1
|
Cui Z, He T, Zhang S. The efficient prediction of inflammatory osteolysis caused by polylactic acid through network toxicology and molecular docking strategy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117876. [PMID: 39947065 DOI: 10.1016/j.ecoenv.2025.117876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/16/2025] [Accepted: 02/05/2025] [Indexed: 03/03/2025]
Abstract
Polylactic acid (PLA), as a bioplastic, is extensively utilized in bone tissue engineering for its biocompatibility, adaptability and affordability. However, the toxicological research of PLA is still limited. The hydrolysis products of PLA induced inflammatory response which caused inflammatory osteolysis mediated by oxidative damage through the recruitment of macrophages and the accumulation of foreign body multinucleated giant cells, ultimately leading to the failure of bone tissue regeneration. The lack of effective treatments highlights the importance of finding new therapies. This study systematically investigated the potential molecular mechanisms of PLA-induced inflammatory osteolysis by employing network toxicology and molecular docking techniques. We first conducted a network toxicology-based assessment according to the molecular structure of PLA. The result from integrating and screening targets from multiple databases identified 126 potential targets associated with PLA-induced inflammatory osteolysis, and then an interaction network diagram of the targets was constructed. Gene ontology (GO)/KEGG enrichment analysis clarified that PLA may cause inflammatory osteolysis via metabolic pathways and pathways in cancer, as well as lipid and atherosclerosis. Further analysis by STRING and Cytoscape software screened 25 core targets including HSP90AA1, AKT1, SRC, STAT1 and FYN. We found that the enriched highly correlated pathways covered 18 of the 25 core targets, supporting the scientific hypothesis that PLA induces inflammatory osteolysis. Moreover, the results of molecular docking confirmed that PLA displayed a strong binding ability with the core targets and formed stable binding. Taken together, this study not only revealed the potential biological mechanism of PLA-induced inflammatory osteolysis, but also provided new evidence for the future prevention and treatment of PLA-induced inflammation.
Collapse
Affiliation(s)
- Zichen Cui
- Department of thoracic surgery, The Affiliated Hospital of Qingdao University, Qingdao 266700, PR China.
| | - Tian He
- Department of Orthopedics Surgery, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264400, PR China.
| | - Shuo Zhang
- Department of thoracic surgery, The Affiliated Hospital of Qingdao University, Qingdao 266700, PR China.
| |
Collapse
|
2
|
Świerczyńska M, Kudzin MH, Chruściel JJ. Poly(lactide)-Based Materials Modified with Biomolecules: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5184. [PMID: 39517460 PMCID: PMC11546716 DOI: 10.3390/ma17215184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Poly(lactic acid) (PLA) is characterized by unique features, e.g., it is environmentally friendly, biocompatible, has good thermomechanical properties, and is readily available and biodegradable. Due to the increasing pollution of the environment, PLA is a promising alternative that can potentially replace petroleum-derived polymers. Different biodegradable polymers have numerous biomedical applications and are used as packaging materials. Because the pure form of PLA is delicate, brittle, and is characterized by a slow degradation rate and a low thermal resistance and crystallization rate, these disadvantages limit the range of applications of this polymer. However, the properties of PLA can be improved by chemical or physical modification, e.g., with biomolecules. The subject of this review is the modification of PLA properties with three classes of biomolecules: polysaccharides, proteins, and nucleic acids. A quite extensive description of the most promising strategies leading to improvement of the bioactivity of PLA, through modification with these biomolecules, is presented in this review. Thus, this article deals mainly with a presentation of the major developments and research results concerning PLA-based materials modified with different biomolecules (described in the world literature during the last decades), with a focus on such methods as blending, copolymerization, or composites fabrication. The biomedical and unique biological applications of PLA-based materials, especially modified with polysaccharides and proteins, are reviewed, taking into account the growing interest and great practical potential of these new biodegradable biomaterials.
