1
|
Fallah A, Ghiassi Tarzi B, Asadi G, Farhoodi M. Fabrication of reusable 3D hierarchically porous air filtration based on multifunctional nanoclay-embedded cellulose electrospun nanofiber. Int J Biol Macromol 2024; 279:135391. [PMID: 39245111 DOI: 10.1016/j.ijbiomac.2024.135391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
A special nano-filter made of cellulose acetate (CA) was developed, including a 3D hierarchically porous structure. The nano-filter utilized nano-clay (hydrophilic bentonite (NCB)), comprising 0.5-1.5 % of its weight. The objective of this study was to evaluate the adsorption properties of four carcinogenic polyaromatic hydrocarbons (benz[α] anthracene (BαA), chrysene (CHR), benzo[β]fluoranthene (BβF), and benzo[α] pyrene (BαP)) during the rice smoking process. The evaluation of the nano-filter encompassed an analysis of its mechanical attributes, surface qualities, morphology, and adsorption efficacy. The experimental results demonstrated that adding NCB to the nano-filter composition of CA led to substantial improvements in tensile strength, elongation at break, and maximum load stress values compared to the control group. The nano-filter displayed a uniform and homogeneously distributed arrangement of nanoparticles. The GC-MS analysis demonstrated that the enhanced nano-filter, comprising nano-clay particles, successfully absorbed the polycyclic aromatic hydrocarbons (PAHs) over a 21-day rice smoking period. The performance, removal efficiency and porosity during repetitive filtering and cleaning cycles in the rice samples at different smoking times were approved reusability of CA-NCB filter. It is recommended to explore the application of hybrid CA nano-filter s, namely those containing NCB, as a cutting-edge filtration technique for smoked food products.
Collapse
Affiliation(s)
- Amir Fallah
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Babak Ghiassi Tarzi
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Gholamhassan Asadi
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Farhoodi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Iran
| |
Collapse
|
2
|
Rahbari S, Tavakolipour H, Kalbasi-Ashtari A. Application of electro-spraying technique and mathematical modelling for nanoencapsulation of curcumin. Heliyon 2024; 10:e25680. [PMID: 38390193 PMCID: PMC10881552 DOI: 10.1016/j.heliyon.2024.e25680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Electro-spraying Process (ESP) was used to coat extracted curcumin (CUR) with milk protein isolate (MPI) at equal concentration. The variables were applied voltage (AV), pumps flow rate ratio (PFRR) for coating (CUR with MPI), travelling distance (TD for coating and dehydration), ESE and MPI concentrations. They changed respectively from 7.5 to 27.5 kV, 2-10 times, and 5-25 cm, and 1.5-3.5% (w/w). When the MPI concentration, TD, PFRR, and AV of ESE reached respectively to 2.56 %, 16.64 cm, 6.77 times, and 19.06 kV; the resulting nanoparticle diameter and encapsulation efficiency of CUR coated (with MPI) became 232 nm (minimum) and 80.7% (maximum) values. The scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) analysis confirmed that the produced nanoparticles were bead-free, homogeneous, smooth surfaces, and >50% uniformity. While the nanoparticles of CUR had >70% heat resistance (up to 10 min at 120 °C against degradation), it had more than 100% antioxidant capacity in aqueous solution than its free form (because of its appropriate and intact coating). In-vitro studies showed that the nano encapsulated particles released >80% of CUR into the intestinal tract without significant release in simulated gastric fluid.
