1
|
Oyom W, Awuku RB, Faraji H, Bi Y, Tahergorabi R. Protein hydrogel formation from chicken processing By-Products: Exploring applications in food. Food Res Int 2025; 201:115632. [PMID: 39849726 DOI: 10.1016/j.foodres.2024.115632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/17/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Chicken processing by-products, such as meat left over on bones, skin, frames and connective tissues, are great sources of functional proteins that offer significant potential for value-added applications, contributing to both waste reduction and environmental sustainability. By transforming the recovered proteins from by-products into hydrogels, new materials can be developed for use in various industries, including food. However, understanding the chemical composition of these by-products and optimizing hydrogel production techniques are critical to producing hydrogels with desirable properties. This review examines the latest techniques for isolating proteins from chicken by-products and transforming them into functional hydrogels. It highlights methods of hydrogel preparation, crosslinking, and characterization, with a focus on their conformational properties and applications in food systems. The review also addresses the current scope of health benefits and future potential of these hydrogels in enhancing food product quality. Advances in protein extraction and hydrogel formation show that these hydrogels can retain water, improve gelation, and maintain stability, making them ideal for food products. Specifically, they can be used as edible coatings in fried foods to reduce fat uptake and limit the formation of harmful compounds. Chicken protein-based hydrogels hold great potential for future food processing applications, promoting sustainability and consumer well-being.
Collapse
Affiliation(s)
- William Oyom
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, NC, USA.
| | - Ruth Boahemaah Awuku
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, NC, USA.
| | - Habibollah Faraji
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, NC, USA.
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Reza Tahergorabi
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, NC, USA.
| |
Collapse
|
2
|
Wang Z, Xiao N, Guo S, Liu X, Liu C, Ai M. Unlocking the Potential of Keratin: A Comprehensive Exploration from Extraction and Structural Properties to Cross-Disciplinary Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1014-1037. [PMID: 39681472 DOI: 10.1021/acs.jafc.4c07102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The rapid expansion of the livestock and poultry industry has led to a considerable increase in slaughter byproducts; however, exploring their potential applications still needs to be improved. These underutilized byproducts, which include nails, hides, skins, and bones, represent a significant loss of valuable biological resources. Among these materials, keratin has garnered considerable attention due to its unique properties as a natural biopolymer. Keratin exhibits outstanding mechanical properties and biocompatibility and has attracted increasing attention for its recovery and conversion into relevant application materials. However, natural keratin typically has a high sulfur content, complex 3D structure, and abundant hydrogen and disulfide bonds, which cause challenges in application. Current extraction for keratin includes physical, chemical, biological, and hybrid approaches. Combining multiple methods synergistically enhances protein extraction efficiency and purity, and facilitates the exploration of structure and functional properties. This review encompasses the structural characteristics, properties, extraction methods, and research progress related to keratin. The preparation and application of keratin composite materials in different forms, such as fibers, films, hydrogels, and scaffolds, are illustrated. Applications in several fields, including biomedicine, flexible electronic components, environmental materials and food packaging are discussed. Hopefully, this paper will provide a comprehensive understanding and guidance for further development and application of keratin materials.
Collapse
Affiliation(s)
- Ziyuan Wang
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Nan Xiao
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Shanguang Guo
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Chunhong Liu
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Minmin Ai
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| |
Collapse
|
3
|
Zubair M, Hussain S, Ur-Rehman M, Hussain A, Akram ME, Shahzad S, Rauf Z, Mujahid M, Ullah A. Trends in protein derived materials for wound care applications. Biomater Sci 2024; 13:130-160. [PMID: 39569610 DOI: 10.1039/d4bm01099j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Natural resource based polymers, especially those derived from proteins, have attracted significant attention for their potential utilization in advanced wound care applications. Protein based wound care materials provide superior biocompatibility, biodegradability, and other functionalities compared to conventional dressings. The effectiveness of various fabrication techniques, such as electrospinning, phase separation, self-assembly, and ball milling, is examined in the context of developing protein-based materials for wound healing. These methods produce a wide range of forms, including hydrogels, scaffolds, sponges, films, and bioinspired nanomaterials, each designed for specific types of wounds and different stages of healing. This review presents a comprehensive analysis of recent research that investigates the transformation of proteins into materials for wound healing applications. Our focus is on essential proteins, such as keratin, collagen, gelatin, silk, zein, and albumin, and we emphasize their distinct traits and roles in wound care management. Protein-based wound care materials show promising potential in biomedical engineering, offering improved healing capabilities and reduced risks of infection. It is crucial to explore the potential use of these materials in clinical settings while also addressing the challenges that may arise from their commercialization in the future.
Collapse
Affiliation(s)
- Muhammad Zubair
- Lipids Utilization Lab, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| | - Saadat Hussain
- LEJ Nanotechnology Center, HEJ Research Institute of Chemistry, ICCBS, University of Karachi, Karachi-75270, Pakistan
| | - Mujeeb- Ur-Rehman
- LEJ Nanotechnology Center, HEJ Research Institute of Chemistry, ICCBS, University of Karachi, Karachi-75270, Pakistan
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Muhammad Ehtisham Akram
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Sohail Shahzad
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Zahid Rauf
- Pakistan Forest Institute (PFI), Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Maria Mujahid
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Aman Ullah
- Lipids Utilization Lab, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| |
Collapse
|
4
|
Ansari M, Darvishi A. A review of the current state of natural biomaterials in wound healing applications. Front Bioeng Biotechnol 2024; 12:1309541. [PMID: 38600945 PMCID: PMC11004490 DOI: 10.3389/fbioe.2024.1309541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Skin, the largest biological organ, consists of three main parts: the epidermis, dermis, and subcutaneous tissue. Wounds are abnormal wounds in various forms, such as lacerations, burns, chronic wounds, diabetic wounds, acute wounds, and fractures. The wound healing process is dynamic, complex, and lengthy in four stages involving cells, macrophages, and growth factors. Wound dressing refers to a substance that covers the surface of a wound to prevent infection and secondary damage. Biomaterials applied in wound management have advanced significantly. Natural biomaterials are increasingly used due to their advantages including biomimicry of ECM, convenient accessibility, and involvement in native wound healing. However, there are still limitations such as low mechanical properties and expensive extraction methods. Therefore, their combination with synthetic biomaterials and/or adding bioactive agents has become an option for researchers in this field. In the present study, the stages of natural wound healing and the effect of biomaterials on its direction, type, and level will be investigated. Then, different types of polysaccharides and proteins were selected as desirable natural biomaterials, polymers as synthetic biomaterials with variable and suitable properties, and bioactive agents as effective additives. In the following, the structure of selected biomaterials, their extraction and production methods, their participation in wound healing, and quality control techniques of biomaterials-based wound dressings will be discussed.