Collapse
Affiliation(s)
- Małgorzata Świerczyńska
- Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), 19/27 Marii Skłodowskiej-Curie Str., 90-570 Łódź, Poland; (M.Ś.); (M.H.K.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), Brzezińska 5/15, 92-103 Łódź, Poland
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Łódź, Poland
| | - Marcin H. Kudzin
- Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), 19/27 Marii Skłodowskiej-Curie Str., 90-570 Łódź, Poland; (M.Ś.); (M.H.K.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), Brzezińska 5/15, 92-103 Łódź, Poland
| | - Jerzy J. Chruściel
- Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), 19/27 Marii Skłodowskiej-Curie Str., 90-570 Łódź, Poland; (M.Ś.); (M.H.K.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), Brzezińska 5/15, 92-103 Łódź, Poland
| |
Collapse
|
3
|
Zhu F, Wang S, Zhu X, Pang C, Cui P, Yang F, Li R, Zhan Q, Xin H. Potential effects of biomaterials on macrophage function and their signalling pathways. Biomater Sci 2023; 11:6977-7002. [PMID: 37695360 DOI: 10.1039/d3bm01213a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The use of biomaterials in biomedicine and healthcare has increased in recent years. Macrophages are the primary immune cells that induce inflammation and tissue repair after implantation of biomaterials. Given that macrophages exhibit high heterogeneity and plasticity, the influence of biomaterials on macrophage phenotype should be considered a crucial evaluation criterion during the development of novel biomaterials. This review provides a comprehensive summary of the physicochemical, biological, and dynamic characteristics of biomaterials that drive the regulation of immune responses in macrophages. The mechanisms involved in the interaction between macrophages and biomaterials, including endocytosis, receptors, signalling pathways, integrins, inflammasomes and long non-coding RNAs, are summarised in this review. In addition, research prospects of the interaction between macrophages and biomaterials are discussed. An in-depth understanding of mechanisms underlying the spatiotemporal changes in macrophage phenotype induced by biomaterials and their impact on macrophage polarization can facilitate the identification and development of novel biomaterials with superior performance. These biomaterials may be used for tissue repair and regeneration, vaccine or drug delivery and immunotherapy.
Collapse
Affiliation(s)
- Fujun Zhu
- Department of Burns and Plastic Surgery, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China.
| | - Shaolian Wang
- Central Sterile Supply Department, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Xianglian Zhu
- Outpatient Department, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Caixiang Pang
- Department of Emergency Medicine, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Pei Cui
- Animal Laboratory, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Fuwang Yang
- Department of Burns and Plastic Surgery, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China.
| | - Rongsheng Li
- Animal Laboratory, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Qiu Zhan
- Animal Laboratory, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Haiming Xin
- Department of Burns and Plastic Surgery, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China.
| |
Collapse
|
4
|
Alavi MS, Memarpour S, Pazhohan-Nezhad H, Salimi Asl A, Moghbeli M, Shadmanfar S, Saburi E. Applications of poly(lactic acid) in bone tissue engineering: A review article. Artif Organs 2023; 47:1423-1430. [PMID: 37475653 DOI: 10.1111/aor.14612] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Bone tissue engineering is a promising approach to large-scale bone regeneration. This involves the use of an artificial extracellular matrix or scaffold and osteoblasts to promote osteogenesis and ossification at defect sites. Scaffolds are constructed using biomaterials that typically have properties similar to those of natural bone. METHOD In this study, which is a review of the literature, various evidences have been discussed in the field of Poly Lactic acid (PLA) polymer application and modifications made on it in order to induce osteogenesis and repair bone lesions. RESULTS PLA is a synthetic aliphatic polymer that has been extensively used for scaffold construction in bone tissue engineering owing to its good processability, biocompatibility, and flexibility in design. However, PLA has some drawbacks, including low osteoconductivity, low cellular adhesion, and the possibility of inflammatory reactions owing to acidic discharge in a living environment. To overcome these issues, a combination of PLA and other biomaterials has been introduced. CONCLUSIONS This short review discusses PLA's characteristics of PLA, its applications in bone regeneration, and its combination with other biomaterials.
Collapse
Affiliation(s)
- Mahya Sadat Alavi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Memarpour
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ali Salimi Asl
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soraya Shadmanfar
- Health Research Center, Life Style Institute, Department of Rheumatology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Kucharska-Jastrząbek A, Chmal-Fudali E, Rudnicka D, Kosińska B. Effect of Sterilization on Bone Implants Based on Biodegradable Polylactide and Hydroxyapatite. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5389. [PMID: 37570096 PMCID: PMC10420107 DOI: 10.3390/ma16155389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Medical devices intended for implantation must be, in accordance with the legal provisions in force in the European Union, sterile. The effect of sterilization on the structural and thermal properties of implants, made by 3D printing from biodegradable polylactide and hydroxyapatite in a proportion of 9/1 by weight, was evaluated. The implants were sterilized using three different methods, i.e., steam sterilization, ethylene oxide sterilization, and electron beam radiation sterilization. As a result of the assessment of the structural properties of the implants after sterilization, a change in the molecular weight of the raw material of the designed implants was found after each of the performed sterilization methods, while maintaining similar characteristics of the thermal properties and functional groups present.