Collapse
Affiliation(s)
- Siamak Rahbari
- Islamic Azad University (Tehran Campus), City of Tehran, Iran
| | | | | |
Collapse
|
3
|
Fazal T, Murtaza BN, Shah M, Iqbal S, Rehman MU, Jaber F, Dera AA, Awwad NS, Ibrahium HA. Recent developments in natural biopolymer based drug delivery systems. RSC Adv 2023; 13:23087-23121. [PMID: 37529365 PMCID: PMC10388836 DOI: 10.1039/d3ra03369d] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Targeted delivery of drug molecules to diseased sites is a great challenge in pharmaceutical and biomedical sciences. Fabrication of drug delivery systems (DDS) to target and/or diagnose sick cells is an effective means to achieve good therapeutic results along with a minimal toxicological impact on healthy cells. Biopolymers are becoming an important class of materials owing to their biodegradability, good compatibility, non-toxicity, non-immunogenicity, and long blood circulation time and high drug loading ratio for both macros as well as micro-sized drug molecules. This review summarizes the recent trends in biopolymer-based DDS, forecasting their broad future clinical applications. Cellulose chitosan, starch, silk fibroins, collagen, albumin, gelatin, alginate, agar, proteins and peptides have shown potential applications in DDS. A range of synthetic techniques have been reported to design the DDS and are discussed in the current study which is being successfully employed in ocular, dental, transdermal and intranasal delivery systems. Different formulations of DDS are also overviewed in this review article along with synthesis techniques employed for designing the DDS. The possibility of these biopolymer applications points to a new route for creating unique DDS with enhanced therapeutic qualities for scaling up creative formulations up to the clinical level.
Collapse
Affiliation(s)
- Tanzeela Fazal
- Department of Chemistry, Abbottabad University of Science and Technology Pakistan
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology Pakistan
| | - Mazloom Shah
- Department of Chemistry, Faculty of Science, Grand Asian University Sialkot Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST) H-12 Islamabad 46000 Pakistan
| | - Mujaddad-Ur Rehman
- Department of Microbiology, Abbottabad University of Science & Technology Pakistan
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University Ajman UAE
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University Ajman UAE
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
4
|
Alsakhawy MA, Abdelmonsif DA, Haroun M, Sabra SA. Naringin-loaded Arabic gum/pectin hydrogel as a potential wound healing material. Int J Biol Macromol 2022; 222:701-714. [PMID: 36170930 DOI: 10.1016/j.ijbiomac.2022.09.200] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022]
Abstract
Wound healing is a complicated cellular process with overlapping phases. Naringin (NAR); a flavanone glycoside, possesses numerous pharmacological effects such as anti-inflammatory, antioxidant and anti-apoptotic effects. In the current study, Arabic gum (AG)/pectin hydrogel was utilized to encapsulate NAR. Drug-loaded AG/pectin hydrogel exhibited excellent EE% of about 99.88 ± 0.096 and high DL% of about 16.64 ± 0.013. The formulated drug-loaded hydrogel was characterized using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and Zetasizer analyzer, besides determination of equilibrium degree of swelling (EDS%). Afterwards, wound healing potential of NAR-loaded AG/pectin hydrogel was evaluated in an in vivo animal model. Results manifested that NAR-loaded AG/pectin hydrogel was able to accelerate wound healing in terms of enhanced angiogenesis, re-epithelialization and collagen deposition. Furthermore, it significantly (P < 0.001) down-regulated the mRNA expression of inflammatory mediators (TNF-α) and apoptosis (BAX). In addition, NAR-loaded AG/pectin hydrogel was found to possess potent antioxidant activity as it enhanced the levels of SOD and GSH, besides decreasing the levels of MPO, MDA and nitrite. These data suggest that NAR-loaded AG/pectin hydrogel could be utilized in wound healing applications.
