1
|
Tang J, Tong X, Chen Y, Wu Y, Zheng Z, Kayitmazer AB, Ahmad A, Ramzan N, Yang J, Huang Q, Xu Y. Deposition and water repelling of temperature-responsive nanopesticides on leaves. Nat Commun 2023; 14:6401. [PMID: 37828020 PMCID: PMC10570302 DOI: 10.1038/s41467-023-41878-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Pesticides are widely used to increase agricultural productivity, however, weak adhesion and deposition lead to low efficient utilization. Herein, we prepare a nanopesticide formulation (tebuconazole nanopesticides) which is leaf-adhesive, and water-dispersed via a rapid nanoparticle precipitation method, flash nanoprecipitation, using temperature-responsive copolymers poly-(2-(dimethylamino)ethylmethylacrylate)-b-poly(ε-caprolactone) as the carrier. Compared with commercial suspensions, the encapsulation by the polymer improves the deposition of TEB, and the contact angle on foliage is lowered by 40.0°. Due to the small size and strong van der Waals interactions, the anti-washing efficiency of TEB NPs is increased by 37% in contrast to commercial ones. Finally, the acute toxicity of TEB NPs to zebrafish shows a more than 25-fold reduction as compared to commercial formulation indicating good biocompatibility of the nanopesticides. This work is expected to enhance pesticide droplet deposition and adhesion, maximize the use of pesticides, tackling one of the application challenges of pesticides.
Collapse
Affiliation(s)
- Jie Tang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xiaojing Tong
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yongjun Chen
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yue Wu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhiyuan Zheng
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | | | - Ayyaz Ahmad
- Department of Chemical Engineering, Muhammad Nawaz Sharif University of Engineering and Technology, Multan, Pakistan
| | - Naveed Ramzan
- Faculty of Chemical, Metallurgical, and Polymer Engineering, University of Engineering & Technology, Lahore, Pakistan
| | - Jintao Yang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yisheng Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
2
|
Zhang P, Zhang X, Kreuzer LP, Schwaiger DM, Lu M, Cubitt R, Zhong Q, Müller-Buschbaum P. Kinetics of UV Radiation-Induced Fast Collapse and Recovery in Thermally Cycled and Rehydrated Light- and Thermo- Double-Responsive Copolymer Films Probed by In Situ Neutron Reflectivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10464-10474. [PMID: 37458993 DOI: 10.1021/acs.langmuir.3c00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The kinetics of UV radiation-induced fast collapse and recovery in thermally cycled and rehydrated light- and thermo- double-responsive copolymer films of poly(oligo(ethylene glycol) methyl ether methacrylate-co-6-(4-phenylazophenoxy)hexyl acrylate), abbreviated as P(OEGMA300-co-PAHA), are probed by in situ neutron reflectivity (NR). The copolymer film is exposed to a thermal treatment starting at a temperature of 60 °C, which is well above its transition temperature (TT = 53 °C) before the temperature is rapidly decreased from 60 to 23 °C. Based on the applied protocol, the initially collapsed P(OEGMA300-co-PAHA) film is rehydrated due to the switching of polymer chains from a more hydrophobic to a more hydrophilic state when the temperature falls below its TT. The whole rehydration process can be divided into 3 stages: D2O absorption, chain rearrangement, and film reswelling. After rehydration, the thermally cycled P(OEGMA300-co-PAHA) film is switched by UV irradiation via setting the UV radiation on and off. Considering the UV-induced collapse and recovery, both processes are slower than those observed in freshly hydrated films without any thermal stimulus history. Therefore, the experienced thermal history of the film should be considered in the design of sensors and detectors based on double-responsive copolymer films.
Collapse
Affiliation(s)
- Panpan Zhang
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province; Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Xuan Zhang
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province; Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Lucas P Kreuzer
- Department of Physics, Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Dominik M Schwaiger
- Department of Physics, Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
| | - Min Lu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province; Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Robert Cubitt
- Institut Laue-Langevin, 6 Rue Jules Horowitz, 38000 Grenoble, France
| | - Qi Zhong
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province; Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
- Department of Physics, Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
| | - Peter Müller-Buschbaum
- Department of Physics, Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstraße 1, 85748 Garching, Germany
| |
Collapse
|
3
|
Bercea M. Bioinspired Hydrogels as Platforms for Life-Science Applications: Challenges and Opportunities. Polymers (Basel) 2022; 14:polym14122365. [PMID: 35745941 PMCID: PMC9229923 DOI: 10.3390/polym14122365] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
Hydrogels, as interconnected networks (polymer mesh; physically, chemically, or dynamic crosslinked networks) incorporating a high amount of water, present structural characteristics similar to soft natural tissue. They enable the diffusion of different molecules (ions, drugs, and grow factors) and have the ability to take over the action of external factors. Their nature provides a wide variety of raw materials and inspiration for functional soft matter obtained by complex mechanisms and hierarchical self-assembly. Over the last decade, many studies focused on developing innovative and high-performance materials, with new or improved functions, by mimicking biological structures at different length scales. Hydrogels with natural or synthetic origin can be engineered as bulk materials, micro- or nanoparticles, patches, membranes, supramolecular pathways, bio-inks, etc. The specific features of hydrogels make them suitable for a wide variety of applications, including tissue engineering scaffolds (repair/regeneration), wound healing, drug delivery carriers, bio-inks, soft robotics, sensors, actuators, catalysis, food safety, and hygiene products. This review is focused on recent advances in the field of bioinspired hydrogels that can serve as platforms for life-science applications. A brief outlook on the actual trends and future directions is also presented.