Collapse
Affiliation(s)
| | - Edyta Chmal-Fudali
- Institute of Security Technologies “MORATEX”, Marii Sklodowskiej-Curie 3 Street, 90-505 Lodz, Poland; (A.K.-J.); (D.R.); (B.K.)
| | | | | |
Collapse
|
6
|
Gritsch L, Bossard C, Jallot E, Jones JR, Lao J. Bioactive glass-based organic/inorganic hybrids: an analysis of the current trends in polymer design and selection. J Mater Chem B 2023; 11:519-545. [PMID: 36541433 DOI: 10.1039/d2tb02089k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bioactive glass-based organic/inorganic hybrids are a family of materials holding great promise in the biomedical field. Developed from bioactive glasses following recent advances in sol-gel and polymer chemistry, they can overcome many limitations of traditional composites typically used in bone repair and orthopedics. Thanks to their unique molecular structure, hybrids are often characterized by synergistic properties that go beyond a mere combination of their two components; it is possible to synthesize materials with a wide variety of mechanical and biological properties. The polymeric component, in particular, can be tailored to prepare tough, load-bearing materials, or rubber-like elastomers. It can also be a key factor in the determination of a wide range of interesting biological properties. In addition, polymers can also be used within hybrids as carriers for therapeutic ions (although this is normally the role of silica). This review offers a brief look into the history of hybrids, from the discovery of bioactive glasses to the latest developments, with a particular emphasis on polymer design and chemistry. First the benefits and limitations of hybrids will be discussed and compared with those of alternative approaches (for instance, nanocomposites). Then, key advances in the field will be presented focusing on the polymeric component: its chemistry, its physicochemical and biological advantages, its drawbacks, and selected applications. Comprehensive tables summarizing all the polymers used to date to fabricate sol-gel hybrids for biomedical applications are also provided, to offer a handbook of all the available candidates for hybrid synthesis. In addition to the current trends, open challenges and possible avenues of future development are proposed.
Collapse
Affiliation(s)
- Lukas Gritsch
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, 4 Avenue Blaise Pascal, 63178 Aubière (Clermont-Ferrand), France. .,Technogym S.p.A., via Calcinaro 2861, 47521 Cesena (FC), Italy
| | - Cédric Bossard
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, 4 Avenue Blaise Pascal, 63178 Aubière (Clermont-Ferrand), France.
| | - Edouard Jallot
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, 4 Avenue Blaise Pascal, 63178 Aubière (Clermont-Ferrand), France.
| | - Julian R Jones
- Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Jonathan Lao
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, 4 Avenue Blaise Pascal, 63178 Aubière (Clermont-Ferrand), France.
| |
Collapse
|
7
|
Oyedeji AN, Obada DO, Dauda M, Kuburi LS, Csaki S, Veverka J. Fabrication and characterization of hydroxyapatite-strontium/polylactic acid composite for potential applications in bone regeneration. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Sekkarapatti Ramasamy M, Krishnamoorthi Kaliannagounder V, Rahaman A, Park CH, Kim CS, Kim B. Synergistic Effect of Reinforced Multiwalled Carbon Nanotubes and Boron Nitride Nanosheet-Based Hybrid Piezoelectric PLLA Scaffold for Efficient Bone Tissue Regeneration. ACS Biomater Sci Eng 2022; 8:3542-3556. [PMID: 35853623 DOI: 10.1021/acsbiomaterials.2c00459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electrospun poly(l-lactic acid) nanofibers (PLLANFs) have been receiving considerable attention in bone tissue engineering (BTE) due to their tunable biodegradability and remarkable in vitro and in vivo biocompatibility. However, deterioration in the mechanical strength of PLLANFs during the regeneration process leads to low osteoinductive performances. Additionally, their high hydrophobicity and limited piezoelectric properties have to be addressed concerning BTE. Herein, we report an efficient approach for fabricating high-performance PLLANF hybrid scaffolds for BTE by reinforcing amphiphilic triblock copolymer pluronic F-127 (PL)-functionalized nanofillers (PL-functionalized carboxylated multiwalled carbon nanotubes (PL-cMWCNTs) and PL-functionalized exfoliated boron nitride nanosheets (PL-EBN)). The synergistic reinforcement effect from one-dimensional (1D) electrically conducting PL-cMWCNTs and two-dimensional (2D) piezoelectric PL-EBN was remarkable in PLLANFs, and the obtained PL-Hybrid (PL-cMWCNTs + PL-EBN) reinforced scaffolds have outperformed the mechanical strength, wettability, and piezoelectric performances of pristine PLLANFs. Consequently, in vitro biocompatibility results reveal the enhanced proliferation of MC3T3-E1 cells on PL-Hybrid nanofiber scaffolds. Furthermore, the ALP activity, ARS staining, and comparable osteogenic gene expression results demonstrated significant osteogenic differentiation of MC3T3-E1 cells on PL-Hybrid nanofiber scaffolds than on the pristine PLLANF scaffold. Thus, the reported approach for constructing high-performance piezoelectric biodegradable scaffolds for BTE by the synergistic effect of PL-cMWCNTs and PL-EBN holds great promise in tissue engineering applications.
