1
|
Yuan R, He X, Zhu C, Tao L. Recent Developments in Functional Polymers via the Kabachnik-Fields Reaction: The State of the Art. Molecules 2024; 29:727. [PMID: 38338468 PMCID: PMC10856324 DOI: 10.3390/molecules29030727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Recently, multicomponent reactions (MCRs) have attracted much attention in polymer synthesis. As one of the most well-known MCRs, the Kabachnik-Fields (KF) reaction has been widely used in the development of new functional polymers. The KF reaction can efficiently introduce functional groups into polymer structures; thus, polymers prepared via the KF reaction have unique α-aminophosphonates and show important bioactivity, metal chelating abilities, and flame-retardant properties. In this mini-review, we mainly summarize the latest advances in the KF reaction to synthesize functional polymers for the preparation of heavy metal adsorbents, multifunctional hydrogels, flame retardants, and bioimaging probes. We also discuss some emerging applications of functional polymers prepared by means of the KF reaction. Finally, we put forward our perspectives on the further development of the KF reaction in polymer chemistry.
Collapse
Affiliation(s)
- Rui Yuan
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; (R.Y.); (X.H.)
| | - Xianzhe He
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; (R.Y.); (X.H.)
| | - Chongyu Zhu
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China;
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; (R.Y.); (X.H.)
| |
Collapse
|
2
|
Neto BAD, Sorto JEP, Lapis AAM, Machado F. Functional chromophores synthesized via multicomponent Reactions: A review on their use as cell-imaging probes. Methods 2023; 220:142-157. [PMID: 37939912 DOI: 10.1016/j.ymeth.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
This review aims to provide a comprehensive overview of recent advancements and applications of fluorescence imaging probes synthesized via MCRs (multicomponent reactions). These probes, also known as functional chromophores, belong to a currently investigated class of fluorophores that are presently being successfully applied in bioimaging experiments, especially in various living cell lineages. We describe some of the MCRs that have been employed in the synthesis of these probes and explore their applications in biological imaging, with an emphasis on cellular imaging. The review also discusses the challenges and future perspectives in the field, particularly considering the potential impact of MCR-based fluorescence imaging probes on advancing this field of research in the coming years. Considering that this area of research is relatively new and nearly a decade has passed since the first publication, this review also provides a historical perspective on this class of fluorophores, highlighting the pioneering works published between 2011 and 2016.
Collapse
Affiliation(s)
- Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil.
| | - Jenny E P Sorto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil; Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | | | - Fabricio Machado
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil
| |
Collapse
|
3
|
Kapil K, Xu S, Lee I, Murata H, Kwon SJ, Dordick JS, Matyjaszewski K. Highly Sensitive Detection of Bacteria by Binder-Coupled Multifunctional Polymeric Dyes. Polymers (Basel) 2023; 15:2723. [PMID: 37376368 DOI: 10.3390/polym15122723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Infectious diseases caused by pathogens are a health burden, but traditional pathogen identification methods are complex and time-consuming. In this work, we have developed well-defined, multifunctional copolymers with rhodamine B dye synthesized by atom transfer radical polymerization (ATRP) using fully oxygen-tolerant photoredox/copper dual catalysis. ATRP enabled the efficient synthesis of copolymers with multiple fluorescent dyes from a biotin-functionalized initiator. Biotinylated dye copolymers were conjugated to antibody (Ab) or cell-wall binding domain (CBD), resulting in a highly fluorescent polymeric dye-binder complex. We showed that the unique combination of multifunctional polymeric dyes and strain-specific Ab or CBD exhibited both enhanced fluorescence and target selectivity for bioimaging of Staphylococcus aureus by flow cytometry and confocal microscopy. The ATRP-derived polymeric dyes have the potential as biosensors for the detection of target DNA, protein, or bacteria, as well as bioimaging.
Collapse
Affiliation(s)
- Kriti Kapil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Shirley Xu
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Inseon Lee
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Hironobu Murata
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Seok-Joon Kwon
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
4
|
Meghana MC, Nandhini C, Benny L, George L, Varghese A. A road map on synthetic strategies and applications of biodegradable polymers. Polym Bull (Berl) 2022; 80:1-50. [PMID: 36530484 PMCID: PMC9735231 DOI: 10.1007/s00289-022-04565-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 12/14/2022]
Abstract
Biodegradable polymers have emerged as fascinating materials due to their non-toxicity, environmentally benign nature and good mechanical strength. The toxic effects of non-biodegradable plastics paved way for the development of sustainable and biodegradable polymers. The engineering of biodegradable polymers employing various strategies like radical ring opening polymerization, enzymatic ring opening polymerization, anionic ring opening polymerization, photo-initiated radical polymerization, chemoenzymatic method, enzymatic polymerization, ring opening polymerization and coordinative ring opening polymerization have been discussed in this review. The application of biodegradable polymeric nanoparticles in the biomedical field and cosmetic industry is considered to be an emerging field of interest. However, this review mainly highlights the applications of selected biodegradable polymers like polylactic acid, poly(ε-caprolactone), polyethylene glycol, polyhydroxyalkanoates, poly(lactide-co-glycolide) and polytrimethyl carbonate in various fields like agriculture, biomedical, biosensing, food packaging, automobiles, wastewater treatment, textile and hygiene, cosmetics and electronic devices.