Collapse
Affiliation(s)
- Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | | |
Collapse
|
5
|
López-de-Dicastillo C, Gómez-Estaca J, López-Carballo G, Gavara R, Hernández-Muñoz P. Agro-Industrial Protein Waste and Co-Products Valorization for the Development of Bioplastics: Thermoprocessing and Characterization of Feather Keratin/Gliadin Blends. Molecules 2023; 28:7350. [PMID: 37959768 PMCID: PMC10647550 DOI: 10.3390/molecules28217350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Biopolymers based on plant and animal proteins are interesting alternatives in the development of films with future prospects as food packaging. Considering that in recent years there has been an increasing interest in the valorization of agro-industrial residues and by-products and that the blending of polymers can lead to materials with improved properties, in this work, keratin-rich feather fibers and gliadins were blended at different ratios in order to develop sustainable and biodegradable films. Control gliadin G100, feather F100 films, and their blends at 3:1 (G75F25), 2:2 (G50F50), and 1:3 (G25F75) ratios were successfully developed through thermoprocessing. The physical properties were differentiated as a function of the concentration of both polymeric matrices. Although gliadins showed higher hydrophilicity as confirmed by their highest swelling degree, films with high gliadin ratios exhibited lower water vapor permeability values at low and medium relative humidities. On the other hand, the feather fiber-based films displayed the highest Young's modulus values and provided an oxygen barrier to the blends, principally at the highest relative humidity. In conclusion, the blend of these protein-based polymers at different ratio resulted in interesting composites whose physical properties could be adjusted.
Collapse
Affiliation(s)
- Carol López-de-Dicastillo
- Packaging Group, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino, 7, 46980 Paterna, Spain; (G.L.-C.); (R.G.)
| | - Joaquín Gómez-Estaca
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Calle José Antonio Novais 10, 28040 Madrid, Spain;
| | - Gracia López-Carballo
- Packaging Group, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino, 7, 46980 Paterna, Spain; (G.L.-C.); (R.G.)
| | - Rafael Gavara
- Packaging Group, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino, 7, 46980 Paterna, Spain; (G.L.-C.); (R.G.)
| | - Pilar Hernández-Muñoz
- Packaging Group, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino, 7, 46980 Paterna, Spain; (G.L.-C.); (R.G.)
| |
Collapse
|
6
|
Atia GA, Shalaby HK, Roomi AB, Ghobashy MM, Attia HA, Mohamed SZ, Abdeen A, Abdo M, Fericean L, Bănățean Dunea I, Atwa AM, Hasan T, Mady W, Abdelkader A, Ali SA, Habotta OA, Azouz RA, Malhat F, Shukry M, Foda T, Dinu S. Macro, Micro, and Nano-Inspired Bioactive Polymeric Biomaterials in Therapeutic, and Regenerative Orofacial Applications. Drug Des Devel Ther 2023; 17:2985-3021. [PMID: 37789970 PMCID: PMC10543943 DOI: 10.2147/dddt.s419361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/12/2023] [Indexed: 10/05/2023] Open
Abstract
Introducing dental polymers has accelerated biotechnological research, advancing tissue engineering, biomaterials development, and drug delivery. Polymers have been utilized effectively in dentistry to build dentures and orthodontic equipment and are key components in the composition of numerous restorative materials. Furthermore, dental polymers have the potential to be employed for medication administration and tissue regeneration. To analyze the influence of polymer-based investigations on practical medical trials, it is required to evaluate the research undertaken in this sector. The present review aims to gather evidence on polymer applications in dental, oral, and maxillofacial reconstruction.
Collapse
Affiliation(s)
- Gamal A Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Hany K Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez, Egypt
| | - Ali B Roomi
- Department of Quality Assurance, University of Thi-Qar, Thi-Qar, Iraq
- Department of Medical Laboratory, College of Health and Medical Technology, National University of Science and Technology, Thi-Qar, Iraq
| | - Mohamed M Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Hager A Attia
- Department of Molecular Biology and Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Sara Z Mohamed
- Department of Removable Prosthodontics, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agriculture. University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Ioan Bănățean Dunea
- Department of Biology and Plant Protection, Faculty of Agriculture. University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Tabinda Hasan
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wessam Mady
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Susan A Ali
- Department of Radiodiagnosis, Faculty of Medicine, Ain Shams University, Abbassia, 1181, Egypt
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Rehab A Azouz
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Farag Malhat
- Department of Pesticide Residues and Environmental Pollution, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Tarek Foda
- Oral Health Sciences Department, Temple University’s Kornberg School of Dentistry, Philadelphia, PA, USA
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, 300041, Romania
| |
Collapse
|
7
|
Škerget M, Čolnik M, Zemljič LF, Gradišnik L, Semren TŽ, Lovaković BT, Maver U. Efficient and Green Isolation of Keratin from Poultry Feathers by Subcritical Water. Polymers (Basel) 2023; 15:2658. [PMID: 37376304 DOI: 10.3390/polym15122658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The isolation of keratin from poultry feathers using subcritical water was studied in a batch reactor at temperatures (120-250 °C) and reaction times (5-75 min). The hydrolyzed product was characterized by FTIR and elemental analysis, while the molecular weight of the isolated product was determined by SDS-PAGE electrophoresis. To determine whether disulfide bond cleavage was followed by depolymerization of protein molecules to amino acids, the concentration of 27 amino acids in the hydrolysate was analyzed by GC/MS. The optimal operating parameters for obtaining a high molecular weight protein hydrolysate from poultry feathers were 180 °C and 60 min. The molecular weight of the protein hydrolysate obtained under optimal conditions ranged from 4.5 to 12 kDa, and the content of amino acids in the dried product was low (2.53% w/w). Elemental and FTIR analyses of unprocessed feathers and dried hydrolysate obtained under optimal conditions showed no significant differences in protein content and structure. Obtained hydrolysate is a colloidal solution with a tendency for particle agglomeration. Finally, a positive influence on skin fibroblast viability was observed for the hydrolysate obtained under optimal processing conditions for concentrations below 6.25 mg/mL, which makes the product interesting for various biomedical applications.