Collapse
Affiliation(s)
| | - Vignesh Krishnamoorthi Kaliannagounder
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea.,Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ashiqur Rahaman
- School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan, Chungnam 31253, Republic of Korea
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea.,Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea.,Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Byungki Kim
- School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan, Chungnam 31253, Republic of Korea.,Future Convergence Engineering, Korea University of Technology and Education, Cheonan, Chungnam 31253, Republic of Korea
| |
Collapse
|
9
|
Zarghami V, Ghorbani M, Bagheri KP, Shokrgozar MA. Improving bactericidal performance of implant composite coatings by synergism between Melittin and tetracycline. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:46. [PMID: 35596852 PMCID: PMC9124168 DOI: 10.1007/s10856-022-06666-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/22/2022] [Indexed: 05/31/2023]
Abstract
Methicillin resistance Staphylococcus aureus bacteria (MRSA) are serious hazards of bone implants. The present study was aimed to use the potential synergistic effects of Melittin and tetracycline to prevent MRSA associated bone implant infection. Chitosan/bioactive glass nanoparticles/tetracycline composite coatings were deposited on hydrothermally etched titanium substrate. Melittin was then coated on composite coatings by drop casting method. The surfaces were analyzed by FTIR, XRD, and SEM instruments. Tetracycline in coatings revealed multifunctional behaviors include bone regeneration and antibacterial activity. Releasing ALP enzyme from MC3T3 cells increased by tetracycline, so it is suitable candidate as osteoinductive and antibacterial agent in orthopedic implants coatings. Melittin increased the proliferation of MC3T3 cells. Composite coatings with combination of tetracycline and Melittin eradicate all MRSA bacteria, while coatings with one of them could no t eradicate all of the bacteria. In conclusion, chitosan/bioactive glass/tetracycline/Melittin coating can be suggested as a multifunctional bone implant coating because of its osteogenic and promising antibacterial activity. Graphical abstract.
Collapse
Affiliation(s)
- Vahid Zarghami
- Institute for Nanoscience & Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Mohammad Ghorbani
- Institute for Nanoscience & Nanotechnology, Sharif University of Technology, Tehran, Iran.
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran.
| | - Kamran Pooshang Bagheri
- Venom & Biotherapeutics Molecules Lab., Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | | |
Collapse
|
10
|
Kawai N, Bando M, Yuasa K, Shibasaki M. Comparison of axon extension: PTFE versus PLA formed by a 3D printer. Open Life Sci 2022; 17:302-311. [PMID: 35434370 PMCID: PMC8974396 DOI: 10.1515/biol-2022-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Three-dimensional (3D) printers mainly create 3D objects by stacking thin layers of material. The effect of the tools created using the fused deposition modeling (FDM) 3D printer on nerve cells remains unclear. In this study, the effects of polytetrafluoroethylene (PTFE) models and two different types of polylactic acid (PLA) models (white or natural), were created using the FDM 3D printer on axon extension were compared using the Campenot chamber. Neurons were isolated from the dorsal root ganglia and added to the central compartment of the Campenot chambers after isolation, processing, and culturing. On day 7, after the initiation of the culture, the difference of the axon extensions to the side compartments of each group was confirmed. We also compared the pH and the amount of leakage when each of these chambers was used. The PLA was associated with a shorter axon extension than the PTFE (white p = 0.0078, natural p = 0.00391). No difference in the pH was observed (p = 0.347), but there was a significant difference on multiple group comparison (p = 0.0231) in the amount of leakage of the medium. PTFE was found to be a more suitable material for culturing attachments.
Collapse
Affiliation(s)
- Naofumi Kawai
- Department of Anesthesiology, Kyoto Prefectural University of Medicine , 465 Kajiicho, Kamigyo-Ku, Kyoto-Shi , Kyoto-Fu 604-8404 , Japan
| | - Mizuki Bando
- Department of Anesthesiology, Akashi City Hospital , 1-33, Takasho-Machi, Akashi-Shi , Hyogo-Ken, 673-8501 , Japan
| | - Kento Yuasa
- Department of Anesthesiology, Kyoto Prefectural University of Medicine , 465 Kajiicho, Kamigyo-Ku, Kyoto-Shi , Kyoto-Fu 604-8404 , Japan
| | - Masayuki Shibasaki
- Department of Anesthesiology, Kyoto Prefectural University of Medicine , 465 Kajiicho, Kamigyo-Ku, Kyoto-Shi , Kyoto-Fu 604-8404 , Japan
| |
Collapse
|
11
|
Poly(lactic acid)-Based Electrospun Fibrous Structures for Biomedical Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063192] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Poly(lactic acid)(PLA) is an aliphatic polyester that can be derived from natural and renewable resources. Owing to favorable features, such as biocompatibility, biodegradability, good thermal and mechanical performance, and processability, PLA has been considered as one of the most promising biopolymers for biomedical applications. Particularly, electrospun PLA nanofibers with distinguishing characteristics, such as similarity to the extracellular matrix, large specific surface area and high porosity with small pore size and tunable mechanical properties for diverse applications, have recently given rise to advanced spillovers in the medical area. A variety of PLA-based nanofibrous structures have been explored for biomedical purposes, such as wound dressing, drug delivery systems, and tissue engineering scaffolds. This review highlights the recent advances in electrospinning of PLA-based structures for biomedical applications. It also gives a comprehensive discussion about the promising approaches suggested for optimizing the electrospun PLA nanofibrous structures towards the design of specific medical devices with appropriate physical, mechanical and biological functions.