Collapse
Affiliation(s)
- M. C. Meghana
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - C. Nandhini
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - Libina Benny
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - Louis George
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| |
Collapse
|
5
|
Li Y, Wang M, Sun M, Wang X, Pei D, Lei B, Li A. Engineering antioxidant poly (citrate-gallic acid)-Exosome hybrid hydrogel with microglia immunoregulation for Traumatic Brain Injury-post neuro-restoration. COMPOSITES PART B: ENGINEERING 2022; 242:110034. [DOI: 10.1016/j.compositesb.2022.110034] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
6
|
Stiernet P, Debuigne A. Imine-Based Multicomponent Polymerization: Concepts, Structural Diversity and Applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Yang G, Liang J, Hu X, Liu M, Zhang X, Wei Y. Recent Advances on Fabrication of Polymeric Composites Based on Multicomponent Reactions for Bioimaging and Environmental Pollutant Removal. Macromol Rapid Commun 2021; 42:e2000563. [PMID: 33543565 DOI: 10.1002/marc.202000563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/08/2020] [Indexed: 12/30/2022]
Abstract
As the core of polymer chemistry, manufacture of functional polymers is one of research hotspots over the past several decades. Various polymers are developed for diverse applications due to their tunable structures and unique properties. However, traditional step-by-step preparation strategies inevitably involve some problems, such as separation, purification, and time-consuming. The multicomponent reactions (MCRs) are emerging as environmentally benign synthetic strategies to construct multifunctional polymers or composites with pendant groups and designed structures because of their features, such as efficient, fast, green, and atom economy. This mini review summarizes the latest advances about fabrication of multifunctional fluorescent polymers or adsorptive polymeric composites through different MCRs, including Kabachnik-Fields reaction, Biginelli reaction, mercaptoacetic acid locking imine reaction, Debus-Radziszewski reaction, and Mannich reaction. The potential applications of these polymeric composites in biomedical and environmental remediation are also highlighted. It is expected that this mini-review will promote the development preparation and applications of functional polymers through MCRs.
Collapse
Affiliation(s)
- Guang Yang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jie Liang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xin Hu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.,Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
8
|
Damsongsang P, Hoven VP, Yusa SI. Core-functionalized nanoaggregates: preparation via polymerization-induced self-assembly and their applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj01791h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Core-functionalized nanoaggregates can be prepared by a combination of polymerization-induced self-assembly (PISA) and post-polymerization modification.
Collapse
Affiliation(s)
- Panittha Damsongsang
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Voravee P. Hoven
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Shin-ichi Yusa
- Department of Applied Chemistry
- Graduate School of Engineering
- University of Hyogo
- Himeji
- Japan
| |
Collapse
|
9
|
Chen Y, Feng L, Liu B, Peng J, Chen Y, Xu C, Ren J. Study of microwave‐template initiated copolymerization peculiarity and evaluation on the coal floc distinctive behavior and flocculation performance. J Appl Polym Sci 2020. [DOI: 10.1002/app.49519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yao Chen
- School of River and Ocean EngineeringChongqing Jiaotong University Chongqing China
| | - Li Feng
- School of Civil and Transportation EngineeringGuangdong University of Technology, Higher Education Mega Center Guangzhou Guangdong China
| | - Bingzhi Liu
- School of Civil and Transportation EngineeringGuangdong University of Technology, Higher Education Mega Center Guangzhou Guangdong China
| | - Junlin Peng
- School of Mechanical Engineering, Xiangtan University Xiangtan Hunan China
| | - Yuning Chen
- School of Civil and Transportation EngineeringGuangdong University of Technology, Higher Education Mega Center Guangzhou Guangdong China
| | - Chuang Xu
- School of Civil and Transportation EngineeringGuangdong University of Technology, Higher Education Mega Center Guangzhou Guangdong China
| | - Jie Ren
- Key Laboratory of the Three Gorges Reservoir Region's Eco‐Environment, Ministry of EducationChongqing University Chongqing China
| |
Collapse
|
10
|
Huang H, Jiang R, Ma H, Li Y, Zeng Y, Zhou N, Liu L, Zhang X, Wei Y. Fabrication of claviform fluorescent polymeric nanomaterials containing disulfide bond through an efficient and facile four-component Ugi reaction. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111437. [PMID: 33255030 DOI: 10.1016/j.msec.2020.111437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 12/25/2022]
Abstract