Collapse
Affiliation(s)
- Mojca Škerget
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| | - Maja Čolnik
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| | - Lidija Fras Zemljič
- Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| | - Lidija Gradišnik
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska 8, 2000 Maribor, Slovenia
| | - Tanja Živković Semren
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia
| | - Blanka Tariba Lovaković
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia
| | - Uroš Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska 8, 2000 Maribor, Slovenia
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska 8, 2000 Maribor, Slovenia
| |
Collapse
|
8
|
Ke Y, Wu J, Ye Y, Zhang X, Gu T, Wang Y, Jiang F, Yu J. Feather keratin-montmorillonite nanocomposite hydrogel promotes bone regeneration by stimulating the osteogenic differentiation of endogenous stem cells. Int J Biol Macromol 2023:125330. [PMID: 37307978 DOI: 10.1016/j.ijbiomac.2023.125330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
Bone defects caused by bone trauma, infection, surgery, or other systemic diseases remain a severe challenge for the medical field. To address this clinical problem, different hydrogels were exploited to promote bone tissue regrowth and regeneration. Keratins are natural fibrous proteins found in wool, hair, horns, nails, and feather. Due to their unique characteristics of outstanding biocompatibility, great biodegradability, and hydrophilic, keratins have been widely applicated in different fields. In our study, the feather keratin-montmorillonite nanocomposite hydrogels that consist of keratin hydrogels serving as the scaffold support to accommodate endogenous stem cells and montmorillonite is synthesized. The introduction of montmorillonite greatly improves the osteogenic effect of the keratin hydrogels via bone morphogenetic protein 2 (BMP-2)/phosphorylated small mothers against decapentaplegic homolog 1/5/8 (p-SMAD 1/5/8)/runt-related transcription factor 2 (RUNX2) expression. Moreover, the incorporation of montmorillonite into hydrogels can improve the mechanical properties and bioactivity of the hydrogels. The morphology of feather keratin-montmorillonite nanocomposite hydrogels was shown by scanning electron microscopy (SEM) to have an interconnected porous structure. The incorporation of montmorillonite into the keratin hydrogels was confirmed by the energy dispersive spectrum (EDS). We prove that the feather keratin-montmorillonite nanocomposite hydrogels enhance the osteogenic differentiation of BMSCs. Furthermore, micro-CT and histological analysis of rat cranial bone defect demonstrated that feather keratin-montmorillonite nanocomposite hydrogels dramatically stimulated bone regeneration in vivo. Collectively, feather keratin-montmorillonite nanocomposite hydrogels can regulate BMP/SMAD signaling pathway to stimulate osteogenic differentiation of endogenous stem cells and promote bone defect healing, indicating their promising candidate in bone tissue engineering.
Collapse
Affiliation(s)
- Yue Ke
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of Stomatology, East Hospital Affiliated to Tongji University, Shanghai 200120, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jintao Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Institute of Stomatology, Nanjing Medical University, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yu Ye
- Institute of Periodontology, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xiaolan Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Institute of Stomatology, Nanjing Medical University, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Tingjie Gu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Institute of Stomatology, Nanjing Medical University, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yanqiu Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Institute of Stomatology, Nanjing Medical University, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Fei Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of General Dentistry, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| | - Jinhua Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Institute of Stomatology, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Pereira ED, da Silva Dutra L, Paiva TF, de Almeida Carvalho LL, Rocha HVA, Pinto JC. In Vitro Release and In Vivo Pharmacokinetics of Praziquantel Loaded in Different Polymer Particles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3382. [PMID: 37176262 PMCID: PMC10180028 DOI: 10.3390/ma16093382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/08/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023]
Abstract
Approximately 1 billion people are affected by neglected diseases around the world. Among these diseases, schistosomiasis constitutes one of the most important public health problems, being caused by Schistosoma mansoni and treated through the oral administration of praziquantel (PZQ). Despite being a common disease in children, the medication is delivered in the form of large, bitter-tasting tablets, which makes it difficult for patients to comply with the treatment. In order to mask the taste of the drug, allow more appropriate doses for children, and enhance the absorption by the body, different polymer matrices based on poly(methyl methacrylate) (PMMA) were developed and used to encapsulate PZQ. Polymer matrices included PMMA nano- and microparticles, PMMA-co-DEAEMA (2-(diethylamino)ethyl methacrylate), and PMMA-co-DMAEMA (2-(dimethylamino)ethyl methacrylate) microparticles. The performances of the drug-loaded particles were characterized in vitro through dissolution tests and in vivo through pharmacokinetic analyses in rats for the first time. The in vitro dissolution studies were carried out in accordance with the Brazilian Pharmacopeia and revealed a good PZQ release profile in an acidic medium for the PMMA-DEAEMA copolymer, reaching values close to 100 % in less than 3 h. The in vivo pharmacokinetic analyses were conducted using free PZQ as the control group that was compared with the investigated matrices. The drug was administered orally at doses of 60 mg/kg, and the PMMA-co-DEAEMA copolymer microparticles were found to be the most efficient release system among the investigated ones, reaching a Cmax value of 1007 ± 83 ng/mL, even higher than that observed for free PZQ, which displayed a Cmax value of 432 ± 98 ng/mL.
