1
|
Wijitwongwan RP, Intasa-Ard SG, Ogawa M. Hybridization of layered double hydroxides with functional particles. Dalton Trans 2024; 53:6144-6156. [PMID: 38477615 DOI: 10.1039/d4dt00292j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Layered double hydroxides (LDHs) are a class of materials with useful properties associated with their anion exchange abilities as well as redox and adsorptive properties for a wide range of applications including adsorbents, catalysts and their supports, electrodes, pigments, ceramic precursors, and drug carriers. In order to satisfy the requirements for each application as well as to find alternative applications, the preparation of LDHs with the desired composition and particle morphology and post-synthetic modification by the host-guest interactions have been examined. In addition, the hybridization of LDHs with various functional particles has been reported to design materials of modified, improved, and multiple functions. In the present article, the preparation, the heterostructure and the application of hybrids containing LDHs as the main component are overviewed.
Collapse
Affiliation(s)
- Rattanawadee Ploy Wijitwongwan
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| | - Soontaree Grace Intasa-Ard
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|
2
|
Yuan Y, Chen B, Song L, An X, Zhang Q, Lu H, Li CM, Guo C. Magnetic two-dimensional nanocomposites for multimodal antitumor therapy: a recent review. J Mater Chem B 2024; 12:1404-1428. [PMID: 38251275 DOI: 10.1039/d3tb02333h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Magnetic two-dimensional nanocomposites (M2D NCs) that synergistically combine magnetic nanomedicine and 2D nanomaterials have emerged in multimodal antitumor therapy, attracting great interest in materials science and biomedical engineering. This review provides a summary of the recent advances of M2D NCs and their multimodal antitumor applications. We first introduce the design and fabrication of M2D NCs, followed by discussing new types of M2D NCs that have been recently reported. Then, a detailed analysis and discussions about the different types of M2D NCs are presented based on the structural categories of 2D NMs, including 2D graphene, transition metal dichalcogenides (TMDs), transition metal carbides/nitrides/carbonitrides (MXenes), black phosphorus (BP), layered double hydroxides (LDHs), metal organic frameworks (MOFs), covalent organic frameworks (COFs) and other 2D nanomaterials. In particular, we focus on the synthesis strategies, magnetic or optical responsive performance, and the versatile antitumor applications, which include magnetic hyperthermia therapy (MHT), photothermal therapy (PTT), photodynamic therapy (PDT), drug delivery, immunotherapy and multimodal imaging. We conclude the review by proposing future developments with an emphasis on the mass production and biodegradation mechanism of the M2D NCs. This work is expected to provide a comprehensive overview to researchers and engineers who are interested in such a research field and promote the clinical translation of M2D NCs in practical applications.
Collapse
Affiliation(s)
- Ying Yuan
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu, P. R. China.
| | - Bo Chen
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu, P. R. China.
| | - Luping Song
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu, P. R. China.
| | - Xingxing An
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu, P. R. China.
| | - Qinrui Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu, P. R. China.
| | - Hao Lu
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu, P. R. China.
| | - Chang Ming Li
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu, P. R. China.
| | - Chunxian Guo
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu, P. R. China.
| |
Collapse
|
3
|
Peralta MF, Mendieta SN, Scolari IR, Gerbaldo MV, Oliva MI, Gil GA, Granero GE, Crivello ME. Magnetic layered double hydroxides with carbamazepine for breast cancer treatment. Heliyon 2023; 9:e21030. [PMID: 37916071 PMCID: PMC10616332 DOI: 10.1016/j.heliyon.2023.e21030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/28/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
Current cancer chemotherapy is associated with many side effects and, in some cases, drug resistance, which makes the search for new active molecules and drug delivery strategies imperative. Carbamazepine is an antiepileptic compound that has shown efficacy against breast cancer cell lines. In this study, it was incorporated into layered double hydroxide nanoclays, the percentage of drug loading was increased compared to previous research, and the clays were impregnated with magnetic Fe3O4 nanoparticles. The goal of the magnetic Fe3O4-impregnation was to direct the nanocomposites to the therapeutic target with an external magnetic field. The nanoclay-carbamazepine composites had a carbamazepine loading of 51 %, and the nanoclay-carbamazepine-nanoparticles had a drug loading of 13 % due to the addition of more ingredients. The structure of the composites was analyzed by X-ray diffraction and Scherrer equation, showing a layered double hydroxide organization with crystal sizes of 9-15 nm; from transmission electron microscopy, the final compounds showed a particle size of 97-158 nm, small enough for systemic circulation. In vibrating sample magnetization studies, the composites showed a superparamagnetic behavior with high magnetic saturation (9-17 emu/gr), which should allow a good material attraction by an external magnetic field located near the tumor. In vitro drug release studies were done in Franz cells and measured by UV/Vis spectrophotometry; they showed that carbamazepine release from the nanocomposites responds to the media pH: a good drug release at the lysosome pH and slow release at the blood pH. Finally, the efficacy was tested in vitro in MDA-MB-231 breast cancer cells, and the composites showed an enhanced efficacy in comparison with that produced by the free drug (96 % and 62 % of cell inhibition respectively). Carbamazepine administered with magnetic clays as a carrier is a promising treatment for breast cancer, and further studies should be done to measure the arrival time and the efficacy in vivo.