Multicomponent reactions (MCRs) have attracted broad interest for preparation of functional nanomaterials especially for the synthesis of functional polymers. Herein, we utilized an "old" MCR, the four-component Ugi reaction, to synthesize disulfide bond containing poly(PEG-TPE-DTDPA) amphiphilic copolymers with aggregation-induced emission (AIE) feature. This four-component Ugi reaction was carried out under rather mild reaction conditions, such as room temperature, no gas protection and absent of catalysts. The amphiphilic poly(PEG-TPE-DTDPA) copolymers with high number-average molecular weight (up to 86,440 Da) can self-assemble into claviform fluorescent polymeric nanoparticles (FPNs) in aqueous solution, and these water-dispersed nanoparticles exhibited strong emission, large Stokes shift (142 nm), low toxicity and remarkable ability in cellular imaging. Moreover, owing to the introduction of 3,3'-dithiodipropionic acid with disulfide bond, the resultant AIE-active poly(PEG-TPE-DTDPA) could display reduction-responsiveness and be utilized for synthesis of photothermal agents in-situ. Therefore, the AIE-active poly(PEG-TPE-DTDPA) could be promising for controlled intracellular delivery of biological activity molecules and fabrication of multifunctional AIE-active materials. Therefore, these novel AIE-active polymeric nanoparticles could be of great potential for various biomedical applications, such as biological imaging, stimuli-responsive drug delivery and theranostic applications.
Collapse
Affiliation(s)
- Hongye Huang
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Ruming Jiang
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Haijun Ma
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
| | - Yongsan Li
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
| | - Yuan Zeng
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
| | - Naigen Zhou
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Liangji Liu
- Jiangxi University of Traditional Chinese Medicine, 56 Yangming Road, Jiangxi, Nanchang 330006, China
| | - Xiaoyong Zhang
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China; Department of Chemistry and Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
11
|
Si Y, Grazon C, Clavier G, Rieger J, Tian Y, Audibert JF, Sclavi B, Méallet-Renault R. Fluorescent Copolymers for Bacterial Bioimaging and Viability Detection. ACS Sens 2020; 5:2843-2851. [PMID: 32786389 DOI: 10.1021/acssensors.0c00981] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Novel fluorescent labels with high photostability and high biocompatibility are required for microbiological imaging and detection. Here, we present a green fluorescent polymer chain (GFPC), designed to be nontoxic and water-soluble, for multicolor bioimaging and real-time bacterial viability determination. The copolymer is synthesized using a straightforward one-pot reversible addition-fragmentation chain-transfer (RAFT) polymerization technique. We show that GFPC does not influence bacterial growth and is stable for several hours in a complex growth medium and in the presence of bacteria. GFPC allows the labeling of the bacterial cytoplasm for multicolor bacterial bioimaging applications. It can be used in combination with propidium iodide (PI) to develop a rapid and reliable protocol to distinguish and quantify, in real time, by flow cytometry, live and dead bacteria.
Collapse
Affiliation(s)
- Yang Si
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190 Gif-sur-Yvette, France
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, LBPA, 91190 Gif-sur-Yvette, France
| | - Chloé Grazon
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190 Gif-sur-Yvette, France
| | - Gilles Clavier
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190 Gif-sur-Yvette, France
| | - Jutta Rieger
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, Equipe Chimie des Polymères, 75252 Paris, France
| | - Yayang Tian
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190 Gif-sur-Yvette, France
| | | | - Bianca Sclavi
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, LBPA, 91190 Gif-sur-Yvette, France
| | | |
Collapse
|
12
|
Cibotaru S, Sandu AI, Belei D, Marin L. Water soluble PEGylated phenothiazines as valuable building blocks for bio-materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111216. [PMID: 32806288 DOI: 10.1016/j.msec.2020.111216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/21/2020] [Accepted: 06/18/2020] [Indexed: 10/24/2022]
Abstract
The paper reports a series of three new PEGylated phenothiazine derivatives which keep the potential of valuable building blocks for preparing eco-materials addressed to a large realm of fields, from bio-medicine to opto-electronics. They were synthetized by connecting the hydrophilic poly(ethylene glycol) to the hydrophobic phenothiazine via an ether, ester, or amide linking group. The successful synthesis of the targeted polymers and their purity were demonstrated by NMR and FTIR spectroscopy methods. Their capacity to self-assembly in water was studied by DLS and UV-vis techniques and the particularities of the formed aggregates were investigated by fluorescence spectroscopy, SEM, AFM, POM and UV light microscopy. The biocompatibility was assessed on normal human dermal fibroblasts and human cervical cancer cells. The synthetized compounds showed the formation of luminescent aggregates and proved excellent biocompatibility on normal cells. In addition, a concentration dependent cytotoxicity against HeLa cancer cells was noticed for the PEGylated phenothiazine containing an ester unit.
