1
|
Hasan N, Imran M, Nadeem M, Jain D, Haider K, Moshahid Alam Rizvi M, Sheikh A, Kesharwani P, Kumar Jain G, Jalees Ahmad F. Formulation and development of novel lipid-based combinatorial advanced nanoformulation for effective treatment of non-melanoma skin cancer. Int J Pharm 2023; 632:122580. [PMID: 36608807 DOI: 10.1016/j.ijpharm.2022.122580] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023]
Abstract
Non-melanoma skin cancer is one of the most common malignancies reported with high number of morbidities, demanding an advanced treatment option with superior chemotherapeutic effects. Due to high degree of drug resistance, conventional therapy fails to meet the desired therapeutic efficacy. To break the bottleneck, nanoparticles have been used as next generation vehicles that facilitate the efficient interaction with the cancer cells. Here, we developed combined therapy of 5-fluorouracil (5-FU) and cannabidiol (CBD)-loaded nanostructured lipid carrier gel (FU-CBD-NLCs gel). The NLCs were optimized using central composite design that showed an average particle size of 206 nm and a zeta potential of -34 mV. In addition, in vitro and ex vivo drug permeations studies demonstrated the effective delivery of both drugs in the skin layers via lipid structured nanocarriers. Also, the prepared FU-CBD-NLCs showed promising effect in-vitro cell studies including MTT assays, wound healing and cell cycle as compared to the conventional formulation. Moreover, dermatokinetic studies shows there was superior deposition of drugs at epidermal and the dermal layer when treated with FU-CBD-NLCs. In the end, overall study offered a novel combinatorial chemotherapy that could be an option for the treatment of non-melanoma skin cancer.
Collapse
Affiliation(s)
- Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Imran
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia
| | - Masood Nadeem
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Dhara Jain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - M Moshahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, Delhi 110017, India
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
2
|
Khan Z, Alhalmi A, Tyagi N, Khan WU, Sheikh A, Abourehab MAS, Kohli K, Kesharwani P. Folic acid engineered sulforaphane loaded microbeads for targeting breast cancer. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:674-694. [PMID: 36345958 DOI: 10.1080/09205063.2022.2144692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Non-targeted cancer therapy poses a huge risk to the cancer patients' life due to high toxicity offered by chemotherapy. Breast carcinoma is one of such deleterious disease, demanding a highly effectual treatment option which could reduce the toxicity and extend survival rate. Since, folate receptors extensively display themselves on the cancer cell surface, targeting them would help to ameliorate the progression and metastasis. Considering this, we envisaged and developed sulforaphane loaded folate engineered microbeads to target breast cancer cells over-expressing folate receptors. The surface engineered microbeads were optimized and developed using emulsion gelation technique, among which the best developed preparation demonstrated the particle size of 1302 ± 3.98 µm, % EE of 84.1 ± 3.32% and in vitro drug release of 98.1 ± 4.42%@24h. The spherical sized microbead showed controlled release with improved haem-compatibility in comparison to the bare drug. Free radical scavenging activity by ABTS assay showed strong anti-oxidant activity (IC50 20.62 µg/ml) of the targeted microbeads with profound cancer cell sup pressing effect (IC50 17.48 ± 3.5 µM) as observed in MCF-7 cells by MTT assay. Finally, in comparison to lone SFN, the targeted therapy showed enhanced uptake by the intestinal villi indicating a suitable oral targeted therapy against breast carcinoma.
Collapse
Affiliation(s)
- Zafar Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi-110062
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi-110062
| | - Neha Tyagi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi-110062
| | - Wasi Uzzaman Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi-110062
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi-110062
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia 61519, Egypt
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi-110062
- Director (Research and Publication), Faculty of pharmacy, Lloyd Institute of Management and Technology, Greater Noida, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi-110062
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical science, Chennai, India
| |
Collapse
|
3
|
Dubey SK, Dey A, Singhvi G, Pandey MM, Singh V, Kesharwani P. Emerging trends of nanotechnology in advanced cosmetics. Colloids Surf B Biointerfaces 2022; 214:112440. [PMID: 35344873 DOI: 10.1016/j.colsurfb.2022.112440] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
Abstract
The cosmetic industry is dynamic and ever-evolving. Especially with the introduction and incorporation of nanotechnology-based approaches into cosmetics for evincing novel formulations that confers aesthetic as well as therapeutic benefits. Nanocosmetics acts via numerous delivery mechanisms which involves lipid nanocarrier systems, polymeric or metallic nanoparticles, nanocapsules, dendrimers, nanosponges,etc. Each of these, have particular characteristic properties, which facilitates increased drug loading, enhanced absorption, better cosmetic efficacy, and many more. This article discusses the different classes of nanotechnology-based cosmetics and the nanomaterials used for their formulation, followed by outlining the categories of nanocosmetics and the scope of their utility pertaining to skin, hair, nail, lip, and/or dental care and protection thereof. This review also highlights and discusses about the key drivers of the cosmetic industry and the impending need of corroborating a healthy regulatory framework, refocusing attention towards consumer needs and trends, inculcating sustainable techniques and tenets of green ecological principles, and lastly making strides in nano-technological advancements which will further propel the growth of the cosmetic industry.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India.
