1
|
Dai Q, Liu H, Gao C, Sun W, Lu C, Zhang Y, Cai W, Qiao H, Jin A, Wang Y, Liu Y. Advances in Mussel Adhesion Proteins and Mussel-Inspired Material Electrospun Nanofibers for Their Application in Wound Repair. ACS Biomater Sci Eng 2024; 10:6097-6119. [PMID: 39255244 DOI: 10.1021/acsbiomaterials.4c01378] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Mussel refers to a marine organism with strong adhesive properties, and it secretes mussel adhesion protein (MAP). The most vital feature of MAP is the abundance of the 3,4-dihydroxyphenylalanine (DOPA) group and lysine, which have antimicrobial, anti-inflammatory, antioxidant, and cell adhesion-promoting properties and can accelerate wound healing. Polydopamine (PDA) is currently the most widely used mussel-inspired material characterized by good adhesion, biocompatibility, and biodegradability. It can mediate various interactions to form functional coatings on cell-material surfaces. Nanofibers based on MAP and mussel-inspired materials have been exerting a vital role in wound repair, while there is no comprehensive review presenting them. This Review introduces the structure of MAPs and their adhesion mechanisms and mussel-inspired materials. Second, it introduces the functionalized modification of MAPs and their inspired materials in electrospun nanofibers and application in wound repair. Finally, the future development direction and coping strategies of MAP and mussel-inspired materials are discussed. Moreover, this Review can offer novel strategies for the application of nanofibers in wound repair and bring about new breakthroughs and innovations in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Qiqi Dai
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Huazhen Liu
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Chuang Gao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Wenbin Sun
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Chunxiang Lu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Yi Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Weihuang Cai
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Hao Qiao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Aoxiang Jin
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Yeping Wang
- School of Medicine, Shanghai University, Shanghai 200444, China
- Department of Obstetrics and Gynecology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, The Third Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang 325000, China
| | - Yuanyuan Liu
- School of Medicine, Shanghai University, Shanghai 200444, China
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| |
Collapse
|
2
|
Marin L, Andreica BI, Anisiei A, Cibotaru S, Bardosova M, Materon EM, Oliveira ON. Quaternized chitosan (nano)fibers: A journey from preparation to high performance applications. Int J Biol Macromol 2023:125136. [PMID: 37270121 DOI: 10.1016/j.ijbiomac.2023.125136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/09/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
The industrial production of chitosan, initiated over 50 years ago, has transformed its application across diverse industries, agriculture, and medicine. To enhance its properties, numerous chitosan derivatives have been synthesized. The quaternization of chitosan has proven beneficial, as it not only enhances its properties but also imparts water solubility, expanding its potential for a wider range of applications. Specifically, the utilization of quaternized chitosan-based nanofibers has leveraged the synergistic benefits of quaternized chitosan (including hydrophilicity, bioadhesiveness, antimicrobial, antioxidant, hemostatic, and antiviral activities, as well as ionic conductivity) in combination with the distinctive characteristics of nanofibers (such as a high aspect ratio and 3D architecture). This combination has permitted numerous possibilities, spanning from wound dressings, air and water filters, drug delivery scaffolds, antimicrobial textiles, to energy storage systems and alkaline fuel cells. In this comprehensive review, we examine the preparation methods, properties, and applications of various composite fibers containing quaternized chitosan. The advantages and disadvantages of each method and composition are meticulously summarized, while relevant diagrams and figures illustrate the key findings.
Collapse
Affiliation(s)
- Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, Iasi, Romania.
| | - Bianca-Iustina Andreica
- "Petru Poni" Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, Iasi, Romania
| | - Alexandru Anisiei
- "Petru Poni" Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, Iasi, Romania
| | - Sandu Cibotaru
- "Petru Poni" Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, Iasi, Romania
| | - Maria Bardosova
- Slovak Academy of Science, Institute of Informatics, Bratislava, Slovakia
| | - Elsa M Materon
- Instituto de Física de São Carlos, Universidade de São Paulo, PO Box 369, 13560-970 São Carlos, Brazil
| | - Osvaldo N Oliveira
- Instituto de Física de São Carlos, Universidade de São Paulo, PO Box 369, 13560-970 São Carlos, Brazil
| |
Collapse
|
3
|
Liu Y, Lan X, Zhang J, Wang Y, Tian F, Li Q, Wang H, Wang M, Wang W, Tang Y. Preparation and in vitro evaluation of ε-poly(L-lysine) immobilized poly(ε-caprolactone) nanofiber membrane by polydopamine-assisted decoration as a potential wound dressing material. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Li H, Guo Y, Ma B, Qian Y, Sun W, Zhou X. The polydopamine‐assisted heparin anchor enhances the hydrophilicity, hemocompatibility, and biocompatibility of polyurethane. J Appl Polym Sci 2022. [DOI: 10.1002/app.53352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Heng Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering Southeast University Nanjing China
| | - Yu Guo
- Center of Stomatology The Second Affiliated Hospital of Soochow University Suzhou China
| | - Buyun Ma
- Nano Science and Technology Institute University of Science and Technology of China Suzhou China
| | - Yunzhu Qian
- Center of Stomatology The Second Affiliated Hospital of Soochow University Suzhou China
| | - Wentao Sun
- Nano Science and Technology Institute University of Science and Technology of China Suzhou China
| | - Xuefeng Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering Southeast University Nanjing China
| |
Collapse
|
5
|
Kasi G, Gnanasekar S, Zhang K, Kang ET, Xu LQ. Polyurethane‐based
composites with promising antibacterial properties. J Appl Polym Sci 2022. [DOI: 10.1002/app.52181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Gopinath Kasi
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University Chongqing China
| | - Sathishkumar Gnanasekar
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University Chongqing China
| | - Kai Zhang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University Chongqing China