Collapse
Affiliation(s)
- Emiliane Daher Pereira
- Programa de Engenharia Química/COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, CP: 68502, Rio de Janeiro 21941-972, RJ, Brazil
| | - Luciana da Silva Dutra
- Programa de Engenharia Química/COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, CP: 68502, Rio de Janeiro 21941-972, RJ, Brazil
| | - Thamiris Franckini Paiva
- SENAI CETIQT, Instituto SENAI de Inovação em Biossintéticos e Fibras, Cidade Universitária, Rua Fernando de Souza Barros, Rio de Janeiro 21941-857, RJ, Brazil
| | - Larissa Leite de Almeida Carvalho
- Programa de Engenharia de Processos Químicos e Bioquímicos/EQ, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21949-900, RJ, Brazil
| | - Helvécio Vinícius Antunes Rocha
- Laboratório de Micro e Nanotecnologia, Instituto de Tecnologia de Fármacos—Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-361, RJ, Brazil
| | - José Carlos Pinto
- Programa de Engenharia Química/COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, CP: 68502, Rio de Janeiro 21941-972, RJ, Brazil
- Programa de Engenharia de Processos Químicos e Bioquímicos/EQ, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21949-900, RJ, Brazil
| |
Collapse
|
10
|
Preparation Methods and Functional Characteristics of Regenerated Keratin-Based Biofilms. Polymers (Basel) 2022; 14:polym14214723. [DOI: 10.3390/polym14214723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
The recycling, development, and application of keratin-containing waste (e.g., hair, wool, feather, and so on) provide an important means to address related environmental pollution and energy shortage issues. The extraction of keratin and the development of keratin-based functional materials are key to solving keratin-containing waste pollution. Keratin-based biofilms are gaining substantial interest due to their excellent characteristics, such as good biocompatibility, high biodegradability, appropriate adsorption, and rich renewable sources, among others. At present, keratin-based biofilms are a good option for various applications, and the development of keratin-based biofilms from keratin-containing waste is considered crucial for sustainable development. In this paper, in order to achieve clean production while maintaining the functional characteristics of natural keratin as much as possible, four important keratin extraction methods—thermal hydrolysis, ultrasonic technology, eco-friendly solvent system, and microbial decomposition—are described, and the characteristics of these four extraction methods are analysed. Next, methods for the preparation of keratin-based biofilms are introduced, including solvent casting, electrospinning, template self-assembly, freeze-drying, and soft lithography methods. Then, the functional properties and application prospects of keratin-based biofilms are discussed. Finally, future research directions related to keratin-based biofilms are proposed. Overall, it can be concluded that the high-value conversion of keratin-containing waste into regenerated keratin-based biofilms has great importance for sustainable development and is highly suggested due to their great potential for use in biomedical materials, optoelectronic devices, and metal ion detection applications. It is hoped that this paper can provide some basic information for the development and application of keratin-based biofilms.
Collapse
|
11
|
Electrospun non-wovens potential wound dressing material based on polyacrylonitrile/chicken feathers keratin nanofiber. Sci Rep 2022; 12:15460. [PMID: 36104428 PMCID: PMC9474820 DOI: 10.1038/s41598-022-19390-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Electrospinning nanofibers have a tremendous interest in biomedical applications such as tissue engineering, drug administration, and wound healing because of their ability to replicate and restore the function of the natural extracellular matrix found in tissues. The study’s highlight is the electrospinning preparation and characterization of polyacrylonitrile with chicken feather keratin as an additive. In this study, keratin was extracted from chicken feather waste using an environmentally friendly method and used to reinforce polymeric nanofiber mats. Scanning electron microscopy, energy dispersive spectroscopy, and transmission electron microscopy were used to examine the morphology and the structure of the prepared nanofiber mats. The effect of keratin on the porosity and the tensile strength of reinforcing nanofibers is investigated. The porosity ratio of the nanofiber mats goes up from 24.52 ± 2.12 for blank polyacrylonitrile (PAN (NF)) to 90.89 ± 1.91% for polyacrylonitrile nanofiber with 0.05 wt% keratin (PAN/0.05% K). Furthermore, keratin reinforcement improves the nanofiber's mechanical properties, which are important for wound dressing application, as well as its antibacterial activity without causing hemolysis (less than 2%). The best antibacterial activities were observed against Pseudomonas aeruginosa (30 ± 0.17 mm inhibition zone) and Staphylococcus aureus (29 ± 0.31 mm inhibition zone) for PAN/0.05% K sample, according to the antibacterial test. This research has a good potential to broaden the use of feather keratin-based nanofibers in wound healing.
Collapse
|
12
|
Babbar N, Sharma G, Arya SK. Effective degradation of chicken feather waste by keratinase enzyme with triton X-100 additive. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Ye W, Qin M, Qiu R, Li J. Keratin-based wound dressings: From waste to wealth. Int J Biol Macromol 2022; 211:183-197. [PMID: 35513107 DOI: 10.1016/j.ijbiomac.2022.04.216] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023]
Abstract
Keratin is a natural protein with a high content of cysteine residues (7-13%) and is widely found in hair, wool, horns, hooves, and nails. Keratin possesses abundant cell-binding motifs such as leucine-aspartate-valine (LDV), glutamate-aspartate-serine (EDS), and arginine-glycine-aspartate (RGD), which benefit cell attachment and proliferation. It has been confirmed that keratin plays important roles in every stage of wound healing, including hemostasis, inflammation, proliferation, and remodeling, making keratin-based materials good candidates for wound dressings. In combination with synthetic and natural polymers, keratin-based wound dressings in the forms of films, hydrogels, and nanofibers can be achieved with improved mechanical properties. This review focuses on the recent development of keratin-based wound dressings. Firstly, the physicochemical and biological properties of keratin, are systematically discussed. Secondly, the role of keratin in wound healing is proposed. Thirdly, the applications of keratin-based wound dressings are summarized, in terms of the forms and functionalization. Finally, the current challenges and future development of keratin-based wound dressings are presented.