Collapse
Affiliation(s)
- Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| |
Collapse
|
4
|
Sadat Hosseini Z, Abdollahi A, Dashti A, Matin MM, Afkhami-Poostchi A. Synthesis of tertiary amine functionalized Multi-Stimuli-Responsive latex nanoparticles by semicontinuous emulsion Polymerization: Investigation of responsivities and antimicrobial activity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
5
|
New Hydrogel Network Based on Alginate and a Spiroacetal Copolymer. Gels 2021; 7:gels7040241. [PMID: 34940301 PMCID: PMC8701164 DOI: 10.3390/gels7040241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
This study reports a strategy for developing a biohybrid complex based on a natural/synthetic polymer conjugate as a gel-type structure. Coupling synthetic polymers with natural compounds represents an important approach to generating gels with superior properties and with potential for biomedical applications. The study presents the preparation of hybrid gels with tunable characteristics by using a spiroacetal polymer and alginate as co-partners in different ratios. The new network formation was tested, and the structure was confirmed by FTIR and SEM techniques. The physical properties of the new gels, namely their thermal stability and swelling behavior, were investigated. The study showed that the increase in alginate content caused a smooth increase in thermal stability due to the additional crosslinking bridges that appeared. Moreover, increasing the content of the synthetic polymer in the structure of the gel network ensures a slower release of carvacrol, the encapsulated bioactive compound.
Collapse
|
6
|
Croitoriu A, Nita LE, Chiriac AP, Rusu AG, Bercea M. New Physical Hydrogels Based on Co-Assembling of FMOC-Amino Acids. Gels 2021; 7:208. [PMID: 34842687 PMCID: PMC8628802 DOI: 10.3390/gels7040208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023] Open
Abstract
In the last years, physical hydrogels have been widely studied due to the characteristics of these structures, respectively the non-covalent interactions and the absence of other necessary components for the cross-linking processes. Low molecular weight gelators are a class of small molecules which form higher ordered structures through hydrogen bonding and π-π interactions. In this context it is known that the formation of hydrogels based on FMOC-amino acids is determined by the primary structures of amino acids and the secondary structure arrangement (alpha-helix or beta-sheet motifs). The present study aimed to obtain supramolecular gels through co-assembly phenomenon using FMOC-amino acids as low molecular weight gelators. The stability of the new structures was evaluated by the vial inversion test, while FTIR spectra put into evidence the interaction between the compounds. The gel-like structure is evidenced by viscoelastic parameters in oscillatory shear conditions. SEM microscopy was used to obtain the visual insight into the morphology of the physical hydrogel network while DLS measurements highlighted the sol-gel transition. The molecular arrangement of gels was determined by circular dichroism, fluorescence and UV-Vis spectroscopy.
Collapse
Affiliation(s)
| | | | | | - Alina G. Rusu
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.C.); (L.E.N.); (A.P.C.); (M.B.)
| | | |
Collapse
|
7
|
Okten Besli NS, Orakdogen N. Charge-balanced terpolymer poly(diethylaminoethyl methacrylate-hydroxyethyl methacrylate-2-acrylamido-2-methyl-propanesulfonic acid) hydrogels and cryogels: scaling parameters and correlation with composition. SOFT MATTER 2020; 16:10470-10487. [PMID: 33063815 DOI: 10.1039/d0sm01306d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The scaling laws relating the preparation conditions to the swelling degree, reduced modulus and effective crosslinking density of poly(diethylaminoethyl methacrylate-co-hydroxyethyl methacrylate-co-2-acrylamido-2-methyl-propanesulfonic acid), henceforth designated as PDHA, gels prepared by radical crosslinking copolymerization in a solvent mixture were reported. Charge-balanced terpolymer PDHA hydrogels and cryogels (PDHA-Hgs and Cgs) were prepared in different monomer feed compositions. The swelling dependence of the reduced modulus was described by a power law relationship Gr≈ (φV)m with an exponent of m = -0.30 at low swelling degree, while in the high swelling region the scaling becomes 0.21, indicating the finite extensibility of the network chains. The scaling exponent for the swelling degree and terpolymer composition, φV≈ (Nν)m, was found to be -0.13, indicating the increasing extent of the topological constraints arising from the trapped entanglements. By combining elasticity and swelling results, the scaling relationship between the apparent crosslink density and HEMA content used in the terpolymer feed was obtained as a cubic polynomial of the mol% of HEMA. In the HEMA-rich terpolymer PDHA Hgs and Cgs, the swelling degree was possibly controlled by the HEMA part of the terpolymer network, while the presence of DEAEM units in the network triggered the thermoresponsive swelling behavior. The dependence of interaction parameter χ on the volume fraction of the crosslinked terpolymer network in the swollen gel ν2 was evaluated and the results revealed extremely strong concentration dependence of χ for all terpolymer samples. Because of their inherent properties, the resulting terpolymer gels might contribute to the improvement of the loading capacity of polymers used in anticancer drug delivery systems.