Collapse
Affiliation(s)
- M. Florencia Peralta
- Centro de Investigación y Tecnología Química (CITeQ), UTN-CONICET, Av. Cruz Roja Argentina y Maestro López, Córdoba, 5000, Argentina
| | - Silvia N. Mendieta
- Centro de Investigación y Tecnología Química (CITeQ), UTN-CONICET, Av. Cruz Roja Argentina y Maestro López, Córdoba, 5000, Argentina
| | - I. Romina Scolari
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), UNC-CONICET, Departamento de Ciencias Farmacéuticas, Universidad Nacional de Córdoba, Av. Medina Allende S/N, Córdoba, 5000, Argentina
| | - M. Verónica Gerbaldo
- Centro de Investigación y Tecnología Química (CITeQ), UTN-CONICET, Av. Cruz Roja Argentina y Maestro López, Córdoba, 5000, Argentina
| | - Marcos I. Oliva
- Instituto de Física Enrique Gaviola (IFEG), UNC-CONICET, Facultad de Matemática, Astronomía, Física y Computación, UNC, Av. Medina Allende S/N, Córdoba, 5000, Argentina
| | - Germán A. Gil
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), UNC-CONICET, Av. Haya de la Torre S/N, Córdoba, 5000, Argentina
| | - Gladys E. Granero
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), UNC-CONICET, Departamento de Ciencias Farmacéuticas, Universidad Nacional de Córdoba, Av. Medina Allende S/N, Córdoba, 5000, Argentina
| | - Mónica E. Crivello
- Centro de Investigación y Tecnología Química (CITeQ), UTN-CONICET, Av. Cruz Roja Argentina y Maestro López, Córdoba, 5000, Argentina
| |
Collapse
|
4
|
Długosz O, Matyjasik W, Hodacka G, Szostak K, Matysik J, Krawczyk P, Piasek A, Pulit-Prociak J, Banach M. Inorganic Nanomaterials Used in Anti-Cancer Therapies:Further Developments. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061130. [PMID: 36986024 PMCID: PMC10051539 DOI: 10.3390/nano13061130] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/14/2023]
Abstract
In this article, we provide an overview of the progress of scientists working to improve the quality of life of cancer patients. Among the known methods, cancer treatment methods focusing on the synergistic action of nanoparticles and nanocomposites have been proposed and described. The application of composite systems will allow precise delivery of therapeutic agents to cancer cells without systemic toxicity. The nanosystems described could be used as a high-efficiency photothermal therapy system by exploiting the properties of the individual nanoparticle components, including their magnetic, photothermal, complex, and bioactive properties. By combining the advantages of the individual components, it is possible to obtain a product that would be effective in cancer treatment. The use of nanomaterials to produce both drug carriers and those active substances with a direct anti-cancer effect has been extensively discussed. In this section, attention is paid to metallic nanoparticles, metal oxides, magnetic nanoparticles, and others. The use of complex compounds in biomedicine is also described. A group of compounds showing significant potential in anti-cancer therapies are natural compounds, which have also been discussed.