Collapse
Affiliation(s)
- Marwa A Alsakhawy
- Department of Biotechnology, Institute of Graduate studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Medhat Haroun
- Department of Biotechnology, Institute of Graduate studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Sally A Sabra
- Department of Biotechnology, Institute of Graduate studies and Research, Alexandria University, Alexandria 21526, Egypt.
| |
Collapse
|
5
|
Karthick Raja Namasivayam S, Manohar M, Aravind Kumar J, Samrat K, Kande A, Arvind Bharani RS, Jayaprakash C, Lokesh S. Green chemistry principles for the synthesis of anti fungal active gum acacia-gold nanocomposite - natamycin (GA-AuNC-NT) against food spoilage fungal strain Aspergillus ochraceopealiformis and its marked Congo red dye adsorption efficacy. ENVIRONMENTAL RESEARCH 2022; 212:113386. [PMID: 35569536 DOI: 10.1016/j.envres.2022.113386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
In this present study, a highly stable gum acacia -gold nanocomposite fabricated with food preservative agent natamycin (GA-AuNC-NT) was prepared via green science principles under in vitro conditions. Various characterisation techniques reveal highly stable structural, functional properties of the synthesised nanocomposite with marked antifungal activity and adsorption efficacy against congo red dye. The antifungal activity was investigated against the fungal strain Aspergillus ochraceopealiformis isolated from spoiled, expired bread. The well diffusion assay, fungal hyphae fragmentation assay and spore germination inhibition assay were used to determine the antifungal activity of the synthesised nanocomposite. Potential antifungal activity of the synthesised nanocomposite was confirmed by recording zone of inhibition, high rate of hyphae fragmentation and marked spore germination inhibition against the tested fungal strain. The molecular mechanism of antifungal activity was studied by measuring oxidative stress marker genes like catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) induction adopting quantitative real-time polymerase chain reaction (q RT-PCR). Among the various treatment, a notable reduction in all the tested marker genes expression was recorded in the nanocomposite treated fungal strain. Release profile studies using different solvents reveals sustained or controlled release of natamycin at the increasing periods. The synthesised nanocomposite's high safety or biocompatibility was evaluated with the Wistar animal model by determining notable changes in behavioural, biochemical, haematological and histopathological parameters. The synthesised nanocomposite did not exhibit any undesirable changes in all the tested parameters confirming the marked biosafety or biocompatibility. The nanocomposite was coated on the bread packaging material. The effect of packaging on the proximate composition, antioxidative enzymes status, and fungal growth of bread samples incubated under the incubation period were studied. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) studies reveal that the nanocomposite was effectively coated on the packaging material without changing size, shape, and functional groups. No changes in the proximate composition and antioxidative enzymes of the packaged bread samples incubated under different incubation periods reveal the nanocomposite's marked safety. The complete absence of the fungal growth also indicates the uniqueness of the nanocomposite. Further, the sorption studies revealed the utilisation of Langmuir mechanism and pseudo II order model successfully The present finding implies that the synthesised nanocomposite can be used as an effective, safe food preservative agent and adsorbent of toxic chemicals.
Collapse
Affiliation(s)
- S Karthick Raja Namasivayam
- Department of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India.
| | - Mohith Manohar
- Centre for Bioresource Research.& Development (C-BIRD), Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai 119, Tamil Nadu, India
| | - J Aravind Kumar
- Department of Biomass & Energy Conversion, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India.
