1
|
Velazco-Medel MA, Camacho-Cruz LA, Magaña H, Palomino K, Bucio E. Simultaneous Grafting Polymerization of Acrylic Acid and Silver Aggregates Formation by Direct Reduction Using γ Radiation onto Silicone Surface and Their Antimicrobial Activity and Biocompatibility. Molecules 2021; 26:2859. [PMID: 34065879 PMCID: PMC8151000 DOI: 10.3390/molecules26102859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 01/05/2023] Open
Abstract
The modification of medical devices is an area that has attracted a lot of attention in recent years; particularly, those developments which search to modify existing devices to render them antimicrobial. Most of these modifications involve at least two stages (modification of the base material with a polymer graft and immobilization of an antimicrobial agent) which are both time-consuming and complicate synthetic procedures; therefore, as an improvement, this project sought to produce antimicrobial silicone (PDMS) in a single step. Using gamma radiation as both an energy source for polymerization initiation and as a source of reducing agents in solution, PDMS was simultaneously grafted with acrylic acid and ethylene glycol dimethacrylate (AAc:EGDMA) while producing antimicrobial silver nanoparticles (AgNPs) onto the surface of the material. To obtain reproducible materials, experimental variables such as the effect of the dose, the intensity of radiation, and the concentration of the silver salt were evaluated, finding the optimal reaction conditions to obtain materials with valuable properties. The characterization of the material was performed using electronic microscopy and spectroscopic techniques such as 13C-CPMAS-SS-NMR and FTIR. Finally, these materials demonstrated good antimicrobial activity against S. aureus while retaining good cell viabilities (above 90%) for fibroblasts BALB/3T3.
Collapse
Affiliation(s)
- Marlene A. Velazco-Medel
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad 7 Universitaria, Ciudad de México 04510, Mexico;
| | - Luis A. Camacho-Cruz
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad 7 Universitaria, Ciudad de México 04510, Mexico;
| | - Héctor Magaña
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, University Boulevard No. 14418, Otay Mesa, Tijuana 22390, Mexico; (H.M.); (K.P.)
| | - Kenia Palomino
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, University Boulevard No. 14418, Otay Mesa, Tijuana 22390, Mexico; (H.M.); (K.P.)
| | - Emilio Bucio
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad 7 Universitaria, Ciudad de México 04510, Mexico;
| |
Collapse
|
3
|
Lobaz V, Konefał R, Pánek J, Vlk M, Kozempel J, Petřík M, Novy Z, Gurská S, Znojek P, Štěpánek P, Hrubý M. In Situ In Vivo radiolabeling of polymer-coated hydroxyapatite nanoparticles to track their biodistribution in mice. Colloids Surf B Biointerfaces 2019; 179:143-152. [PMID: 30954015 DOI: 10.1016/j.colsurfb.2019.03.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 11/26/2022]
Abstract
The imaging of healthy tissues and solid tumors benefits from the application of nanoparticle probes with altered pharmacokinetics, not available to low molecular weight compounds. However, the distribution and accumulation of nanoprobes in vivo typically take at least tens of hours to be efficient. For nanoprobes bearing a radioactive label, this is contradictory to the requirement of minimizing the radiation dose for patients by using as-short-as-feasible half-life radionuclides in diagnostics. Thus, we developed a two-stage diagnostic concept for monitoring long-lasting targeting effects with short-lived radioactive labels using bone-mimicking biocompatible polymer-coated and colloidally fully stabilized hydroxyapatite nanoparticles (HAP NPs) and bone-seeking radiopharmaceuticals. Within the pretargeting stage, the nonlabeled nanoparticles are allowed to circulate in the blood. Afterward, 99mTc-1-hydroxyethylidene-1.1-diphosphonate (99mTc-HEDP) is administered intravenously for in situ labeling of the nanoparticles and subsequent single-photon emission computed tomography/computed tomography (SPECT/CT) visualization. The HAP NPs, stabilized with tailored hydrophilic polymers, are not cytotoxic in vitro, as shown by several cell lines. The polymer coating prolongs the circulation of HAP NPs in the blood. The nanoparticles were successfully labeled in vivo with 99mTc-HEDP, 1 and 24 h after injection, and they were visualized by SPECT/CT over time in healthy mice.
Collapse
Affiliation(s)
- Volodymyr Lobaz
- Institute of Macromolecular Chemistry AS CR, Heyrovsky Sq. 1888/2, 162 06, Prague 6, Czech Republic.
| | - Rafał Konefał
- Institute of Macromolecular Chemistry AS CR, Heyrovsky Sq. 1888/2, 162 06, Prague 6, Czech Republic
| | - Jiří Pánek
- Institute of Macromolecular Chemistry AS CR, Heyrovsky Sq. 1888/2, 162 06, Prague 6, Czech Republic
| | - Martin Vlk
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Břehová 7, 115 19, Prague 1, Czech Republic
| | - Ján Kozempel
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Břehová 7, 115 19, Prague 1, Czech Republic
| | - Miloš Petřík
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, 779 00, Olomouc, Czech Republic
| | - Zbyněk Novy
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, 779 00, Olomouc, Czech Republic
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, 779 00, Olomouc, Czech Republic
| | - Pawel Znojek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, 779 00, Olomouc, Czech Republic
| | - Petr Štěpánek
- Institute of Macromolecular Chemistry AS CR, Heyrovsky Sq. 1888/2, 162 06, Prague 6, Czech Republic
| | - Martin Hrubý
- Institute of Macromolecular Chemistry AS CR, Heyrovsky Sq. 1888/2, 162 06, Prague 6, Czech Republic
| |
Collapse
|
4
|
Sienkiewicz A, Kierys A, Goworek J. Polymer-hybrid silica composite for the azo dye removal from aqueous solution. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2018.1515024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Andrzej Sienkiewicz
- Department of Adsorption, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Agnieszka Kierys
- Department of Adsorption, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Jacek Goworek
- Department of Adsorption, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|