| | - Anuradha Dey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Murali Manohar Pandey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Vanshikha Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
4
|
Kaur R, Dennison SR, Rudramurthy SM, Katare OP, Sharma T, Singh B, Singh KK. Aerosolizable Lipid-Nanovesicles Encapsulating Voriconazole Effectively Permeate Pulmonary Barriers and Target Lung Cells. Front Pharmacol 2022; 12:734913. [PMID: 35391905 PMCID: PMC8982086 DOI: 10.3389/fphar.2021.734913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
The entire world has recently been witnessing an unprecedented upsurge in microbial lung infections. The major challenge encountered in treating the same is to ensure the optimum drug availability at the infected site. Aerosolization of antimicrobials, in this regard, has shown immense potential owing to their localized and targeted effect. Efforts, therefore, have been undertaken to systematically develop lung-phosphatidylcholine-based lipid nanovesicles of voriconazole for potential management of the superinfections like aspergillosis. LNVs, prepared by thin-film hydration method, exhibited a globule size of 145.4 ± 19.5 nm, polydispersity index of 0.154 ± 0.104 and entrapment efficiency of 71.4 ± 2.2% with improved in vitro antifungal activity. Aerodynamic studies revealed a microdroplet size of ≤5 μm, thereby unraveling its promise to target the physical barrier of lungs effectively. The surface-active potential of LNVs, demonstrated through Langmuir-Blodgett troughs, indicated their ability to overcome the biochemical pulmonary surfactant monolayer barrier, while the safety and uptake studies on airway-epithelial cells signified their immense potential to permeate the cellular barrier of lungs. The pharmacokinetic studies showed marked improvement in the retention profile of voriconazole in lungs following LNVs nebulization compared to pristine voriconazole. Overall, LNVs proved to be safe and effective delivery systems, delineating their distinct potential to efficiently target the respiratory fungal infections.
Collapse
Affiliation(s)
- Ranjot Kaur
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, India
- University of Central Lancashire, Preston, United Kingdom
| | | | | | - O P Katare
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, India
| | - Teenu Sharma
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, India
- UGC Center for Excellence in Nano-Biomedical Applications, Panjab University, Chandigarh, India
- *Correspondence: Kamalinder K Singh, ; Bhupinder Singh,
| | - Kamalinder K Singh
- University of Central Lancashire, Preston, United Kingdom
- UCLan Research Centre for Smart Materials, University of Central Lancashire, Preston, United Kingdom
- UCLan Research Centre for Translational Biosciences and Behaviour, University of Central Lancashire, Preston, United Kingdom
- *Correspondence: Kamalinder K Singh, ; Bhupinder Singh,
| |
Collapse
|
5
|
Famta P, Shah S, Chatterjee E, Singh H, Dey B, Guru SK, Singh SB, Srivastava S. Exploring new Horizons in overcoming P-glycoprotein-mediated multidrug-resistant breast cancer via nanoscale drug delivery platforms. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100054. [PMID: 34909680 PMCID: PMC8663938 DOI: 10.1016/j.crphar.2021.100054] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
The high probability (13%) of women developing breast cancer in their lifetimes in America is exacerbated by the emergence of multidrug resistance after exposure to first-line chemotherapeutic agents. Permeation glycoprotein (P-gp)-mediated drug efflux is widely recognized as the major driver of this resistance. Initial in vitro and in vivo investigations of the co-delivery of chemotherapeutic agents and P-gp inhibitors have yielded satisfactory results; however, these results have not translated to clinical settings. The systemic delivery of multiple agents causes adverse effects and drug-drug interactions, and diminishes patient compliance. Nanocarrier-based site-specific delivery has recently gained substantial attention among researchers for its promise in circumventing the pitfalls associated with conventional therapy. In this review article, we focus on nanocarrier-based co-delivery approaches encompassing a wide range of P-gp inhibitors along with chemotherapeutic agents. We discuss the contributions of active targeting and stimuli responsive systems in imparting site-specific cytotoxicity and reducing both the dose and adverse effects.