Collapse
|
5
|
State-of-the-art advancement of surface functionalized layered double hydroxides for cell-specific targeting of therapeutics. Adv Colloid Interface Sci 2023; 314:102869. [PMID: 36933542 DOI: 10.1016/j.cis.2023.102869] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/14/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Over the years, layered double hydroxides (LDHs) hold a specific position in biomedicine due to their tunable chemical composition and appropriate structural properties. However, LDHs lack adequate sensitivity for active targeting because of less active surface area and low mechanical strength in physiological conditions. The exploitation of eco-friendly materials, such as chitosan (CS), for surface engineering of LDHs, whose payloads are transferred only under certain conditions, can help develop stimuli-responsive materials owing to high biosafety and unique mechanical strength. We aim to render a well-oriented scenario toward the latest achievements of a bottom-up technology relying on the surface functionalization of LDHs to fabricate functional formulations with promoted bio-functionality and high encapsulation efficiency for various bioactives. Many efforts have been devoted to critical aspects of LDHs, including systemic biosafety and the suitability for developing multicomponent systems via integration with therapeutic modalities, which are thoroughly discussed herein. In addition, a comprehensive discussion was provided for the recent progress in the emergence of CS-coated LDHs. Finally, the challenges and future perspectives in the fabrication of efficient CS-LDHs in biomedicine are considered, with a special focus on cancer treatment.
Collapse
|
6
|
Li S, Zhang Y, Xiang K, Chen J, Wang J. Designing a novel type of multifunctional soil conditioner based on 4-arm star-shaped polymer modified mesoporous MCM-41. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Kankala RK. Nanoarchitectured two-dimensional layered double hydroxides-based nanocomposites for biomedical applications. Adv Drug Deliv Rev 2022; 186:114270. [PMID: 35421521 DOI: 10.1016/j.addr.2022.114270] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022]
Abstract
Despite the exceptional physicochemical and morphological characteristics, the pristine layered double hydroxides (LDHs), or two-dimensional (2D) hydrotalcite clays, often suffer from various shortcomings in biomedicine, such as deprived thermal and chemical stabilities, acid-prone degradation, as well as lack of targeting ability, hampering their scale-up and subsequent clinical translation. Accordingly, diverse nanocomposites of LDHs have been fabricated by surface coating of organic species, impregnation of inorganic species, and generation of core-shell architectures, resulting in the complex state-of-the-art architectures. In this article, we initially emphasize various bothering limitations and the chemistry of these pristine LDHs, followed by discussions on the engineering strategies of different LDHs-based nanocomposites. Further, we give a detailed note on diverse LDH nanocomposites and their performance efficacy in various biomedical applications, such as drug delivery, bioimaging, biosensing, tissue engineering and cell patterning, deoxyribonucleic acid (DNA) extraction, as well as photoluminescence, highlighting the influence of various properties of installed supramolecular assemblies on their performance efficacy. In summary, we conclude with interesting perspectives concerning the lessons learned to date and the strategies to be followed to further advance their scale-up processing and applicability in medicine.
Collapse
|
8
|
Xia Z, Gao M, Sheng P, Shen M, Zhao L, Gao L, Yan B. Fe 3O 4 Nanozymes Improve Neuroblast Differentiation and Blood-Brain Barrier Integrity of the Hippocampal Dentate Gyrus in D-Galactose-Induced Aged Mice. Int J Mol Sci 2022; 23:ijms23126463. [PMID: 35742908 PMCID: PMC9224281 DOI: 10.3390/ijms23126463] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Aging is a process associated with blood-brain barrier (BBB) damage and the reduction in neurogenesis, and is the greatest known risk factor for neurodegenerative disorders. However, the effects of Fe3O4 nanozymes on neurogenesis have rarely been studied. This study examined the effects of Fe3O4 nanozymes on neuronal differentiation in the dentate gyrus (DG) and BBB integrity of D-galactose-induced aged mice. Long-term treatment with Fe3O4 nanozymes (10 μg/mL diluted in ddH2O daily) markedly increased the doublecortin (DCX) immunoreactivity and decreased BBB injury induced by D-galactose treatment. In addition, the decreases in the levels of antioxidant proteins including superoxide dismutase (SOD) and catalase as well as autophagy-related proteins such as Becin-1, LC3II/I, and Atg7 induced by D-galactose treatment were significantly ameliorated by Fe3O4 nanozymes in the DG of the mouse hippocampus. Furthermore, Fe3O4 nanozyme treatment showed an inhibitory effect against apoptosis in the hippocampus. In conclusion, Fe3O4 nanozymes can relieve neuroblast damage and promote neuroblast differentiation in the hippocampal DG by regulating oxidative stress, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Zihao Xia
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; (Z.X.); (M.G.); (P.S.); (M.S.); (L.Z.)
| | - Manman Gao
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; (Z.X.); (M.G.); (P.S.); (M.S.); (L.Z.)
| | - Peng Sheng
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; (Z.X.); (M.G.); (P.S.); (M.S.); (L.Z.)
| | - Mengmeng Shen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; (Z.X.); (M.G.); (P.S.); (M.S.); (L.Z.)
| | - Lin Zhao
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; (Z.X.); (M.G.); (P.S.); (M.S.); (L.Z.)
