1
|
Guo P, Guo W, Li Y, Qin H, Yang Y, Li H, An Y, Yang W, Zhang H, Yang J, Kang J, Wang R. Permeable Self-Association of Metal-Organic Framework 808/Ag-Based Fiber Membrane for Broad-Spectrum and Highly Efficient Degradation of Biological and Chemical War Agents. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52842-52855. [PMID: 39172509 DOI: 10.1021/acsami.4c07149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The threat posed by biological and chemical warfare agents (BCWA) to national security, the environment, and personal health underscores the need for innovative chemical protective clothing. To address the limitations of conventional activated carbon materials, which are prone to falling off and adsorption saturation, an efficient self-association approach was introduced. In this study, we proposed the immobilization of metal-organic framework (MOF) 808 and Ag nanoparticles onto a polypropylene (PP) fiber membrane using a rapid self-association method facilitated by chitosan (CS). The MOF 808/Ag-based (PP-CS/808-Ag) fiber membrane demonstrated exceptional degradation efficiency, achieving a remarkable rate of t1/2 within 2 h for the mustard simulant 2-chloroethyl ethyl sulfide (2-CEES) and a rate of t1/2 = 4.12 min for the G-series simulant dimethyl 4-nitrophenylphosphate (DMNP). A theoretical computational model was developed to determine the overall reaction mechanism, and it was verified that MOF 808 and Ag nanoparticles were mainly involved in the hydrolysis process against 2-CEES and DMNP. The PP-CS/808-Ag composite fiber film was prepared as the core layer, and the fracture strength, bending resistance, and moisture permeability were better than those specified by many countries for biochemical protective clothing, showing that it has a broad application prospect in developing a generation of broad-spectrum bioprotective clothing.
Collapse
Affiliation(s)
- Peiwen Guo
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Wenting Guo
- College of Chemical Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Yahao Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Haojie Qin
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Yawen Yang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Haoyi Li
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Ying An
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Weimin Yang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - He Zhang
- Department of Underwater Weaponry and Chemical Defense, Dalian Navy Academy, 116018 Dalian, China
| | - Jing Yang
- Technical Section, Xinhua Chemical Defense Equipment Research Institute Co., Ltd, 030008 Shanxi, China
| | - Jing Kang
- China Institute for Radiation Protection, 030000 Taiyuan, China
| | - Ruixue Wang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| |
Collapse
|
2
|
Li R, Chen T, Pan X. Metal-Organic-Framework-Based Materials for Antimicrobial Applications. ACS NANO 2021; 15:3808-3848. [PMID: 33629585 DOI: 10.1021/acsnano.0c09617] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
To address the serious threat of bacterial infection to public health, great efforts have been devoted to the development of antimicrobial agents for inhibiting bacterial growth, preventing biofilm formation, and sterilization. Very recently, metal-organic frameworks (MOFs) have emerged as promising materials for various antimicrobial applications owing to their different functions including the controlled/stimulated decomposition of components with bactericidal activity, strong interactions with bacterial membranes, and formation of photogenerated reactive oxygen species (ROS) as well as high loading and sustained releasing capacities for other antimicrobial materials. This review focuses on recent advances in the design, synthesis, and antimicrobial applications of MOF-based materials, which are classified by their roles as component-releasing (metal ions, ligands, or both), photocatalytic, and chelation antimicrobial agents as well as carriers or/and synergistic antimicrobial agents of other functional materials (antibiotics, enzymes, metals/metal oxides, carbon materials, etc.). The constituents, fundamental antimicrobial mechanisms, and evaluation of antimicrobial activities of these materials are highlighted to present the design principles of efficient MOF-based antimicrobial materials. The prospects and challenges in this research field are proposed.