Collapse
|
12
|
Flejszar M, Chmielarz P, Gießl M, Wolski K, Smenda J, Zapotoczny S, Cölfen H. A new opportunity for the preparation of PEEK-based bone implant materials: From SARA ATRP to photo-ATRP. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Demina TS, Akopova TA, Zelenetsky AN. Materials Based on Chitosan and Polylactide: From Biodegradable Plastics to Tissue Engineering Constructions. POLYMER SCIENCE SERIES C 2021. [DOI: 10.1134/s1811238221020028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The transition to green chemistry and biodegradable polymers is a logical stage in the development of modern chemical science and technology. In the framework of this review, the advantages, disadvantages, and potential of biodegradable polymers of synthetic and natural origin are compared using the example of polylactide and chitosan as traditional representatives of these classes of polymers, and the possibilities of their combination via obtaining composite materials or copolymers are assessed. The mechanochemical approach to the synthesis of graft copolymers of chitosan with oligolactides/polylactides is considered in more detail.
Collapse
|
14
|
Popyrina TN, Svidchenko EA, Demina TS, Akopova TA, Zelenetsky AN. Effect of the Chemical Structure of Chitosan Copolymers with Oligolactides on the Morphology and Properties of Macroporous Hydrogels Based on Them. POLYMER SCIENCE SERIES B 2021. [DOI: 10.1134/s1560090421050109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Alemán Espinosa E, Escobar‐Barrios V, Palestino Escobedo G, Waldo Mendoza MA. Thermal and mechanical properties of
UHMWPE
/
HDPE
/
PCL
and bioglass filler: Effect of polycaprolactone. J Appl Polym Sci 2021. [DOI: 10.1002/app.50374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Elzy Alemán Espinosa
- Advanced Materials Department Instituto Potosino de Investigación Científica y Tecnológica San Luis Potosí Mexico
| | - Vladimir Escobar‐Barrios
- Advanced Materials Department Instituto Potosino de Investigación Científica y Tecnológica San Luis Potosí Mexico
| | | | - Miguel A. Waldo Mendoza
- Tecnología Sustentable Greennova S. A. de C. V. Parque de Innovación y Emprendimiento del ITESM San Luis Potosí Mexico
| |
Collapse
|
16
|
Im SH, Im DH, Park SJ, Chung JJ, Jung Y, Kim SH. Stereocomplex Polylactide for Drug Delivery and Biomedical Applications: A Review. Molecules 2021; 26:2846. [PMID: 34064789 PMCID: PMC8150862 DOI: 10.3390/molecules26102846] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Polylactide (PLA) is among the most common biodegradable polymers, with applications in various fields, such as renewable and biomedical industries. PLA features poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) enantiomers, which form stereocomplex crystals through racemic blending. PLA emerged as a promising material owing to its sustainable, eco-friendly, and fully biodegradable properties. Nevertheless, PLA still has a low applicability for drug delivery as a carrier and scaffold. Stereocomplex PLA (sc-PLA) exhibits substantially improved mechanical and physical strength compared to the homopolymer, overcoming these limitations. Recently, numerous studies have reported the use of sc-PLA as a drug carrier through encapsulation of various drugs, proteins, and secondary molecules by various processes including micelle formation, self-assembly, emulsion, and inkjet printing. However, concerns such as low loading capacity, weak stability of hydrophilic contents, and non-sustainable release behavior remain. This review focuses on various strategies to overcome the current challenges of sc-PLA in drug delivery systems and biomedical applications in three critical fields, namely anti-cancer therapy, tissue engineering, and anti-microbial activity. Furthermore, the excellent potential of sc-PLA as a next-generation polymeric material is discussed.
Collapse
Affiliation(s)
- Seung Hyuk Im
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.H.I.); (S.J.P.)