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Bingchun Yan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; (Z.X.); (M.G.); (P.S.); (M.S.); (L.Z.)
- Correspondence: ; Tel.: +86-514-87992215
| |
Collapse
|
9
|
Li S, Yang F, Xiang K, Chen J, Zhang Y, Wang J, Sun J, Li Y. A Multifunctional Microspheric Soil Conditioner Based on Chitosan-Grafted Poly(acrylamide- co-acrylic acid)/Biochar. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5717-5729. [PMID: 35442693 DOI: 10.1021/acs.langmuir.2c00317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A multifunctional microspheric soil conditioner based on chitosan-grafted poly(acrylamide-co-acrylic acid)/biochar [CS-g-P(AM-co-AA)/BC] was prepared. First, the P(AM-co-AA) was synthesized and successfully grafted onto CS, and the three-dimensional network structure of microspheres was formed with N,N-methylenebis(acrylamide) as the cross-linking agent according to the inverse suspension polymerization method. Meanwhile, BC and urea were encapsulated into the body of microspheres during the polymerization. The structure of the microspheres was analyzed by Fourier transform infrared spectroscopy, polarized optical microscopy, and scanning electron microscopy, and the mechanism of adsorption of Cu2+ on the microspheres was investigated by X-ray photoelectron spectroscopy. Furthermore, the experimental results demonstrated the excellent water absorption and retention capabilities of microspheres, and the release rate of urea was dramatically reduced. Importantly, the introduction of BC significantly enhanced the adsorption performance of the microspheres with respect to heavy metal ions. Consequently, the multifunctional soil conditioner held promise for use in soil improvement and agricultural production.
Collapse
Affiliation(s)
- Shuhong Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Fan Yang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Kailing Xiang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Jiacheng Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Ye Zhang
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J.-A. de Baïf, F-75013 Paris, France
| | - Jincheng Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Jibo Sun
- Wopu New Material Technology (Shanghai) Company, Ltd., Shanghai 201600, P. R. China
| | - Yuan Li
- Jiangsu Lvhong Landscaping Engineering Company, Ltd., Jiangsu 226100, P. R. China
| |
Collapse
|
10
|
Preparation and performance study of recyclable microsphere soil conditioner based on magnetic metal organic framework structure. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Layered Double Hydroxide Catalysts Preparation, Characterization and Applications for Process Development: An Environmentally Green Approach. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2022. [DOI: 10.9767/bcrec.17.1.12195.163-193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The adage of new generation of fine chemicals process is the best process applied in the absence of conventional methods. However, many methods use different reaction parameters, such as basic and acidic catalysts, for example oxidation, reduction, bromination, water splitting, cyanohydrin, ethoxylation, syngas, aldol condensation, Michael addition, asymmetric ring opening of epoxides, epoxidation, Wittig and Heck reaction, asymmetric ester epoxidation of fatty acids, combustion of methane, NOx reduction, biodiesel synthesis, propylene oxide polymerization. Layered Double Hydroxides (LDHs) have received considerable attention due their potential applications in flame retardant and has excellent medicinal property for reducing acidity. These catalysts are characterized using analytical techniques, such as: X-ray diffraction (XRD), Fourier-transform infrared (FT-IR), Raman spectroscopy, Thermogravimetric-Differential Thermal Analyzer (TG-DTA), Scanning electron microscope (SEM), Transmission electron microscopes (TEM), Brunauer-Emmett-Teller (BET) surface area, N2 Adsorption-desorption, Temperature programmed reduction (TPR), X-ray photoelectrons spectroscopy (XPS), which gives its overall picture of its structure, porosity, morphology, thermal stability, reusability, and activity of catalysts. LDHs catalysts have proven to be economic and environmentally friendly. The above discussed applications make these catalysts unique from Green Chemistry point of view since they are reusable, and eco-friendly catalysts. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
12
|