Collapse
Affiliation(s)
- Wenjin Ye
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065
| | - Rongmin Qiu
- College & Hospital of Stomatology, Guangxi Medical University, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, Guangxi 530021, PR China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China; Med-X Center for Materials, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
14
|
Li Q. Perspectives on Converting Keratin-Containing Wastes Into Biofertilizers for Sustainable Agriculture. Front Microbiol 2022; 13:918262. [PMID: 35794912 PMCID: PMC9251476 DOI: 10.3389/fmicb.2022.918262] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Keratin-containing wastes become pollution to the environment if they are not treated properly. On the other hand, these wastes can be converted into value-added products applicable to many fields. Organic fertilizers and biofertilizers are important for sustainable agriculture by providing nutrients to enhance the growth speed of the plant and production. Keratin-containing wastes, therefore, will be an important resource to produce organic fertilizers. Many microorganisms exhibit capabilities to degrade keratins making them attractive to convert keratin-containing wastes into valuable products. In this review, the progress in microbial degradation of keratins is summarized. In addition, perspectives in converting keratin into bio- and organic fertilizers for agriculture are described. With proper treatment, feather wastes which are rich in keratin can be converted into high-value fertilizers to serve as nutrients for plants, reduce environmental pressure and improve the quality of the soil for sustainable agriculture.
Collapse
|
15
|
Valorization of Livestock Keratin Waste: Application in Agricultural Fields. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116681. [PMID: 35682267 PMCID: PMC9180014 DOI: 10.3390/ijerph19116681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 01/25/2023]
Abstract
Livestock keratin waste is a rich source of protein. However, the unique structure of livestock keratin waste makes its valorization a great challenge. This paper reviews the main methods for the valorization of livestock keratin waste, which include chemical, biological, and other novel methods, and summarizes the main agricultural applications of keratin-based material. Livestock keratin waste is mainly used as animal feed and fertilizer. However, it has promising potential for biosorbents and in other fields. In the future, researchers should focus on the biological extraction and carbonization methods of processing and keratin-based biosorbents for the soil remediation of farmland.
Collapse
|
16
|
Yan RR, Gong JS, Su C, Liu YL, Qian JY, Xu ZH, Shi JS. Preparation and applications of keratin biomaterials from natural keratin wastes. Appl Microbiol Biotechnol 2022; 106:2349-2366. [DOI: 10.1007/s00253-022-11882-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/20/2022]
|
17
|
Insuasti‐Cruz E, Suárez‐Jaramillo V, Mena Urresta KA, Pila‐Varela KO, Fiallos‐Ayala X, Dahoumane SA, Alexis F. Natural Biomaterials from Biodiversity for Healthcare Applications. Adv Healthc Mater 2022; 11:e2101389. [PMID: 34643331 DOI: 10.1002/adhm.202101389] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/20/2021] [Indexed: 12/22/2022]
Abstract
Natural biomaterials originating during the growth cycles of all living organisms have been used for many applications. They span from bioinert to bioactive materials including bioinspired ones. As they exhibit an increasing degree of sophistication, natural biomaterials have proven suitable to address the needs of the healthcare sector. Here the different natural healthcare biomaterials, their biodiversity sources, properties, and promising healthcare applications are reviewed. The variability of their properties as a result of considered species and their habitat is also discussed. Finally, some limitations of natural biomaterials are discussed and possible future developments are provided as more natural biomaterials are yet to be discovered and studied.
Collapse
Affiliation(s)
- Erick Insuasti‐Cruz
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| | | | | | - Kevin O. Pila‐Varela
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| | - Xiomira Fiallos‐Ayala
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| | - Si Amar Dahoumane
- Department of Chemical Engineering Polytech Montreal Montreal Quebec H3C 3A7 Canada
- Center for Advances in Water and Air Quality (CAWAQ) Lamar University Beaumont TX 77710 USA
| | - Frank Alexis
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| |
Collapse
|
18
|
Souza FFPD, Pérez-Guerrero JA, Gomes MJP, Cavalcante FL, Souza Filho MDSMD, Castro-Silva II. Development and characterization of poultry collagen-based hybrid hydrogels for bone regeneration. Acta Cir Bras 2022; 37:e370302. [PMID: 35584534 PMCID: PMC9109989 DOI: 10.1590/acb370302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/06/2022] [Indexed: 01/12/2023] Open
Abstract
Purpose: Poultry by-products can contribute as an innovative natural source for the
development of composites based on polymers and minerals aiming at bone
regeneration. The objective of this study was the physicochemical and
biological characterization of collagen-based hydrogels crosslinked with
ultraviolet (UV)-riboflavin. Methods: Pure hydrogels of 100% collagen (G1) or hybrid hydrogels, 90% collagen:10%
apatite (G2), 90% collagen:10% nanokeratin (G3), and 90% collagen:5%
apatite:5% nanokeratin (G4) were characterized by scanning electron
microscope, Fourier-transform infrared spectroscopy, differential scanning
calorimetry, swelling degree and quali-quantitative histological analysis.
Ectopic implantation in subcutaneous tissue in mice at one, three and nine
weeks allowed to assess the inflammation (neutrophils, lymphocytes,
macrophages, and giant cells) and repair (neovascularization, and connective
tissue) to determine biocompatibility and the integrity of biomaterials to
score their biodegradability. Histomorphometry on critical size defects in
rat calvaria at one and three months evaluated the percentage of bone,
connective tissue, and biomaterials in all groups. Results: The hydrogels presented porous microstructure, water absorption and
physicochemical characteristics compatible with their polymeric and/or
mineral composition. All materials exhibited biocompatibility,
biodegradability, and low osteoconductivity. G2 showed greater density of
new bone and biomaterial than the G1, G3 and G4. Conclusions: The collagen-apatite group formulation suggests potential for development as
osteopromoting membrane.
Collapse
|
19
|
Konop M, Rybka M, Drapała A. Keratin Biomaterials in Skin Wound Healing, an Old Player in Modern Medicine: A Mini Review. Pharmaceutics 2021; 13:2029. [PMID: 34959311 PMCID: PMC8705570 DOI: 10.3390/pharmaceutics13122029] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022] Open
Abstract
Impaired wound healing is a major medical problem. To solve it, researchers around the world have turned their attention to the use of tissue-engineered products to aid in skin regeneration in case of acute and chronic wounds. One of the primary goals of tissue engineering and regenerative medicine is to develop a matrix or scaffold system that mimics the structure and function of native tissue. Keratin biomaterials derived from wool, hair, and bristle have been the subjects of active research in the context of tissue regeneration for over a decade. Keratin derivatives, which can be either soluble or insoluble, are utilized as wound dressings since keratins are dynamically up-regulated and needed in skin wound healing. Tissue biocompatibility, biodegradability, mechanical durability, and natural abundance are only a few of the keratin biomaterials' properties, making them excellent wound dressing materials to treat acute and chronic wounds. Several experimental and pre-clinical studies described the beneficial effects of the keratin-based wound dressing in faster wound healing. This review focuses exclusively on the biomedical application of a different type of keratin biomaterials as a wound dressing in pre-clinical and clinical conditions.