| | - K Samrat
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bangalore, 560054, Karnataka, India
| | - Akhil Kande
- Centre for Bioresource Research.& Development (C-BIRD), Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai 119, Tamil Nadu, India
| | | | - C Jayaprakash
- Food Microbiology Division, Defence Food Research Laboratory (DFRL), Mysuru (Mysore), 570011, Karnataka, India
| | - S Lokesh
- Department of Energy & Environmental Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
6
|
Xu H, Ke L, Tang M, Shang H, Zhang ZL, Xu W, Fu YN, Wang Y, Tang D, Huang D, Zhang S, Yang HR, He X, Gao J. Pea pod-mimicking hydroxyapatite nanowhisker-reinforced poly(lactic acid) composites with bone-like strength. Int J Biol Macromol 2022; 216:114-123. [PMID: 35793741 DOI: 10.1016/j.ijbiomac.2022.06.211] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
The anisotropic hierarchical structures of naturally derived materials have offered useful design principles for the fabrication of high-strength and functional materials. Herein, we unraveled a structure-by-bionics approach to construction of pea pod-mimicking architecture for poly(lactic acid) (PLA) composites impregnated with hydroxyapatite nanowhiskers (HANWs). The HANWs (length of 80-120 nm, diameter of ~30 nm) were customized using microwave-assisted aqueous biomineralization at minute level, which were incorporated into PLA microfibers by electrospinning with filler loadings of 10-30 wt%. The membranes comprising HANW-modified PLA microfibers were stacked and structured into composite films, strategically involving high-pressure compression at a relatively low temperature to impart the confined structuring mechanisms. It thus allowed partial melting and thinning of PLA microfibers into nanofibers, onto which the discrete HANWs were tightly adhered and embedded, showing distinguished architectural configurations identical with pea pod. More importantly, the mechanical properties and bioactivity were remarkably promoted, as demonstrated by the increments of over 54 % and nearly 72 % for the yield strength and elastic modulus (71.6 and 2547 MPa) of the structured composite loaded 30 wt% HANWs compared to those of pure PLA (46.4 and 1484 MPa), as accompanied by significant improvements in the bioactivity to nucleate and create apatite entities in mineral solution. The unusual combination of excellent biological characteristics and bone-like mechanical elasticity and extensibility make the structured PLA composites promising for guided bone/tissue regeneration therapy.
Collapse
Affiliation(s)
- Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China.
| | - Lv Ke
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Mengke Tang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Han Shang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Zi-Lin Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Wenxuan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Ya-Nan Fu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yanqing Wang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China.
| | - Daoyuan Tang
- Anhui Sentai WPC Group Share Co., Ltd., Guangde 242299, China
| | - Donghui Huang
- Anhui Sentai WPC Group Share Co., Ltd., Guangde 242299, China
| | - Shenghui Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Hao-Ran Yang
- State Laboratory of Surface and Interface Science and Technology, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Xinjian He
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China.
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 272100, China.
| |
Collapse
|
7
|
Irwansyah FS, Noviyanti AR, Eddy DR, Risdiana R. Green Template-Mediated Synthesis of Biowaste Nano-Hydroxyapatite: A Systematic Literature Review. Molecules 2022; 27:molecules27175586. [PMID: 36080349 PMCID: PMC9458247 DOI: 10.3390/molecules27175586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/12/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Hydroxyapatite (HA) is a well-known calcium phosphate ingredient comparable to human bone tissue. HA has exciting applications in many fields, especially biomedical applications, such as drug delivery, osteogenesis, and dental implants. Unfortunately, hydroxyapatite-based nanomaterials are synthesized by conventional methods using reagents that are not environmentally friendly and are expensive. Therefore, extensive efforts have been made to establish a simple, efficient, and green method to form nano-hydroxyapatite (NHA) biofunctional materials with significant biocompatibility, bioactivity, and mechanical strength. Several types of biowaste have proven to be a source of calcium in forming HA, including using chicken eggshells, fish bones, and beef bones. This systematic literature review discusses the possibility of replacing synthetic chemical reagents, synthetic pathways, and toxic capping agents with a green template to synthesize NHA. This review also shed insight on the simple green manufacture of NHA with controlled shape and size.
Collapse
Affiliation(s)
- Ferli Septi Irwansyah
- Department of Chemistry, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Jatinangor, Sumedang 45363, Indonesia
- Department of Chemistry Education, UIN Sunan Gunung Djati Bandung, Jl. A.H. Nasution No. 105, Bandung 40614, Indonesia
- Correspondence: (F.S.I.); (A.R.N.)
| | - Atiek Rostika Noviyanti
- Department of Chemistry, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Jatinangor, Sumedang 45363, Indonesia
- Correspondence: (F.S.I.); (A.R.N.)