- enoughU Inc., 114 Goryeodae-ro, Seongbuk-gu, Seoul 02856, Korea
| | - Dam Hyeok Im
- Department of Mechanical Engineering, Graduate School, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
| | - Su Jeong Park
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.H.I.); (S.J.P.)
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.J.C.); (Y.J.)
| | - Justin Jihong Chung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.J.C.); (Y.J.)
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.J.C.); (Y.J.)
- School of Electrical and Electronic Engineering, Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul 03722, Korea
| | - Soo Hyun Kim
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.H.I.); (S.J.P.)
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.J.C.); (Y.J.)
- Korea Institute of Science and Technology (KIST) Europe, Campus E 7.1, 66123 Saarbrueken, Germany
| |
Collapse
|
17
|
Travnickova M, Kasalkova NS, Sedlar A, Molitor M, Musilkova J, Slepicka P, Svorcik V, Bacakova L. Differentiation of adipose tissue-derived stem cells towards vascular smooth muscle cells on modified poly(L-lactide) foils. Biomed Mater 2021; 16:025016. [PMID: 33599213 DOI: 10.1088/1748-605x/abaf97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The aim of our research was to study the behaviour of adipose tissue-derived stem cells (ADSCs) and vascular smooth muscle cells (VSMCs) on variously modified poly(L-lactide) (PLLA) foils, namely on pristine PLLA, plasma-treated PLLA, PLLA grafted with polyethylene glycol (PEG), PLLA grafted with dextran (Dex), and the tissue culture polystyrene (PS) control. On these materials, the ADSCs were biochemically differentiated towards VSMCs by a medium supplemented with TGFβ1, BMP4 and ascorbic acid (i.e. differentiation medium). ADSCs cultured in a non-differentiation medium were used as a negative control. Mature VSMCs cultured in both types of medium were used as a positive control. The impact of the variously modified PLLA foils and/or differences in the composition of the medium were studied with reference to cell adhesion, growth and differentiation. We observed similar adhesion and growth of ADSCs on all PLLA samples when they were cultured in the non-differentiation medium. The differentiation medium supported the expression of specific early, mid-term and/or late markers of differentiation (i.e. type I collagen, αSMA, calponin, smoothelin, and smooth muscle myosin heavy chain) in ADSCs on all tested samples. Moreover, ADSCs cultured in the differentiation medium revealed significant differences in cell growth among the samples that were similar to the differences observed in the cultures of VSMCs. The round morphology of the VSMCs indicated worse adhesion to pristine PLLA, and this sample was also characterized by the lowest cell proliferation. Culturing VSMCs in the differentiation medium inhibited their metabolic activity and reduced the cell numbers. Both cell types formed the most stable monolayer on plasma-treated PLLA and on the PS control. The behaviour of ADSCs and VSMCs on the tested PLLA foils differed according to the specific cell type and culture conditions. The suitable biocompatibility of both cell types on the tested PLLA foils seems to be favourable for vascular tissue engineering purposes.
Collapse
Affiliation(s)
- Martina Travnickova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.,Second Faculty of Medicine, Charles University, V Uvalu 84, 150 06, Prague 5, Czech Republic
| | - Nikola Slepickova Kasalkova
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Antonin Sedlar
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Martin Molitor
- Department of Plastic Surgery, Na Bulovce Hospital and First Faculty of Medicine, Charles University, Budinova 67/2, 180 81, Prague 8, Czech Republic
| | - Jana Musilkova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Petr Slepicka
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Lucie Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| |
Collapse
|
18
|
Culenova M, Birova I, Alexy P, Galfyova P, Nicodemou A, Moncmanova B, Plavec R, Tomanova K, Mencik P, Ziaran S, Danisovic L. In Vitro Characterization of Poly(Lactic Acid)/ Poly(Hydroxybutyrate)/ Thermoplastic Starch Blends for Tissue Engineering Application. Cell Transplant 2021; 30:9636897211021003. [PMID: 34053231 PMCID: PMC8182627 DOI: 10.1177/09636897211021003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 01/15/2023] Open
Abstract
Complex in vitro characterization of a blended material based on Poly(Lactic Acid), Poly(Hydroxybutyrate), and Thermoplastic Starch (PLA/PHB/TPS) was performed in order to evaluate its potential for application in the field of tissue engineering. We focused on the biological behavior of the material as well as its mechanical and morphological properties. We also focused on the potential of the blend to be processed by the 3D printer which would allow the fabrication of the custom-made scaffold. Several blends recipes were prepared and characterized. This material was then studied in the context of scaffold fabrication. Scaffold porosity, wettability, and cell-scaffold interaction were evaluated as well. MTT test and the direct contact cytotoxicity test were applied in order to evaluate the toxic potential of the blended material. Biocompatibility studies were performed on the human chondrocytes. According to our results, we assume that material had no toxic effect on the cell culture and therefore could be considered as biocompatible. Moreover, PLA/PHB/TPS blend is applicable for 3D printing. Printed scaffolds had highly porous morphology and were able to absorb water as well. In addition, cells could adhere and proliferate on the scaffold surface. We conclude that this blend has potential for scaffold engineering.