Collapse
Affiliation(s)
- Marek Konop
- Laboratory of Center for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, 02-106 Warsaw, Poland; (M.R.); (A.D.)
| | | | | |
Collapse
|
20
|
Tarafdar A, Gaur VK, Rawat N, Wankhade PR, Gaur GK, Awasthi MK, Sagar NA, Sirohi R. Advances in biomaterial production from animal derived waste. Bioengineered 2021; 12:8247-8258. [PMID: 34814795 PMCID: PMC8806998 DOI: 10.1080/21655979.2021.1982321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Animal derived waste, if not disposed properly, could pose a threat to the environment and its inhabitants. Recent advancements in biotechnological and biomedical interventions have enabled us to bioengineer these valuable waste substrates into biomaterials with diversified applications. Rearing and processing of poultry, cattle, sheep, goat, pig, and slaughterhouse waste can aid in effective waste valorization for the fabrication of biopolymers, composites, heart valves, collagen, scaffolds, pigments and lipids, among other industrially important biomaterials. Feathers and eggshell waste from the poultry industry can be used for producing keratinous proteins and biocomposites, respectively. Cattle dung, hoofs and cattle hide can be used for producing hydroxyapatite for developing scaffolds and drug delivery systems. Porcine derived collagen can be used for developing skin grafts, while porcine urinary bladder has antiangiogenic, neurotrophic, tumor-suppressive and wound healing properties. Sheep teeth can be used for the production of low-cost hydroxyapatite while goat tissue is still underutilized and requires more in-depth investigation. However, hydrolyzed tannery fleshings show promising potential for antioxidant rich animal feed production. In this review, the recent developments in the production and application of biomaterials from animal waste have been critically analyzed. Standardized protocols for biomaterial synthesis on a pilot scale, and government policy framework for establishing an animal waste supply chain for end users seem to be lacking and require urgent attention. Moreover, circular bioeconomy concepts for animal derived biomaterial production need to be developed for creating a sustainable system.
Collapse
Affiliation(s)
- Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Vivek Kumar Gaur
- Environment Toxicology Division, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Neha Rawat
- Department of Food Science and Technology, College of Agriculture, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Pratik Ramesh Wankhade
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Gyanendra Kumar Gaur
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&f University, Yangling, Shaanxi Province, China
| | - Narashans Alok Sagar
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
21
|
Hybrid antibacterial hydrogels based on PVP and keratin incorporated with lavender extract. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02681-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Li Q. Structure, Application, and Biochemistry of Microbial Keratinases. Front Microbiol 2021; 12:674345. [PMID: 34248885 PMCID: PMC8260994 DOI: 10.3389/fmicb.2021.674345] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Keratinases belong to a class of proteases that are able to degrade keratins into amino acids. Microbial keratinases play important roles in turning keratin-containing wastes into value-added products by participating in the degradation of keratin. Keratin is found in human and animal hard tissues, and its complicated structures make it resistant to degradation by common proteases. Although breaking disulfide bonds are involved in keratin degradation, keratinase is responsible for the cleavage of peptides, making it attractive in pharmaceutical and feather industries. Keratinase can serve as an important tool to convert keratin-rich wastes such as feathers from poultry industry into diverse products applicable to many fields. Despite of some progress made in isolating keratinase-producing microorganisms, structural studies of keratinases, and biochemical characterization of these enzymes, effort is still required to expand the biotechnological application of keratinase in diverse fields by identifying more keratinases, understanding the mechanism of action and constructing more active enzymes through molecular biology and protein engineering. Herein, this review covers structures, applications, biochemistry of microbial keratinases, and strategies to improve its efficiency in keratin degradation.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
23
|
Keratin Scaffolds Containing Casomorphin Stimulate Macrophage Infiltration and Accelerate Full-Thickness Cutaneous Wound Healing in Diabetic Mice. Molecules 2021; 26:molecules26092554. [PMID: 33925737 PMCID: PMC8125279 DOI: 10.3390/molecules26092554] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Impaired wound healing is a major medical challenge, especially in diabetics. Over the centuries, the main goal of tissue engineering and regenerative medicine has been to invent biomaterials that accelerate the wound healing process. In this context, keratin-derived biomaterial is a promising candidate due to its biocompatibility and biodegradability. In this study, we evaluated an insoluble fraction of keratin containing casomorphin as a wound dressing in a full-thickness surgical skin wound model in mice (n = 20) with iatrogenically induced diabetes. Casomorphin, an opioid peptide with analgesic properties, was incorporated into keratin and shown to be slowly released from the dressing. An in vitro study showed that keratin-casomorphin dressing is biocompatible, non-toxic, and supports cell growth. In vivo experiments demonstrated that keratin-casomorphin dressing significantly (p < 0.05) accelerates the whole process of skin wound healing to the its final stage. Wounds covered with keratin-casomorphin dressing underwent reepithelization faster, ending up with a thicker epidermis than control wounds, as confirmed by histopathological and immunohistochemical examinations. This investigated dressing stimulated macrophages infiltration, which favors tissue remodeling and regeneration, unlike in the control wounds in which neutrophils predominated. Additionally, in dressed wounds, the number of microhemorrhages was significantly decreased (p < 0.05) as compared with control wounds. The dressing was naturally incorporated into regenerating tissue during the wound healing process. Applied keratin dressing favored reconstruction of more regular skin structure and assured better cosmetic outcome in terms of scar formation and appearance. Our results have shown that insoluble keratin wound dressing containing casomorphin supports skin wound healing in diabetic mice.
