatite nanoaprticles (FeHA) to work in vivo as imaging agents for magnetic resonance (MR) and nuclear imaging is demonstrated. FeHA applied an higher MR contrast in the liver, spleen and kidneys of mice with respect to Endorem®. The successful radiolabeling of FeHA allowed for scintigraphy/X-ray and ex vivo biodistribution studies, confirming MR results and envisioning FeHA application for dual-imaging.
Collapse
|
31
|
Atabaev TS, Piao Z, Molkenova A. Carbon Dots Doped with Dysprosium: A Bimodal Nanoprobe for MRI and Fluorescence Imaging. J Funct Biomater 2018; 9:jfb9020035. [PMID: 29783645 PMCID: PMC6023474 DOI: 10.3390/jfb9020035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 11/26/2022] Open
Abstract
In recent years, functional nanoprobes with multiple imaging modalities have become an emerging field of biomedical research. In this preliminary study, we utilized a facile hydrothermal method for the preparation of magneto-fluorescent bimodal carbon dots doped with dysprosium (Dy-CDs). The prepared Dy-CDs have shown a good colloidal stability in a water solution and strong blue–green fluorescence, with a maximum at 452 nm. In addition, the excellent transverse relaxivity of the prepared Dy-CDs (r2 = 7.42 ± 0.07 mM−1s−1) makes them also suitable for T2-weighted magnetic resonance imaging (MRI). Thus, synthesized Dy-CDs could be potentially utilized for both MRI and fluorescence imaging of living cells.
Collapse
Affiliation(s)
- Timur Sh Atabaev
- Department of Chemistry, School of Science and Technology, Nazarbayev University, Astana 010000, Kazakhstan.
| | - Zhonglie Piao
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Anara Molkenova
- Department of Chemistry, School of Science and Technology, Nazarbayev University, Astana 010000, Kazakhstan.
| |
Collapse
|