Collapse
Affiliation(s)
- Sandu Cibotaru
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Andreea-Isabela Sandu
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Dalila Belei
- "Alexandru Ioan Cuza" University, Department of Organic Chemistry, Iasi, Romania
| | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania.
| |
Collapse
|
13
|
Shilpa T, Ann Harry N, Ujwaldev SM, Anilkumar G. An Overview of Microwave‐Assisted Kabachnik‐Fields Reactions. ChemistrySelect 2020. [DOI: 10.1002/slct.202000693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Thomas Shilpa
- School of Chemical SciencesMahatma Gandhi University Priyadarsini Hills P O, Kottayam Kerala India 686560
| | - Nissy Ann Harry
- School of Chemical SciencesMahatma Gandhi University Priyadarsini Hills P O, Kottayam Kerala India 686560
| | | | - Gopinathan Anilkumar
- School of Chemical SciencesMahatma Gandhi University Priyadarsini Hills P O, Kottayam Kerala India 686560
| |
Collapse
|
14
|
Dong J, Jiang R, Huang H, Chen J, Tian J, Deng F, Dai Y, Wen Y, Zhang X, Wei Y. Facile preparation of fluorescent nanodiamond based polymer nanoparticles via ring-opening polymerization and their biological imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110297. [DOI: 10.1016/j.msec.2019.110297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 09/02/2019] [Accepted: 10/07/2019] [Indexed: 12/20/2022]
|
15
|
Xu Q, Guo Y, Xu T, Fang M, Zhu W, Li C. AIE-active fluorescent polymeric nanoparticles about dextran derivative: preparation and bioimaging application. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:504-518. [PMID: 31810426 DOI: 10.1080/09205063.2019.1702277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Aggregation-induced emission (AIE), as a special phenomenon of fluorescence, can elegantly overcome the fluorescence quenching caused by common fluorescent materials under high concentration conditions and has attracted interest of researchers in many fields. Particularly AIE-active polymer nanoparticles have been widely utilized in a modern biomedical research. In this work, we prepared a novel kind of AIE-active fluorescent polymeric nanoparticals (Dex-OH-CHO) through a facile esterification between a new hydrophobic AIE-active 1, 8-naphthalimide derivative and the hydrophilic dextran. The structure and optical properties of Dex-OH-CHO were characterized in detail by FTIR, 1H NMR, XPS, TEM and fluorescence spectra. The results showed that Dex-OH-CHO emitted light-blue fluorescence in aqueous solution with high fluorescent quantum yield (Φ = 24.43%, concentration is 20 μg/mL), low CMC (5 μg/mL), good photostability, high water solubility and well dispersivity. Moreover, good biocompatibility and ideal cell uptake made Dex-OH-CHO had a great application potential in biological imaging.