| | - Diana Rakhmawaty Eddy
- Department of Chemistry, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Jatinangor, Sumedang 45363, Indonesia
| | - Risdiana Risdiana
- Department of Physics, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Jatinangor, Sumedang 45363, Indonesia
| |
Collapse
|
8
|
Huang SM, Liu SM, Ko CL, Chen WC. Advances of Hydroxyapatite Hybrid Organic Composite Used as Drug or Protein Carriers for Biomedical Applications: A Review. Polymers (Basel) 2022; 14:polym14050976. [PMID: 35267796 PMCID: PMC8912323 DOI: 10.3390/polym14050976] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Hydroxyapatite (HA), especially in the form of HA nanoparticles (HANPs), has excellent bioactivity, biodegradability, and osteoconductivity and therefore has been widely used as a template or additives for drug delivery in clinical applications, such as dentistry and orthopedic repair. Due to the atomically anisotropic distribution on the preferred growth of HA crystals, especially the nanoscale rod-/whisker-like morphology, HA can generally be a good candidate for carrying a variety of substances. HA is biocompatible and suitable for medical applications, but most drugs carried by HANPs have an initial burst release. In the adsorption mechanism of HA as a carrier, specific surface area, pore size, and porosity are important factors that mainly affect the adsorption and release amounts. At present, many studies have developed HA as a drug carrier with targeted effect, porous structure, and high porosity. This review mainly discusses the influence of HA structures as a carrier on the adsorption and release of active molecules. It then focuses on the benefits and effects of different types of polymer-HA composites to re-examine the proteins/drugs carry and release behavior and related potential clinical applications. This literature survey can be divided into three main parts: 1. interaction and adsorption mechanism of HA and drugs; 2. advantages and application fields of HA/organic composites; 3. loading and drug release behavior of multifunctional HA composites in different environments. This work also presents the latest development and future prospects of HA as a drug carrier.
Collapse
Affiliation(s)
- Ssu-Meng Huang
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (C.-L.K.)
| | - Shih-Ming Liu
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (C.-L.K.)
| | - Chia-Ling Ko
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (C.-L.K.)
| | - Wen-Cheng Chen
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (C.-L.K.)
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence:
| |
Collapse
|
9
|
Namasivayam SKR, Rabel AM, Prasana R, Arvind Bharani RS, Nachiyar CV. Gum acacia PEG iron oxide nanocomposite (GA-PEG-IONC) induced pharmacotherapeutic activity on the Las R gene expression of Pseudomonas aeruginosa and HOXB13 expression of prostate cancer (Pc 3) cell line. A green therapeutic approach of molecular mechanism inhibition. Int J Biol Macromol 2021; 190:940-959. [PMID: 34478798 DOI: 10.1016/j.ijbiomac.2021.08.162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 11/24/2022]
Abstract
Among the diverse nanomaterials, polymer-based nanocomposites are gained more attention due to their high efficacy, target biological activities, biodegradability and biocompatibility-gum acacia (GA) - a polymer obtained from acacia trees-is considering the multifunctional nanocomposite synthesis. Distinctive Physico-chemical and biocompatibility properties of gum acacia are utilised to prepare a highly stable, biologically active, eco-friendly Nanocomposite. In this current investigation, gum acacia - poly ethylene glycol grafted iron oxide nanocomposite (GA-PEG-IONC) was synthesised by in situ green science principles. The synthesised Nanocomposite was evaluated against the molecular mechanism of urinary tract pathogenic bacterial strains and prostate cancer cells (Pc 3). Nanocomposite prepared in this examination exhibited notable structural, functional stability with nanoarchitecture which was affirmed by Fourier transform infrared spectroscopy (FTIR), electron microscopic studies, atomic force microscopy (AFM), vibrating sample magnetometric analysis (VSM) and X-ray diffraction (XRD), Synthesised Nanocomposite brought about notable antibacterial activity against urinary tract pathogenic strains by recording potential inhibitory effect on the expression of Las R gene. Inhibition of Las R gene expression reduced notable effect on biofilm development. Anticancer activity against prostate cancer cells (Pc3) was investigated by measurement of HOXB13 gene expression level. Inhibition of HOXB13 gene expression by the IONC brought about structural, functional changes. HOXB13 gene expression inhibition reveals a remarkable cytotoxic effect by recording decreased cell viability. Morphometric analysis by phase-contrast and DAPI fluorescence staining demonstrates that the Nanocomposite prompted cell morphology anomalies or apoptotic changes. Nanocomposite treatment brought about a good sign of Apoptosis by recording enhanced caspase 3 and 9 activities, DNA fragmentation and elevated reactive oxygen species generation (ROS). Hemocompatibility studies were carried out to determine the biocompatibility of the Nanocomposite. Spectrophotometric estimation of plasma haemoglobin, microscopic examination of whole blood cells shows the Nanocomposite was not inciting any indication of toxicity. These findings infer that IONC synthesised in the present study is the promising contender for a broad scope of biomedical applications, especially as an antibacterial and anticancer agent.