| | - En Tang Kang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University Chongqing China
- Department of Chemical and Biomolecular Engineering National University of Singapore Kent Ridge Singapore
| | - Li Qun Xu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University Chongqing China
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province College of Chemistry and Chemical Engineering, Hainan Normal University Haikou China
| |
Collapse
|
6
|
Chapelle C, David G, Caillol S, Negrell C, Desroches Le Foll M. Advances in chitooligosaccharides chemical modifications. Biopolymers 2021; 112:e23461. [PMID: 34115397 DOI: 10.1002/bip.23461] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/25/2023]
Abstract
Chitooligosaccharides (COS) differ from chitosan by their molar mass: those of COS are defined to be lower than 20 kg mol-1 . Their functionalization is widely described in the literature and leads to the introduction of new properties that broaden their application fields. Like chitosan, COS modification sites are mainly primary amine and hydroxyl groups. Among their chemical modification, one can find amidation or esterification, epoxy-amine/hydroxyl coupling, Schiff base formation, and Michael addition. When depolymerized through nitrous deamination, COS bear an aldehyde at the chain end that can open the way to other chemical reactions and lead to the synthesis of new interesting amphiphilic structures. This article details the recent developments in COS functionalization, primarily focusing on amine and hydroxyl groups and aldehyde-chain end reactions, as well as paying considerable attention to other types of modification. We also describe and compare the different functionalization protocols found in the literature while highlighting potential mistakes made in the chemical structures accompanied with suggestions. Such chemical modification can lead to new materials that are generally nontoxic, biobased, biodegradable, and usable in various applications.
Collapse
Affiliation(s)
| | - Ghislain David
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Claire Negrell
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | |
Collapse
|
7
|
Guo Y, Zhang H, Duan S, Ding X, Hu Y, Ding X, Xu FJ. Bulk Modification of Thermoplastic Polyurethanes for Self-Sterilization of Trachea Intubation. Macromol Biosci 2020; 21:e2000318. [PMID: 33289289 DOI: 10.1002/mabi.202000318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/26/2020] [Indexed: 01/17/2023]
Abstract
Implantable medical devices are widely used, but biomaterial-associated infections (BAIs) impose a huge economic burden and increase the mortality of patients. Therefore, BAIs are a serious concern that must be urgently resolved. Materials with antibacterial properties have become hotspots of current research and development. In the present work, quaternized chitosan (QCS) is used as an antibacterial agent and blended with thermoplastic polyurethane (TPU) to create an antibacterial material for tracheal intubation tubes. The modified TPU material (QCS-TPU) exhibited good mechanical properties and excellent long-term antibacterial performance. Under in vitro hydrodynamic conditions, QCS-TPU retained its strong antibacterial properties. QCS-TPU also possessed a low hemolysis rate and cytotoxicity. The current work is expected to provide a facile and feasible strategy for the preparation of antibacterial catheters and aid in the discovery of promising clinical applications to prevent BAIs.
Collapse
Affiliation(s)
- Yifan Guo
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hongfa Zhang
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shun Duan
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaokang Ding
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Hu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xuejia Ding
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
8
|
Chitooligosaccharides for wound healing biomaterials engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111266. [DOI: 10.1016/j.msec.2020.111266] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 01/04/2023]
|
9
|
Li P, Cai W, Li X, Wang K, Zhou L, You T, Wang R, Chen H, Zhao Y, Wang J, Huang N. Preparation of phospholipid-based polycarbonate urethanes for potential applications of blood-contacting implants. Regen Biomater 2020; 7:491-504. [PMID: 33149938 PMCID: PMC7597807 DOI: 10.1093/rb/rbaa037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/08/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022] Open
Abstract
Polyurethanes are widely used in interventional devices due to the excellent physicochemical property. However, non-specific adhesion and severe inflammatory response of ordinary polyurethanes may lead to severe complications of intravenous devices. Herein, a novel phospholipid-based polycarbonate urethanes (PCUs) were developed via two-step solution polymerization by direct synthesis based on functional raw materials. Furthermore, PCUs were coated on biomedical metal sheets to construct biomimetic anti-fouling surface. The results of stress–strain curves exhibited excellent tensile properties of PCUs films. Differential scanning calorimetry results indicated that the microphase separation of such PCUs polymers could be well regulated by adjusting the formulation of chain extender, leading to different biological response. In vitro blood compatibility tests including bovine serum albumin adsorption, fibrinogen adsorption and denaturation, platelet adhesion and whole-blood experiment showed superior performance in inhibition non-specific adhesion of PCUs samples. Endothelial cells and smooth muscle cells culture tests further revealed a good anti-cell adhesion ability. Finally, animal experiments including ex vivo blood circulation and subcutaneous inflammation animal experiments indicated a strong ability in anti-thrombosis and histocompatibility. These results high light the strong anti-adhesion property of phospholipid-based PCUs films, which may be applied to the blood-contacting implants such as intravenous catheter or antithrombotic surface in the future.
Collapse
Affiliation(s)
- Peichuang Li
- Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wanhao Cai
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21a, Freiburg 79104, Germany
| | - Xin Li
- Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Kebing Wang
- Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lei Zhou
- Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tianxue You
- Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Rui Wang
- Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Hang Chen
- Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuancong Zhao
- Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jin Wang
- Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Nan Huang
- Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|