Collapse
|
24
|
Ji J, Chen G, Liu Z, Li L, Yuan J, Wang P, Xu B, Fan X. Preparation of PEG-modified wool keratin/sodium alginate porous scaffolds with elasticity recovery and good biocompatibility. J Biomed Mater Res B Appl Biomater 2021; 109:1303-1312. [PMID: 33421269 DOI: 10.1002/jbm.b.34791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 01/21/2023]
Abstract
To improve mechanical properties of keratin (KR) porous scaffolds, we prepared a PEGylated keratin through thiol-ene click reaction. Several porous scaffolds were prepared by blending PEGylated keratin with sodium alginate (SA). The surface morphology, mechanical properties, and porosity of scaffolds were detailed studied at different KR/SA proportions. The results showed the content of SA had an effect on pore formation and mechanical properties. When the mass ratio of KR to SA was 2:1, the stress of yield point of the keratin porous scaffold reached 1.24 MPa, and also showed good deformation recovery ability. The PEGylated keratin porous scaffold had a high porosity and great cytocompatibility. Its' porosity is up to 81.7% and the cell viability is about 117.78%. This allows it to absorb the simulated plasma quickly (9.20 ± 0.37 g/g). In addition, the structural stability and acid-base stability of the keratin porous scaffold were also improved after PEGylation. Overall, the PEGylated keratin porous scaffold will be promising in tissue materials due to its great physical, chemical, and biological properties.
Collapse
Affiliation(s)
- Ji Ji
- Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, China
| | - Guang Chen
- Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, China
| | - Zitong Liu
- Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, China
| | - Lili Li
- Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jiugang Yuan
- Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, China
| | - Ping Wang
- Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, China
| | - Bo Xu
- Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xuerong Fan
- Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
25
|
Mansoldo FRP, Cardoso VDS, Neves Junior A, Cedrola SML, Maricato V, Rosa MDSS, Vermelho AB. Quantification of schizophyllan directly from the fermented broth by ATR-FTIR and PLS regression. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5468-5475. [PMID: 33141124 DOI: 10.1039/d0ay01585g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Non-destructive methods that allow the quantification of bioproducts in a simple and quick manner during fermentation are extremely desirable from a practical point of view. Therefore, a 9 day fermentation experiment with Schizophyllum commune was carried out to investigate the possibility of using ATR-FTIR to quantify the schizophyllan biopolymer (SPG) directly from the culture medium. On each day, aliquots of the fermentation were taken, and the cell-free supernatant was analyzed by ATR-FTIR. The main objective of this step was to evaluate whether FTIR would be able to detect the appearance of specific peaks related to the production of SPG. The results of the PCA analysis showed that there was a reasonable separation of the days through the FTIR spectra. Then PCA-LDA was applied to the same dataset, which confirmed the formation of groups for each day of fermentation, after which, a calibration and test set was developed. Through a matrix generated by an experimental design with 2 factors and 5 levels, 25 samples were created with variations in the concentration of the culture medium and SPG. The ATR-FTIR spectra of this data set were modeled using PLS regression with backward selection of predictors. The results revealed that the amount of SPG produced can be quantified directly in the culture medium with excellent precision with R2CV = 0.951, R2P = 0.970, RMECV = 0.205 g, RMSEP = 0.170 g, RPDcv = 4.53 and RPDp = 5.88. The traditional method to quantify SPG is time consuming, requires several steps and uses solvents. In contrast, the method proposed in this work is a viable, faster, and a simpler alternative, which does not use reagents and does not require extensive pre-treatment of the samples.
Collapse
Affiliation(s)
- Felipe Raposo Passos Mansoldo
- Federal University of Rio de Janeiro (UFRJ), Institute of Microbiology Paulo de Góes, BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | |
Collapse
|
26
|
Fabrication and evaluation of bamboo fabric coated with extracts of Curcuma longa, Centella asiatica and Azadirachta indica as a wound dressing material. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00503-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Valorization of feather via the microbial production of multi-applicable keratinolytic enzyme. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Donato RK, Mija A. Keratin Associations with Synthetic, Biosynthetic and Natural Polymers: An Extensive Review. Polymers (Basel) 2019; 12:E32. [PMID: 31878054 PMCID: PMC7023547 DOI: 10.3390/polym12010032] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022] Open
Abstract
Among the biopolymers from animal sources, keratin is one the most abundant, with a major contribution from side stream products from cattle, ovine and poultry industry, offering many opportunities to produce cost-effective and sustainable advanced materials. Although many reviews have discussed the application of keratin in polymer-based biomaterials, little attention has been paid to its potential in association with other polymer matrices. Thus, herein, we present an extensive literature review summarizing keratin's compatibility with other synthetic, biosynthetic and natural polymers, and its effect on the materials' final properties in a myriad of applications. First, we revise the historical context of keratin use, describe its structure, chemical toolset and methods of extraction, overview and differentiate keratins obtained from different sources, highlight the main areas where keratin associations have been applied, and describe the possibilities offered by its chemical toolset. Finally, we contextualize keratin's potential for addressing current issues in materials sciences, focusing on the effect of keratin when associated to other polymers' matrices from biomedical to engineering applications, and beyond.
Collapse
Affiliation(s)
- Ricardo K. Donato
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
- Institute of Chemistry of Nice, UMR CNRS 7272, Université Côte d’Azur, University of Nice Sophia Antipolis, Parc Valrose, 06108 Nice CEDEX 2, France
| | - Alice Mija
- Institute of Chemistry of Nice, UMR CNRS 7272, Université Côte d’Azur, University of Nice Sophia Antipolis, Parc Valrose, 06108 Nice CEDEX 2, France
| |
Collapse
|
29
|
Karuppiah S, Thangaraj S, Arunachalam Palaniappan S, Olapalayam Lakshmanan S. Influence of surfactants on structural, morphological, optical and antibacterial properties of SnO 2 nanoparticles. IET Nanobiotechnol 2019; 13:952-956. [PMID: 31811765 DOI: 10.1049/iet-nbt.2019.0095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tin oxide (SnO2) nanoparticles were synthesised using various surfactants of different charges (n-cetyl trimethyl ammonium bromide, sodium dodecyl sulphate and TRITON X-100) by the co-precipitation method. The synthesised nanomaterials were characterised using different techniques to study their structural, surface morphological, optical and anti-bacterial activities. X-ray diffraction patterns revealed the formation of a tetragonal rutile structure in pure and surfactants-aided SnO2 nanoparticles and the results show good agreement with JCPDS data [41-1445]. The crystallite size of SnO2 nanoparticles was found to decrease with the addition of surfactants. Scanning electron microscopy images exhibit spherical shape morphology with an average diameter of 30-75 nm for pure and surfactants-aided SnO2 nanoparticles. The band gap energy of the prepared materials was estimated from the UV-visible absorption spectra and a considerable increase in band gap energy was observed in surfactants-aided SnO2 nanoparticles (3.487, 3.57, 3.50 and 3.3 eV). The antibacterial activities of the synthesised nanoparticles were studied against Escherichia coli and Staphylococcus aureus bacteria.