Collapse
Affiliation(s)
- Rui Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province College of Environment, Zhejiang University of Technology Hangzhou 310014, China
| | - Tongtong Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province College of Environment, Zhejiang University of Technology Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province College of Environment, Zhejiang University of Technology Hangzhou 310014, China
| |
Collapse
|
3
|
Engineering nanoscale hierarchical morphologies and geometrical shapes for microbial inactivation in aqueous solution. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111844. [PMID: 33641886 DOI: 10.1016/j.msec.2020.111844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/29/2020] [Accepted: 12/27/2020] [Indexed: 01/09/2023]
Abstract
Here, we study the effect of hierarchical and one-dimensional (1D) metal oxide nanorods (H-NRs) such as γ-Al2O3, β-MnO2, and ZnO as microbial inhibitors on the antimicrobial efficiency in aqueous solution. These microbial inhibitors are fabricated in a diverse range of nanoscale hierarchical morphologies and geometrical shapes that have effective surface exposure, and well-defined 1D orientation. For instance, γ-Al2O3 H-NRs with 20 nm width and ˂0.5 μm length are grown dominantly in the [400] direction. The wurtzite structures of β-MnO2 H-NRs with 30 nm width and 0.5-1 μm length are preferentially oriented in the [100] direction. Longitudinal H-NRs with a width of 40 nm and length of 1 μm are controlled with ZnO wurtzite structure and grown in [0001] direction. The antimicrobial efficiency of H-NRs was evaluated through experimental assays using a set of microorganisms (Gram-positive Staphylococcus aureus, Bacillus thuriginesis, and Bacillus subtilis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. Minimal inhibitory and minimum bactericidal concentrations (MIC and MBC) were determined. These 1D H-NRs exhibited antibacterial activity against all the used strains. The active surface exposure sites of H-NRs play a key role in the strong interaction with the thiol units of vital bacterial enzymes, leading to microbial inactivation. Our finding indicates that the biological effect of the H-NR surface planes on microbial inhibition is decreased in the order of [400]-γ-Al2O3 > [100]-β-MnO2 > [0001]-ZnO geometrics. The lowest key values including MIC (1.146 and 0.250 μg/mL), MBC (1.146, 0.313 μg/mL), and MIC/MFC (0.375 and 0.375 μg/mL) are achieved for [400]-plane γ-Al2O3 surfaces when tested against Gram-positive and -negative bacteria, respectively. Among the three H-NRs, the smallest diameter size and length, the largest surface area, and the active exposure [400] direction of γ-Al2O3 H-NRs could provide the highest microbial inactivation.
Collapse
|
4
|
Rashid S, Sebastiani M, Mughal MZ, Daniel R, Bemporad E. Influence of the Silver Content on Mechanical Properties of Ti-Cu-Ag Thin Films. NANOMATERIALS 2021; 11:nano11020435. [PMID: 33572136 PMCID: PMC7915568 DOI: 10.3390/nano11020435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 12/21/2022]
Abstract
In this work, the ternary titanium, copper, and silver (Ti-Cu-Ag) system is investigated as a potential candidate for the production of mechanically robust biomedical thin films. The coatings are produced by physical vapor deposition—magnetron sputtering (MS-PVD). The composite thin films are deposited on a silicon (100) substrate. The ratio between Ti and Cu was approximately kept one, with the variation of the Ag content between 10 and 35 at.%, while the power on the targets is changed during each deposition to get the desired Ag content. Thin film characterization is performed by X-ray diffraction (XRD), nanoindentation (modulus and hardness), to quantitatively evaluate the scratch adhesion, and atomic force microscopy to determine the surface topography. The residual stresses are measured by focused ion beam and digital image correlation method (FIB-DIC). The produced Ti-Cu-Ag thin films appear to be smooth, uniformly thick, and exhibit amorphous structure for the Ag contents lower than 25 at.%, with a transition to partially crystalline structure for higher Ag concentrations. The Ti-Cu control film shows higher values of 124.5 GPa and 7.85 GPa for modulus and hardness, respectively. There is a clear trend of continuous decrease in the modulus and hardness with the increase of Ag content, as lowest value of 105.5 GPa and 6 GPa for 35 at.% Ag containing thin films. In particular, a transition from the compressive (−36.5 MPa) to tensile residual stresses between 229 MPa and 288 MPa are observed with an increasing Ag content. The obtained results suggest that the Ag concentration should not exceed 25 at.%, in order to avoid an excessive reduction of the modulus and hardness with maintaining (at the same time) the potential for an increase of the antibacterial properties. In summary, Ti-Cu-Ag thin films shows characteristic mechanical properties that can be used to improve the properties of biomedical implants such as Ti-alloys and stainless steel.
Collapse
Affiliation(s)
- Saqib Rashid
- Engineering Department, University of Rome “Roma Tre”, via della Vasca Navale 79, 00146 Rome, Italy; (M.S.); (M.Z.M.); (E.B.)
- Correspondence:
| | - Marco Sebastiani
- Engineering Department, University of Rome “Roma Tre”, via della Vasca Navale 79, 00146 Rome, Italy; (M.S.); (M.Z.M.); (E.B.)
| | - Muhammad Zeeshan Mughal
- Engineering Department, University of Rome “Roma Tre”, via della Vasca Navale 79, 00146 Rome, Italy; (M.S.); (M.Z.M.); (E.B.)