Mbugua SN, Njenga LW, Odhiambo RA, Wandiga SO, Onani MO. Beyond DNA-targeting in Cancer Chemotherapy. Emerging Frontiers - A Review. Curr Top Med Chem 2021; 21:28-47. [PMID: 32814532 DOI: 10.2174/1568026620666200819160213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
Modern anti-cancer drugs target DNA specifically for rapid division of malignant cells. One downside of this approach is that they also target other rapidly dividing healthy cells, such as those involved in hair growth leading to serious toxic side effects and hair loss. Therefore, it would be better to develop novel agents that address cellular signaling mechanisms unique to cancerous cells, and new research is now focussing on such approaches. Although the classical chemotherapy area involving DNA as the set target continues to produce important findings, nevertheless, a distinctly discernible emerging trend is the divergence from the cisplatin operation model that uses the metal as the primary active center of the drug. Many successful anti-cancer drugs present are associated with elevated toxicity levels. Cancers also develop immunity against most therapies and the area of cancer research can, therefore, be seen as an area with a high unaddressed need. Hence, ongoing work into cancer pathogenesis is important to create accurate preclinical tests that can contribute to the development of innovative drugs to manage and treat cancer. Some of the emergent frontiers utilizing different approaches include nanoparticles delivery, use of quantum dots, metal complexes, tumor ablation, magnetic hypothermia and hyperthermia by use of Superparamagnetic Iron oxide Nanostructures, pathomics and radiomics, laser surgery and exosomes. This review summarizes these new approaches in good detail, giving critical views with necessary comparisons. It also delves into what they carry for the future, including their advantages and disadvantages.
Collapse
Affiliation(s)
- Simon N Mbugua
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Lydia W Njenga
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Ruth A Odhiambo
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Shem O Wandiga
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Martin O Onani
- Organometallics and Nanomaterials, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
| |
Collapse
|
13
|
Vajedi FS, Dehghani H, Zarrabi A. Design and characterization of a novel pH-sensitive biocompatible and multifunctional nanocarrier for in vitro paclitaxel release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111627. [PMID: 33321668 DOI: 10.1016/j.msec.2020.111627] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/20/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
Breast cancer is one of the main reasons of women's mortality. A novel ternary combination of ZnAl-layered double hydroxides (LDH), cobalt ferrite (CoFe2O4) and N-graphene quantum dots (N-GQDs) proposes a pH-sensitive multifunctional nanocomposite that can improve therapeutic features of each compound; this is a notable strategy to make biocompatible materials with unique properties for paclitaxel (PTX) delivery in breast cancer cells. For proving the surface modification process of materials, electrochemical techniques including cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were carried out. By coating PEG on the surface of the N-GQDs/CoFe2O4/LDH, it developed a drug delivery system with low toxicity, an excellent encapsulation efficiency 88.4%, drug loading capacity of ca. 31%, and slow and sustained release behavior (9% after 72 h) under normal physiological conditions. Besides, a high drug release (~69%) at low-pH as a model of the extracellular tumor environment indicated a pH-sensitive release behavior. Moreover, cell viability assay proved the negligible cytotoxicity on normal cells (L929) and the improved growth inhibition effect of PTX/N-GQDs/CoFe2O4/LDH nanocarrier on MCF7 cancer cells. Blood compatibility test values with respect to red blood cell aggregation (RBC), coagulation prothrombin time (PT), activated partial thromboplastin time (APTT), and complement activation (C3 and C4 levels) remained within normal ranges without toxicity effect on RBCs and complement factors. Overall, this novel designed PTX/N-GQDs/CoFe2O4/LDH nanocarrier with tremendously biocompatible, slow-release and pH-dependent features could be considered as a theranostic candidate for various anticancer drugs delivery and cancer therapy.
Collapse
Affiliation(s)
- Fahimeh Sadat Vajedi
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, P.O. Box 87317-51167, Kashan, Iran
| | - Hossein Dehghani
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, P.O. Box 87317-51167, Kashan, Iran.