Collapse
Affiliation(s)
- Sujatha Karuppiah
- PG Department of Physics, Vellalar College for Women, Thindal, Tamil Nadu, India
| | | | | | | |
Collapse
|
30
|
Li Q. Progress in Microbial Degradation of Feather Waste. Front Microbiol 2019; 10:2717. [PMID: 31866957 PMCID: PMC6906142 DOI: 10.3389/fmicb.2019.02717] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022] Open
Abstract
Feathers are a major by-product of the poultry industry. They are mainly composed of keratins which have wide applications in different fields. Due to the increasing production of feathers from poultry industries, the untreated feathers could become pollutants because of their resistance to protease degradation. Feathers are rich in amino acids, which makes them a valuable source for fertilizer and animal feeds. Numerous bacteria and fungi exhibited capabilities to degrade chicken feathers by secreting enzymes such as keratinases, and accumulated evidence shows that feather-containing wastes can be converted into value-added products. This review summarizes recent progress in microbial degradation of feathers, structures of keratinases, feather application, and microorganisms that are able to secrete keratinase. In addition, the enzymes critical for keratin degradation and their mechanism of action are discussed. We also proposed the strategy that can be utilized for feather degradation. Based on the accumulated studies, microbial degradation of feathers has great potential to convert them into various products such as biofertilizer and animal feeds.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
31
|
Wan X, Li P, Jin X, Su F, Shen J, Yuan J. Poly(ε-caprolactone)/keratin/heparin/VEGF biocomposite mats for vascular tissue engineering. J Biomed Mater Res A 2019; 108:292-300. [PMID: 31606923 DOI: 10.1002/jbm.a.36815] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/19/2019] [Indexed: 11/12/2022]
Abstract
Vascular endothelial growth factor (VEGF) is an effective growth and angiogenic cytokine, which stimulates proliferation and survival of endothelial cells, and promotes angiogenesis and vascular permeability. Binding VEGF with heparin could protect it from rapid degradation, subsequently allowing it to be controlled release. Primarily, poly(ε-caprolactone) (PCL) and keratin were coelectrospun, followed by conjugating with heparin and subsequently binding VEGF. The loaded heparin and VEGF on these mats were quantified, respectively. The surface characteristics of mats were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The VEGF delivery results indicated these mats could sustainably release VEGF for 2 weeks. Cell viability assays suggested these mats were valid to accelerate human umbilical vein endothelial cells (HUVECs) proliferation, while inhibit human umbilical arterial smooth muscle cells (HUASMCs) growth under the combined actions of VEGF and heparin. The results tested by blood clotting times (APTT, PT, and TT), hemolysis, and platelet adhesion indicated the mats were blood compatible. To sum up, these biocomposite mats are ideal scaffolds for vascular tissue engineering.
Collapse
Affiliation(s)
- Xiuzhen Wan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, PR China
| | - Pengfei Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, PR China
| | - Xingxing Jin
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, PR China
| | - Fu Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, PR China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, PR China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, PR China
| |
Collapse
|
32
|
|
33
|
Basu P, Narendrakumar U, Arunachalam R, Devi S, Manjubala I. Characterization and Evaluation of Carboxymethyl Cellulose-Based Films for Healing of Full-Thickness Wounds in Normal and Diabetic Rats. ACS OMEGA 2018; 3:12622-12632. [PMID: 30411013 PMCID: PMC6217532 DOI: 10.1021/acsomega.8b02015] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/20/2018] [Indexed: 05/16/2023]
Abstract
Artificial skin substitute made of polymeric films are of great demand in the field of skin tissue engineering. We report here the fabrication of carboxymethyl cellulose (CMC) and poly(ethylene glycol) (PEG) blend films by solution casting method for wound healing applications. The physicochemical characteristics and the thermal stability of the films were analyzed. The surface morphology shows crystalline structures with large hexagonal-like platelet crystals of CMC on the surface of the films. Pure CMC films exhibited higher tensile strength than the CMC/PEG blend films. The swelling ratio (SR) of the films was influenced by the pH of Tris-HCL buffer (2.0, 5.0, and 7.0), which increased with increase in pH. The hemocompatibility assay and cytotoxicity test using NIH 3T3 fibroblast cells showed that the films were biocompatible. To evaluate the wound healing efficacy, the films were applied in full-thickness wounds created in normal and diabetic Wistar albino rats. The wounds healed faster with pure CMC film compared to blend films in both normal and diabetic rats, evidenced by intensive collagen formation in histopathological analysis. Thus, the films have potential application in skin regeneration, thereby to restore the structural and functional characteristics of the skin.
Collapse
Affiliation(s)
- Poulami Basu
- Department
of Bio Sciences, School of Bio Sciences and Technology, and Department of
Manufacturing, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Uttamchand Narendrakumar
- Department
of Bio Sciences, School of Bio Sciences and Technology, and Department of
Manufacturing, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Ruckmani Arunachalam
- Department
of Pharmacology, Chettinad Hospital and
Research Institute, Chettinad Academy of Research and Education, Chennai 603103, India
| | - Sobita Devi
- Department
of Pharmacology, Chettinad Hospital and
Research Institute, Chettinad Academy of Research and Education, Chennai 603103, India
| | - Inderchand Manjubala
- Department
of Bio Sciences, School of Bio Sciences and Technology, and Department of
Manufacturing, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India
- E-mail:
| |
Collapse
|