Collapse
Affiliation(s)
- Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Essha Chatterjee
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Hoshiyar Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Biswajit Dey
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Santosh Kumar Guru
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
6
|
Chadar R, Kesharwani P. Nanotechnology-based siRNA delivery strategies for treatment of triple negative breast cancer. Int J Pharm 2021; 605:120835. [PMID: 34197908 DOI: 10.1016/j.ijpharm.2021.120835] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/13/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022]
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast cancer characterized by absence of estrogen (ER) receptor, progesterone (PR) receptor, and human epidermal growth factor-2 (HER-2) receptor. TNBC is an aggressive disease that develops early Chemoresistance. The major pitfall associated is its poor prognosis, low overall survival, high relapse, and mortality as compared to other types of breast cancer. Chemotherapy could be helpful but do not contribute to an increase in survival of patient. To overcome such obstacles, in our article we explored advanced therapy using genes and nanocarrier along with its conjugation to achieve high therapeutic profile with reduced side effect. siRNAs are one of the class of RNA associated with gene silencing. They also regulate the expression of certain proteins that are involved in development of tumor cells. But they are highly unstable. So, for efficient delivery of siRNA, very intelligent, efficient delivery systems are required. Several nanotechnologies based non-viral vectors such as liposome, micelles, nanoparticles, dendrimers, exosomes, nanorods and nanobubbles etc. offers enormous unique properties such as nanometric size range, targeting potential with the capability to link with several targeting moieties for the gene delivery. These non-viral vectors are much safer, effective and efficient system for the delivery of genes along with chemotherapeutics. This review provides an overview of TNBC, conventional and advanced treatment approach of TNBC along with understanding of current status of several nanocarriers used for the delivery of siRNA for the treatment of TNBC.
Collapse
Affiliation(s)
- Rahul Chadar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
7
|
Nallamolu S, Jayanti VR, Chitneni M, Khoon LY, Sood S, Riadi Y, Kesharwani P. Fabrication of thermodynamically stable self-microemulsifying drug delivery system of resveratrol with enhanced solubility and chemical stability. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1880432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Sivaram Nallamolu
- School of Pharmacy, Department of Pharmaceutical Technology, International Medical University, Kuala Lumpur, Malaysia
| | - Vijaya Ratna Jayanti
- Andhra University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, AP, India
| | | | - Liew Yun Khoon
- School of Pharmacy, Department of Pharmaceutical Technology, International Medical University, Kuala Lumpur, Malaysia
| | - Shikha Sood
- Akal College of Pharmacy and Technical Education, Sangrur, Punjab, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| |
Collapse
|
8
|
Kaur R, Dennison SR, Burrow AJ, Rudramurthy SM, Swami R, Gorki V, Katare OP, Kaushik A, Singh B, Singh KK. Nebulised surface-active hybrid nanoparticles of voriconazole for pulmonary Aspergillosis demonstrate clathrin-mediated cellular uptake, improved antifungal efficacy and lung retention. J Nanobiotechnology 2021; 19:19. [PMID: 33430888 PMCID: PMC7798018 DOI: 10.1186/s12951-020-00731-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/07/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Incidence of pulmonary aspergillosis is rising worldwide, owing to an increased population of immunocompromised patients. Notable potential of the pulmonary route has been witnessed in antifungal delivery due to distinct advantages of direct lung targeting and first-pass evasion. The current research reports biomimetic surface-active lipid-polymer hybrid (LPH) nanoparticles (NPs) of voriconazole, employing lung-specific lipid, i.e., dipalmitoylphosphatidylcholine and natural biodegradable polymer, i.e., chitosan, to augment its pulmonary deposition and retention, following nebulization. RESULTS The developed nanosystem exhibited a particle size in the range of 228-255 nm and drug entrapment of 45-54.8%. Nebulized microdroplet characterization of NPs dispersion revealed a mean diameter of ≤ 5 μm, corroborating its deep lung deposition potential as determined by next-generation impactor studies. Biophysical interaction of LPH NPs with lipid-monolayers indicated their surface-active potential and ease of intercalation into the pulmonary surfactant membrane at the air-lung interface. Cellular viability and uptake studies demonstrated their cytocompatibility and time-and concentration-dependent uptake in lung-epithelial A549 and Calu-3 cells with clathrin-mediated internalization. Transepithelial electrical resistance experiments established their ability to penetrate tight airway Calu-3 monolayers. Antifungal studies on laboratory strains and clinical isolates depicted their superior efficacy against Aspergillus species. Pharmacokinetic studies revealed nearly 5-, 4- and threefolds enhancement in lung AUC, Tmax, and MRT values, construing significant drug access and retention in lungs. CONCLUSIONS Nebulized LPH NPs were observed as a promising solution to provide effective and safe therapy for the management of pulmonary aspergillosis infection with improved patient compliance and avoidance of systemic side-effects.