Collapse
Affiliation(s)
- Martina Culenova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovak Republic
| | - Ivana Birova
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovak Republic
| | - Pavol Alexy
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovak Republic
| | - Paulina Galfyova
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovak Republic
| | - Andreas Nicodemou
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovak Republic
| | - Barbora Moncmanova
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovak Republic
| | - Roderik Plavec
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovak Republic
| | - Katarina Tomanova
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovak Republic
| | - Premysl Mencik
- Institute of Materials Science, Faculty of Chemistry, Brno University of Technology, 612 00 Brno, Czech Republic
| | - Stanislav Ziaran
- Department of Urology, Faculty of Medicine, Comenius University in Bratislava, 833 05 Bratislava, Slovak Republic
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovak Republic
- Regenmed Ltd., 811 02 Bratislava, Slovak Republic
| |
Collapse
|
19
|
Yang R, Chen F, Guo J, Zhou D, Luan S. Recent advances in polymeric biomaterials-based gene delivery for cartilage repair. Bioact Mater 2020; 5:990-1003. [PMID: 32671293 PMCID: PMC7338882 DOI: 10.1016/j.bioactmat.2020.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/29/2020] [Accepted: 06/10/2020] [Indexed: 12/16/2022] Open
Abstract
Untreated articular cartilage damage normally results in osteoarthritis and even disability that affects millions of people. However, both the existing surgical treatment and tissue engineering approaches are unable to regenerate the original structures of articular cartilage durably, and new strategies for integrative cartilage repair are needed. Gene therapy provides local production of therapeutic factors, especially guided by biomaterials can minimize the diffusion and loss of the genes or gene complexes, achieve accurate spatiotemporally release of gene products, thus provideing long-term treatment for cartilage repair. The widespread application of gene therapy requires the development of safe and effective gene delivery vectors and supportive gene-activated matrices. Among them, polymeric biomaterials are particularly attractive due to their tunable physiochemical properties, as well as excellent adaptive performance. This paper reviews the recent advances in polymeric biomaterial-guided gene delivery for cartilage repair, with an emphasis on the important role of polymeric biomaterials in delivery systems.
Collapse
Affiliation(s)
- Ran Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
- College of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Fei Chen
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Jinshan Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Dongfang Zhou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- College of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| |
Collapse
|
20
|
Li G, Zhao M, Xu F, Yang B, Li X, Meng X, Teng L, Sun F, Li Y. Synthesis and Biological Application of Polylactic Acid. Molecules 2020; 25:E5023. [PMID: 33138232 PMCID: PMC7662581 DOI: 10.3390/molecules25215023] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022] Open
Abstract
Over the past few decades, with the development of science and technology, the field of biomedicine has rapidly developed, especially with respect to biomedical materials. Low toxicity and good biocompatibility have always been key targets in the development and application of biomedical materials. As a degradable and environmentally friendly polymer, polylactic acid, also known as polylactide, is favored by researchers and has been used as a commercial material in various studies. Lactic acid, as a synthetic raw material of polylactic acid, can only be obtained by sugar fermentation. Good biocompatibility and biodegradability have led it to be approved by the U.S. Food and Drug Administration (FDA) as a biomedical material. Polylactic acid has good physical properties, and its modification can optimize its properties to a certain extent. Polylactic acid blocks and blends play significant roles in drug delivery, implants, and tissue engineering to great effect. This article describes the synthesis of polylactic acid (PLA) and its raw materials, physical properties, degradation, modification, and applications in the field of biomedicine. It aims to contribute to the important knowledge and development of PLA in biomedical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fengying Sun
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (M.Z.); (F.X.); (B.Y.); (X.L.); (X.M.); (L.T.)
| | - Youxin Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (M.Z.); (F.X.); (B.Y.); (X.L.); (X.M.); (L.T.)
| |
Collapse
|
21
|
Donate R, Monzón M, Alemán-Domínguez ME. Additive manufacturing of PLA-based scaffolds intended for bone regeneration and strategies to improve their biological properties. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0046] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractPolylactic acid (PLA) is one of the most commonly used materials in the biomedical sector because of its processability, mechanical properties and biocompatibility. Among the different techniques that are feasible to process this biomaterial, additive manufacturing (AM) has gained attention recently, as it provides the possibility of tuning the design of the structures. This flexibility in the design stage allows the customization of the parts in order to optimize their use in the tissue engineering field. In the recent years, the application of PLA for the manufacture of bone scaffolds has been especially relevant, since numerous studies have proven the potential of this biomaterial for bone regeneration. This review contains a description of the specific requirements in the regeneration of bone and how the state of the art have tried to address them with different strategies to develop PLA-based scaffolds by AM techniques and with improved biofunctionality.