Collapse
Affiliation(s)
- Nur Sena Okten Besli
- Istanbul Technical University, Department of Chemistry, Soft Materials Research Laboratory, 34469, Maslak, Istanbul, Turkey.
| | | |
Collapse
|
8
|
Ma X, Liu X, Wang P, Wang X, Yang R, Liu S, Ye Z, Chi B. Covalently Adaptable Hydrogel Based on Hyaluronic Acid and Poly(γ-glutamic acid) for Potential Load-Bearing Tissue Engineering. ACS APPLIED BIO MATERIALS 2020; 3:4036-4043. [DOI: 10.1021/acsabm.0c00112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xuebin Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Xiaoxue Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhiwen Ye
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
9
|
Nita LE, Chiriac AP, Rusu AG, Ghilan A, Dumitriu RP, Bercea M, Tudorachi N. Stimuli Responsive Scaffolds Based on Carboxymethyl Starch and Poly(2‐Dimethylaminoethyl Methacrylate) for Anti‐Inflammatory Drug Delivery. Macromol Biosci 2020; 20:e1900412. [DOI: 10.1002/mabi.201900412] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/21/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Loredana Elena Nita
- “Petru Poni” Institute of Macromolecular Chemistry 41‐A Grigore Ghica Voda Alley RO‐700487 Iasi Romania
| | - Aurica P. Chiriac
- “Petru Poni” Institute of Macromolecular Chemistry 41‐A Grigore Ghica Voda Alley RO‐700487 Iasi Romania
| | - Alina Gabriela Rusu
- “Petru Poni” Institute of Macromolecular Chemistry 41‐A Grigore Ghica Voda Alley RO‐700487 Iasi Romania
| | - Alina Ghilan
- “Petru Poni” Institute of Macromolecular Chemistry 41‐A Grigore Ghica Voda Alley RO‐700487 Iasi Romania
| | - Raluca P. Dumitriu
- “Petru Poni” Institute of Macromolecular Chemistry 41‐A Grigore Ghica Voda Alley RO‐700487 Iasi Romania
| | - Maria Bercea
- “Petru Poni” Institute of Macromolecular Chemistry 41‐A Grigore Ghica Voda Alley RO‐700487 Iasi Romania
| | - Nita Tudorachi
- “Petru Poni” Institute of Macromolecular Chemistry 41‐A Grigore Ghica Voda Alley RO‐700487 Iasi Romania
| |
Collapse
|
10
|
Nita LE, Chiriac AP, Rusu AG, Bercea M, Ghilan A, Dumitriu RP, Mititelu-Tartau L. New self-healing hydrogels based on reversible physical interactions and their potential applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.05.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Rusu AG, Chiriac AP, Nita LE, Bercea M, Tudorachi N, Ghilan A, Pamfil D, Rusu D, Cojocaru FD. Interpenetrated polymer network with modified chitosan in composition and self-healing properties. Int J Biol Macromol 2019; 132:374-384. [DOI: 10.1016/j.ijbiomac.2019.03.136] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 11/26/2022]
|
12
|
Thermal properties of poly(N,N-dimethylaminoethyl methacrylate). PLoS One 2019; 14:e0217441. [PMID: 31166982 PMCID: PMC6550408 DOI: 10.1371/journal.pone.0217441] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/10/2019] [Indexed: 11/19/2022] Open
Abstract
Poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) is a promising quite new polymer with very interesting properties. The thermal degradation process of PDMAEMA was investigated. The polymer was heated at specific time intervals, then heating was stopped, and infrared analysis was performed to obtain information on the structure of the solid residue. The thermal degradation process has a two-stage character. The limit temperature for the first decomposition step was about 390°C, after which the second stage of sample decomposition began. The order of disintegration of the macromolecules was determined. Activation energy values for the thermal decomposition process have been calculated; they are 89.8 kJ/mol for the first stage and 17.7 kJ/mol for the second stage of the degradation process.
Collapse
|
13
|
Okten NS, Canakci CC, Orakdogen N. Hertzian elasticity and triggered swelling kinetics of poly(amino ester)-based gel beads with controlled hydrophilicity and functionality: A mild and convenient synthesis via dropwise freezing into cryogenic liquid. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|