Collapse
Affiliation(s)
- S Karthick Raja Namasivayam
- CBIRD (Centre of Bioresource Research and Development, C-BIRD), Department of Biotechnology, Sathyabama Institute of Science & Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600 119, Tamil Nadu, India.
| | - Arul Maximus Rabel
- CBIRD (Centre of Bioresource Research and Development, C-BIRD), Department of Biotechnology, Sathyabama Institute of Science & Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600 119, Tamil Nadu, India
| | - R Prasana
- CBIRD (Centre of Bioresource Research and Development, C-BIRD), Department of Biotechnology, Sathyabama Institute of Science & Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600 119, Tamil Nadu, India
| | - R S Arvind Bharani
- CBIRD (Centre of Bioresource Research and Development, C-BIRD), Department of Biotechnology, Sathyabama Institute of Science & Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600 119, Tamil Nadu, India
| | - C Valli Nachiyar
- CBIRD (Centre of Bioresource Research and Development, C-BIRD), Department of Biotechnology, Sathyabama Institute of Science & Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600 119, Tamil Nadu, India
| |
Collapse
|
10
|
Bhat S, Uthappa UT, Altalhi T, Jung HY, Kurkuri MD. Functionalized Porous Hydroxyapatite Scaffolds for Tissue Engineering Applications: A Focused Review. ACS Biomater Sci Eng 2021; 8:4039-4076. [PMID: 34499471 DOI: 10.1021/acsbiomaterials.1c00438] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomaterials have been widely used in tissue engineering applications at an increasing rate in recent years. The increased clinical demand for safe scaffolds, as well as the diversity and availability of biomaterials, has sparked rapid interest in fabricating diverse scaffolds to make significant progress in tissue engineering. Hydroxyapatite (HAP) has drawn substantial attention in recent years owing to its excellent physical, chemical, and biological properties and facile adaptable surface functionalization with other innumerable essential materials. This focused review spotlights a brief introduction on HAP, scope, a historical outline, basic structural features/properties, various synthetic strategies, and their scientific applications concentrating on functionalized HAP in the diverse area of tissue engineering fields such as bone, skin, periodontal, bone tissue fixation, cartilage, blood vessel, liver, tendon/ligament, and corneal are emphasized. Besides clinical translation aspects, the future challenges and prospects of HAP based biomaterials involved in tissue engineering are also discussed. Furthermore, it is expected that researchers may find this review expedient in gaining an overall understanding of the latest advancement of HAP based biomaterials.