- School of Engineering & Innovation, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - Rostislav Daniel
- Department of Materials Science, University of Leoben, Franz-Josef-Straße 18, 8700 Leoben, Austria;
| | - Edoardo Bemporad
- Engineering Department, University of Rome “Roma Tre”, via della Vasca Navale 79, 00146 Rome, Italy; (M.S.); (M.Z.M.); (E.B.)
| |
Collapse
|
5
|
Lakshmanan A, Surendran P, Sakthy Priya S, Balakrishnan K, Geetha P, Rameshkumar P, Hegde TA, Vinitha G, Kannan K. Investigations on structural, optical, dielectric, electronic polarizability, Z-scan and antibacterial properties of Ni/Zn/Fe2O4 nanoparticles fabricated by microwave-assisted combustion method. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Biodegradation of Atrazine by the Novel Klebsiella variicola Strain FH-1. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4756579. [PMID: 31467894 PMCID: PMC6699352 DOI: 10.1155/2019/4756579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 07/16/2019] [Indexed: 12/04/2022]
Abstract
Bacterial strain FH-1 with high efficiency of degrading Atrazine is separated by means of enrichment culture from the soil applied with Atrazine for many years. FH-1, recognized as Klebsiella variicola based on phylogenetic analysis of 16S rDNA sequences, can grow with Atrazine which is the sole nitrogen source. In fluid inorganic salt medium, the optimal degradation temperature, pH value, and initial concentration of Atrazine are 25°C, 9.0, and 50 mg L–1, respectively, and the degradation rate of Atrazine by strain FH-1 reached 81.5% in 11 d of culture. The degrading process conforms to the kinetics equation of pesticide degradation. Among the metal ions tested, Zn2+ (0.2 mM) has the most significant effect of facilitation on the degradation of Atrazine. In the fluid medium with Zn2+, the degradation rate of Atrazine is increased to 72.5%, while the Cu2+ (0.2 mM) inhibits the degradation of Atrazine. The degradation products of Atrazine by strain FH-1 were identified as HEIT (2-hydroxyl-4-ethylamino-6-isopropylamino-1,3,5-triazine), MEET (2-hydroxyl-4,6-bis(ethylamino)-1,3,5-triazine), and AEEO (4,6-bis(ethylamino)-1,3,5-triazin-2(1H)-one) by HPLC-MS/MS. Three genes (atzC, trzN, and trzD) encoding for Atrazine degrading enzymes were identified by PCR and sequencing in strain FH-1. This study provides additional theoretical support for the application of strain FH-1 in bioremediation of fields polluted by Atrazine.
Collapse
|
7
|
Hydrothermal-assisted synthesis of highly crystalline titania-copper oxide binary systems with enhanced antibacterial properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109839. [PMID: 31500036 DOI: 10.1016/j.msec.2019.109839] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/26/2019] [Accepted: 05/30/2019] [Indexed: 01/09/2023]
Abstract
Binary oxide systems containing TiO2 and CuO were synthesized using hydrothermal treatment and shown to have enhanced antibacterial properties. A detailed investigation was made of the effect of the molar ratio of components (TiO2:CuO = 7:3, 5:5, 3:7, 1:9) on the physicochemical parameters and antibacterial activity. Analysis of morphology (SEM, TEM and HRTEM) confirmed the presence of spherical and sheet-shaped particles. On the XRD patterns for the binary oxide materials, two crystalline forms (anatase and monoclinic CuO) were observed. It was found that an increase in CuO content led to a decrease in the BET surface area of the TiO2-CuO binary oxide systems. The synthesized TiO2-CuO materials exhibited very good antibacterial activity against both Gram-positive (methicillin-resistant Staphylococcus aureus and Bacillus cereus) and Gram-negative (Salmonella Enteritidis and Pseudomonas aeruginosa) bacteria. The obtained results show that TiO2-CuO oxide materials may have applications in the biomedical and food industries.
Collapse
|
8
|
Sun X, Dong J, Li Z, Liu H, Jing X, Chi Y, Hu C. Mono-transition-metal-substituted polyoxometalate intercalated layered double hydroxides for the catalytic decontamination of sulfur mustard simulant. Dalton Trans 2019; 48:5285-5291. [DOI: 10.1039/c9dt00395a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The mono-transition-metal-substituted polyoxometalate intercalated layered double hydroxides Zn2Cr-LDH-PW11M can effectively catalyze the oxidative decontamination of a sulfur mustard simulant.
Collapse
Affiliation(s)
- Xiangrong Sun
- Key Laboratory of Cluster Science Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
| | - Jing Dong
- Key Laboratory of Cluster Science Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
| | - Zhen Li
- Key Laboratory of Cluster Science Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
| | - Huifang Liu
- Key Laboratory of Cluster Science Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
| | - Xiaoting Jing
- Key Laboratory of Cluster Science Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
| | - Yingnan Chi
- Key Laboratory of Cluster Science Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
| | - Changwen Hu
- Key Laboratory of Cluster Science Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
| |
Collapse
|