Collapse
Affiliation(s)
- Ranjot Kaur
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Sarah R Dennison
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Andrea J Burrow
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | | | - Rajan Swami
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Varun Gorki
- Department of Zoology, Panjab University, Chandigarh, India, 160 014
| | - O P Katare
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Anupama Kaushik
- Dr SSB University Institute Chem Engineering and Technology, Panjab University, Chandigarh, India, 160 014
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India.
- UGC Centre for Excellence in Nano-Biomedical Applications, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160 014, India.
| | - Kamalinder K Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK.
- UCLan Research Centre for Smarts Materials, University of Central Lancashire, Preston, PR1 2HE, UK.
- UCLan Research Centre for Drug Design and Development, University of Central Lancashire, Preston, PR1 2HE, UK.
| |
Collapse
|
9
|
Ling SC, Zhuo MQ, Zhang DG, Cui HY, Luo Z. Nano-Zn Increased Zn Accumulation and Triglyceride Content by Up-Regulating Lipogenesis in Freshwater Teleost, Yellow Catfish Pelteobagrus fulvidraco. Int J Mol Sci 2020; 21:ijms21051615. [PMID: 32120818 PMCID: PMC7084257 DOI: 10.3390/ijms21051615] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/24/2022] Open
Abstract
The present study was conducted to explore the mechanism of nano-Zn absorption and its influence on lipid metabolism in the intestine of yellow catfish Pelteobagrus fulvidraco. Compared to ZnSO4, dietary nano-Zn addition increased the triglyceride (TG) content, enzymatic activities of malic enzyme (ME) and fatty acid synthase (FAS), and up-regulated mRNA levels of 6pgd, fas, acca, dgat1, pparγ, and fatp4. Using primary intestinal epithelial cells of yellow catfish, compared to the ZnSO4 group, nano-Zn incubation increased the contents of TG and free fatty acids (FFA), the activities of glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6GPD), ME, and FAS, up-regulated mRNA levels of lipogenic genes (6pgd, g6pd, fas, dgat1, and pparγ), genes of lipid transport (fatp4 and ifabp), and Zn transport genes (znt5, znt7, mt, and mtf1), and increased the protein expression of fatty acid transport protein 4 (FATP4) and peroxisome proliferator activated receptor gamma (PPARγ). Further studies found that nano-Zn absorption was via the clathrin-dependent endocytic mechanism. PPARγ mediated the nano-Zn-induced increase in TG, and nano-Zn increased Zn accumulation and induced TG accumulation by activating the PPARγ pathway and up-regulating lipogenesis.
Collapse
Affiliation(s)
- Shi-Cheng Ling
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; (S.-C.L.); (M.-Q.Z.); (D.-G.Z.); (H.-Y.C.)
| | - Mei-Qin Zhuo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; (S.-C.L.); (M.-Q.Z.); (D.-G.Z.); (H.-Y.C.)
| | - Dian-Guang Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; (S.-C.L.); (M.-Q.Z.); (D.-G.Z.); (H.-Y.C.)
| | - Heng-Yang Cui
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; (S.-C.L.); (M.-Q.Z.); (D.-G.Z.); (H.-Y.C.)
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; (S.-C.L.); (M.-Q.Z.); (D.-G.Z.); (H.-Y.C.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: ; Tel.: +86-27-8728-2113; Fax: +86-27-8728-2114
| |
Collapse
|