Collapse
Affiliation(s)
- Shrinath Bhat
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India
| | - U T Uthappa
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India.,Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Tariq Altalhi
- Department of Chemistry, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Ho-Young Jung
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Mahaveer D Kurkuri
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India
| |
Collapse
|
11
|
Sobczak-Kupiec A, Drabczyk A, Kudłacik-Kramarczyk S, Wójcik M, Tyliszczak B. Investigations on the poly(hydroxybutyric acid)-based hydrogels containing gold nanoparticles. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2021. [DOI: 10.1080/1023666x.2021.1893527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Agnieszka Sobczak-Kupiec
- Faculty of Materials Engineering and Physics, Institute of Materials Science, Cracow University of Technology, Krakow, Poland
| | - Anna Drabczyk
- Faculty of Materials Engineering and Physics, Institute of Materials Science, Cracow University of Technology, Krakow, Poland
| | - Sonia Kudłacik-Kramarczyk
- Faculty of Materials Engineering and Physics, Institute of Materials Science, Cracow University of Technology, Krakow, Poland
| | - Magdalena Wójcik
- Faculty of Chemical Engineering and Technology, Institute of Inorganic Chemistry and Technology, Cracow University of Technology, Krakow, Poland
| | - Bożena Tyliszczak
- Faculty of Materials Engineering and Physics, Institute of Materials Science, Cracow University of Technology, Krakow, Poland
| |
Collapse
|
12
|
Yazdian Kashani S, Afzalian A, Shirinichi F, Keshavarz Moraveji M. Microfluidics for core-shell drug carrier particles - a review. RSC Adv 2020; 11:229-249. [PMID: 35423057 PMCID: PMC8691093 DOI: 10.1039/d0ra08607j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/07/2020] [Indexed: 01/07/2023] Open
Abstract
Core-shell drug-carrier particles are known for their unique features. Due to the combination of superior properties not exhibited by the individual components, core-shell particles have gained a lot of interest. The structures could integrate core and shell characteristics and properties. These particles were designed for controlled drug release in the desired location. Therefore, the side effects would be minimized. So, these particles' advantages have led to the introduction of new methods and ideas for their fabrication. In the past few years, the generation of drug carrier core-shell particles in microfluidic chips has attracted much attention. This method makes it possible to produce particles at nanometer and micrometer levels of the same shape and size; it usually costs less than other methods. The other advantages of using microfluidic techniques compared to conventional bulk methods are integration capability, reproducibility, and higher efficiency. These advantages have created a positive outlook on this approach. This review gives an overview of the various fluidic concepts that are used to generate microparticles or nanoparticles. Also, an overview of traditional and more recent microfluidic devices and their design and structure for the generation of core-shell particles is given. The unique benefits of the microfluidic technique for core-shell drug carrier particle generation are demonstrated.
Collapse
Affiliation(s)
- Sepideh Yazdian Kashani
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) 1591634311 Tehran Iran +98 21 64543182
| | - Amir Afzalian
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) 1591634311 Tehran Iran +98 21 64543182
| | - Farbod Shirinichi
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) 1591634311 Tehran Iran +98 21 64543182
| | - Mostafa Keshavarz Moraveji
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) 1591634311 Tehran Iran +98 21 64543182
| |
Collapse
|
13
|
Du Z, Cao G, Li K, Zhang R, Li X. Nanocomposites for the delivery of bioactive molecules in tissue repair: vital structural features, application mechanisms, updated progress and future perspectives. J Mater Chem B 2020; 8:10271-10289. [PMID: 33084730 DOI: 10.1039/d0tb01670e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, nanocomposites have attracted great attention in tissue repair as carriers for bioactive molecule delivery due to their biochemical and nanostructural similarity to that of physiological tissues, and controlled delivery of bioactive molecules. In this review, we aim to comprehensively clarify how the applications of nanocomposites for bioactive molecule delivery in tissue repair are achieved by focusing on the following aspects: (1) vital structural features (size, shape, pore, etc.) of nanocomposites that have crucial effects on the biological properties and function of bioactive molecule-delivery systems, (2) delivery performance of bioactive molecules possessing high entrapment efficiency of bioactive molecules and good controlled- and sustained-release of bioactive molecules, (3) application mechanisms of nanocomposites to deliver and release bioactive molecules in tissue repair, (4) updated research progress of nanocomposites for bioactive molecule delivery in hard and soft tissue repair, and (5) future perspectives in the development of bioactive molecule-delivery systems based on nanocomposites.