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, 34956, Turkey
| |
Collapse
|
14
|
Taufiq A, Nikmah A, Hidayat A, Sunaryono S, Mufti N, Hidayat N, Susanto H. Synthesis of magnetite/silica nanocomposites from natural sand to create a drug delivery vehicle. Heliyon 2020; 6:e03784. [PMID: 32322741 PMCID: PMC7163320 DOI: 10.1016/j.heliyon.2020.e03784] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/19/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022] Open
Abstract
In this study, we report the synthesis of the magnetite/silica nanocomposites and their structural and functional groups, magnetic properties, morphology, antimicrobial activity, and drug delivery performance. The X-ray diffraction characterization showed that magnetite formed a spinel phase and that silica formed an amorphous phase. The particle sizes of magnetite increased from 8.2 to 13.2 nm with increasing silica content, and the particles were observed to be superparamagnetic. The nanocomposites tended to agglomerate based on the scanning electron microscopy images. The antimicrobial activity of the magnetite/silica nanocomposites revealed that the increasing silica content increased the inhibition zones by 74%, 77%, and 143% in case of Gram-positive bacteria (B. subtilis), Gram-negative bacteria (E. coli), and fungus (C. albicans), respectively. Furthermore, doxorubicin was used as the model compound in the drug loading and release study, and drug loading was directly proportional to the silica content. Thus, the increasing silica content increased the drug loading owing to the increasing number of OH- bonds in silica, resulting in strong bonds with doxorubicin. Based on this study, the magnetite/silica nanocomposites could be applied as drug delivery vehicles.
Collapse
Affiliation(s)
- Ahmad Taufiq
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
| | - Ainun Nikmah
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
| | - Arif Hidayat
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
| | - Sunaryono Sunaryono
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
| | - Nandang Mufti
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
| | - Nurul Hidayat
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
| | - Hendra Susanto
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
| |
Collapse
|
15
|
Wang X, Wang J, Song S, Rao P, Wang R, Liu S. Preparation and properties of soil conditioner microspheres based on self-assembled potassium alginate and chitosan. Int J Biol Macromol 2020; 147:877-889. [DOI: 10.1016/j.ijbiomac.2019.09.247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/11/2019] [Accepted: 09/26/2019] [Indexed: 01/17/2023]
|
16
|
Levy A, Leynes C, Baig M, Chew SA. The Application of Biomaterials in the Treatment of Platinum‐Resistant Ovarian Cancer. ChemMedChem 2019; 14:1810-1827. [DOI: 10.1002/cmdc.201900450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Arkene Levy
- Department of Pharmacology, College of Medical Sciences Nova Southeastern University 3200 South University Drive Davie FL 33328 USA
| | - Carolina Leynes
- Department Health and Biomedical Sciences University of Texas Rio Grande Valley One West University Boulevard Brownsville TX 78520 USA
| | - Mirza Baig
- Dr. Kiran C. Patel College of Osteopathic Medicine Nova Southeastern University 3200 South University Drive Davie FL 33328 USA
| | - Sue Anne Chew
- Department Health and Biomedical Sciences University of Texas Rio Grande Valley One West University Boulevard Brownsville TX 78520 USA
| |
Collapse
|
17
|
Song H, Quan F, Yu Z, Zheng M, Ma Y, Xiao H, Ding F. Carboplatin prodrug conjugated Fe3O4 nanoparticles for magnetically targeted drug delivery in ovarian cancer cells. J Mater Chem B 2019; 7:433-442. [PMID: 32254730 DOI: 10.1039/c8tb02574f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The magnetically targeted NPs@carboplatin can act as a drug delivery system and will have great potential in ovarian cancer therapeutic applications.
Collapse
Affiliation(s)
- Haiqin Song
- Department of General Surgery
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine, and Shanghai Minimally Invasive Surgery Center
- Shanghai
- P. R. China
| | - Feifei Quan
- The First Affiliated Hospital of University of South China
- Hengyang
- China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences
- Guangdong Provincial Key Laboratory of New Drug Screening
- Southern Medical University
- Guangzhou
- China
| | - Minhua Zheng
- Department of General Surgery
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine, and Shanghai Minimally Invasive Surgery Center
- Shanghai
- P. R. China
| | - Yan Ma
- The First Affiliated Hospital of University of South China
- Hengyang
- China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Fang Ding
- Nanshan District Key Lab for Biopolymers and Safety Evaluation
- Shenzhen Key Laboratory of Polymer Science and Technology
- Guangdong Research Center for Interfacial Engineering of Functional Materials
- College of Materials Science and Engineering
- Shenzhen University
| |
Collapse
|