Collapse
Affiliation(s)
- Qianwen Xu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, PR China
| | - Yifan Guo
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, PR China
| | - Tingting Xu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, PR China
| | - Min Fang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, PR China.,Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Anhui University, Hefei, PR China
| | - Weiju Zhu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, PR China.,Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, PR China
| | - Cun Li
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, PR China.,Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Anhui University, Hefei, PR China
| |
Collapse
|
16
|
Javanbakht S, Shaabani A. Multicomponent Reactions-Based Modified/Functionalized Materials in the Biomedical Platforms. ACS APPLIED BIO MATERIALS 2019; 3:156-174. [DOI: 10.1021/acsabm.9b00799] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Siamak Javanbakht
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran 1963963113, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran 1963963113, Iran
| |
Collapse
|
17
|
AIE-active self-assemblies from a catalyst-free thiol-yne click reaction and their utilization for biological imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:61-68. [DOI: 10.1016/j.msec.2018.06.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 05/16/2018] [Accepted: 06/18/2018] [Indexed: 11/18/2022]
|
18
|
Dong J, Liu M, Jiang R, Huang H, Wan Q, Wen Y, Tian J, Dai Y, Zhang X, Wei Y. Synthesis and biological imaging of cross-linked fluorescent polymeric nanoparticles with aggregation-induced emission characteristics based on the combination of RAFT polymerization and the Biginelli reaction. J Colloid Interface Sci 2018; 528:192-199. [PMID: 29857250 DOI: 10.1016/j.jcis.2018.05.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023]
Abstract
Fluorescent probes have long been regarded as tools for imaging living organisms with advantages such as high sensitivity, good designability and multifunctional potential. Many fluorescent probes, especially the probes based on aggregation-induced emission (AIE) dyes, have received increasing attention since the AIE phenomenon was discovered. These AIE dye-based fluorescent probes could elegantly overcome the notorious quenching effect caused by aggregation of conventional organic dyes. However, it is still difficult to directly apply these AIE-active dyes for biomedical applications owing to their hydrophobic nature. Therefore, the development of novel and facile strategies to endow them with water dispersibility is of critical importance. In this work, we exploit an efficient and simple strategy to fabricate an AIE dye-based fluorescent copolymer through the combination of reversible addition-fragmentation chain transfer and the Biginelli reaction. Moreover, the copolymer can self-assemble to fluorescent polymeric nanoparticles (FPNs) in water solution. Hydrophilic poly(PEGMA-co-AEMA) was reacted with the AIE-active dye 4',4‴-(1,2-diphenylethene-1,2-diyl)bis([1,1'-biphenyl]-4-carbaldehyde (CHO-TPE-CHO) to form amphiphilic luminescent polymers using urea as the connection bridge. The successful synthesis of the final products (poly(PEGMA-co-AEMA-TPE) FPNs) was confirmed by various instruments. Furthermore, Transmission electron microscopy (TEM) images manifest that poly(PEGMA-co-AEMA-TPE) copolymers will self-assemble into spherical nanoparticles in aqueous environments with sizes between 100 nm and 200 nm. The cell uptake and bioimaging experiment confirm that poly(PEGMA-co-AEMA-TPE) FPNs have excellent biocompatibility and emit strong green fluorescence in a cellular environment. Thus, poly(PEGMA-co-AEMA-TPE) FPNs are excellent candidates for biomedical applications.
Collapse
Affiliation(s)
- Jiande Dong
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Ruming Jiang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Hongye Huang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Qing Wan
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Yuanqing Wen
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Jianwen Tian
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Yanfeng Dai
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China; Department of Chemistry and Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan
| |
Collapse
|
19
|
Yan R, Wang Z, Du Z, Wang H, Cheng X, Xiong J. A biomimetic fluorescent chemosensor for highly sensitive zinc(ii) detection and its application for cell imaging. RSC Adv 2018; 8:33361-33367. [PMID: 35548108 PMCID: PMC9086477 DOI: 10.1039/c8ra06501b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/18/2018] [Indexed: 02/05/2023] Open
Abstract
To fabricate a novel biomimetic fluorescent chemosensor, PSaAEMA-co-PMPC was synthesized via atom transfer radical polymerization, and this copolymer could be used for the detection of zinc(ii) and cell imaging. A series tests with various metal ions verified the specific fluorescence response behavior. This novel biomimetic fluorescent chemosensor exhibits excellent selectivity for Zn2+ ions over a wide range of tested metal ions in an aqueous solution. Moreover, cytotoxicity and bio-imaging tests were conducted to study the potential bio-application of the chemosensor. Owing to the biomimetic portion (phosphorylcholine), this copolymer possesses outstanding biocompatibility and could clearly image cells. The results indicated that PSaAEMA-co-PMPC has great potential for application in zinc(ii) detection and cell imaging. To fabricate a novel biomimetic fluorescent chemosensor, PSaAEMA-co-PMPC was synthesized via atom transfer radical polymerization, and this copolymer could be used for the detection of zinc(ii) and cell imaging.![]()
Collapse
Affiliation(s)
- Rui Yan
- Textile Institute
- College of Light Industry
- Textile and Food Engineering
- Sichuan University
- Chengdu
| | - Zhi Wang
- State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu 610041
- China
| | - Zongliang Du
- Textile Institute
- College of Light Industry
- Textile and Food Engineering
- Sichuan University
- Chengdu
| | - Haibo Wang
- Textile Institute
- College of Light Industry
- Textile and Food Engineering
- Sichuan University
- Chengdu
| | - Xu Cheng
- Textile Institute
- College of Light Industry
- Textile and Food Engineering
- Sichuan University
- Chengdu
| | - Junjie Xiong
- Department of Pancreatic Surgery
- West China Hospital
- Sichuan University
- Chengdu 610041
- China
| |
Collapse
|