Collapse
Affiliation(s)
- Zhipo Du
- Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding 072350, China
| | - Guangxiu Cao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| | - Kun Li
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Ruihong Zhang
- Department of Research and Teaching, the Fourth Central Hospital of Baoding City, Baoding 072350, China.
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
14
|
Preparation of gum acacia-poly(acrylamide-IPN-acrylic acid) based nanocomposite hydrogels via polymerization methods for antimicrobial applications. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128298] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Padmanabhan VP, Balakrishnan S, Kulandaivelu R, T. S. N. SN, Lakshmipathy M, Sagadevan S, Mohammad F, Al-Lohedan HA, Paiman S, Oh WC. Nanoformulations of core–shell type hydroxyapatite-coated gum acacia with enhanced bioactivity and controlled drug delivery for biomedical applications. NEW J CHEM 2020. [DOI: 10.1039/d0nj00668h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, nanospherical hydroxyapatite (HAP) was prepared that has combined properties of controlled drug delivery, biocompatibility, and antibacterial activity to have applications in the biomedical sector.
Collapse
Affiliation(s)
| | - Subha Balakrishnan
- Department of Analytical Chemistry, University of Madras, Gundy Campus
- Chennai-600025
- India
| | | | - Sankara Narayanan T. S. N.
- Department of Dental Biomaterials and Institute of Biodegradable Materials
- Chonbuk National University
- Jeonju 561-756
- South Korea
| | | | - Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre
- University of Malaya
- Kuala Lumpur 50603
- Malaysia
| | - Faruq Mohammad
- Surfactants Research Chair
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
| | - Hamad A. Al-Lohedan
- Surfactants Research Chair
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
| | - Suriati Paiman
- Department of Physics
- Faculty of Science
- Universiti Putra Malaysia
- 43400, Serdang
- Malaysia
| | - Won Chun Oh
- Department of Advanced Materials Science and Engineering
- Hanseo University
- Seosan-si
- Korea
| |
Collapse
|
16
|
Manatunga DC, Godakanda VU, de Silva RM, de Silva KMN. Recent developments in the use of organic-inorganic nanohybrids for drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1605. [PMID: 31826328 DOI: 10.1002/wnan.1605] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 01/22/2023]
Abstract
Organic-inorganic nanohybrid (OINH) structures providing a versatile platform for drug delivery with improved characteristics are an area which has gained recent attention. Much effort has been taken to develop these structures to provide a viable treatment options for much alarming diseases such as cancer, bone destruction, neurological disorders, and so on. This review focuses on current work carried out in producing different types of hybrid drug carriers identifying their properties, fabrication techniques, and areas where they have been applied. A brief introduction on understating the requirement for blending organic-inorganic components into a nanohybrid drug carrier is followed with an elaboration given about the different types of OINHs developed currently highlighting their properties and applications. Then, different fabrication techniques are discussed given attention to surface functionalization, one-pot synthesis, wrapping, and electrospinning methods. Finally, it is concluded by briefing the challenges that are remaining to be addressed to obtain multipurpose nanohybrid drug carriers with wider applicability. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Danushika C Manatunga
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - V Umayangana Godakanda
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Rohini M de Silva
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - K M Nalin de Silva
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
17
|
Esquivel-Castro TA, Ibarra-Alonso M, Oliva J, Martínez-Luévanos A. Porous aerogel and core/shell nanoparticles for controlled drug delivery: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:915-940. [DOI: 10.1016/j.msec.2018.11.067] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 11/06/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022]
|
18
|
Environmental and antimicrobial properties of silver nanoparticles synthesized using Azadirachta indica Juss leaves extract. SN APPLIED SCIENCES 2018. [DOI: 10.1007/s42452-018-0143-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|