Collapse
Affiliation(s)
- Ricardo Donate
- Departamento de Ingeniería Mecánica, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017, Las Palmas, Spain
| | - Mario Monzón
- Departamento de Ingeniería Mecánica, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017, Las Palmas, Spain
| | - María Elena Alemán-Domínguez
- Departamento de Ingeniería Mecánica, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017, Las Palmas, Spain
| |
Collapse
|
22
|
Maleki H, Mathur S, Klein A. Antibacterial
Ag
containing core‐shell polyvinyl alcohol‐poly (lactic acid) nanofibers for biomedical applications. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25375] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Homa Maleki
- Department of Carpet University of Birjand, University Blvd. Birjand Iran
| | - Sanjay Mathur
- Department of Chemistry Institute for Inorganic Chemistry, University of Cologne Cologne Germany
| | - Axel Klein
- Department of Chemistry Institute for Inorganic Chemistry, University of Cologne Cologne Germany
| |
Collapse
|
23
|
Experimental Investigations on the Performances of Composite Building Materials Based on Industrial Crops and Volcanic Rocks. CRYSTALS 2020. [DOI: 10.3390/cryst10020102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interdisciplinary and sustainability represent the main characteristics of this paper due to the fact that this research is offering a connection between two main areas—agronomy and construction, by using hemp shiv for the design of new building materials, which can increase the sustainability level of the building industry. For this reason, the main scope of this study is based on the investigation of a new category of composite building materials—lightweight mortars based on hemp shiv, volcanic rocks and white cement—which contribute to a positive environmental impact and help to increase indoor comfort. A complex report was carried out on two segments. The first one is focused upon the characteristics of the raw materials from the composition of the new materials, while the second segment presents a detailed analysis of these composites including morphological and chemical investigation, pyrolytic and fire behavior, compression and flexural strengths, and acoustic and thermal characteristics. The proposed recipes have as a variable volcanic rocks, while the hemp and the binder maintain their volumes and properties. The results were analyzed according to the influence of volcanic rocks on the new composites.
Collapse
|
24
|
Baikin AS, Kaplan MA, Nasakina EO, Shatova LA, Tsareva AM, Kolmakova AA, Danilova EA, Tishurova YA, Bunkin NF, Gudkov SV, Belosludtsev KN, Glinushkin AP, Kolmakov AG, Sevostyanov MA. Development of a Biocompatible and Biodegradable Polymer Capable of Long-Term Release of Biologically Active Substances for Medicine and Agriculture. DOKLADY CHEMISTRY 2019. [DOI: 10.1134/s0012500819110041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Wang C, Feng N, Chang F, Wang J, Yuan B, Cheng Y, Liu H, Yu J, Zou J, Ding J, Chen X. Injectable Cholesterol-Enhanced Stereocomplex Polylactide Thermogel Loading Chondrocytes for Optimized Cartilage Regeneration. Adv Healthc Mater 2019; 8:e1900312. [PMID: 31094096 DOI: 10.1002/adhm.201900312] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/26/2019] [Indexed: 01/12/2023]
Abstract
Ideal cartilage tissue engineering requires scaffolds featuring good biocompatibility, large pore structure, high mechanical strength, as well as minimal invasion procedure. Although significant progress has been made in the development of polymer scaffolds, the construction of smart systems with all the desired properties is still emerging as a challenge. The thermogels of stereocomplex 4-arm poly(ethylene glycol)-polylactide (PEG-PLA) (scPLAgel ) and stereocomplex cholesterol-modified 4-arm PEG-PLA (scPLA-Cholgel ) from the equimolar enantiomeric 4-arm PEG-PLA and 4-arm PEG-PLA-Chol, respectively, are fabricated as scaffolds for cartilage tissue engineering. scPLA-Cholgel shows lower critical gelation temperature, higher mechanical strength, larger pore size, better chondrocyte adhesion, and slower degradation compared to scPLAgel as the benefit of cholesterol modification, which is more appropriate for cartilage regeneration. Moreover, the preservation of morphology, biomechanical property, cartilaginous specific matrix, as well as cartilaginous gene expressions of engineered cartilage mediated by scPLA-Cholgel are proven superior to those by scPLAgel . scPLA-Cholgel serves as a promising chondrocyte carrier for cartilage tissue engineering and gives an alternative solution to clinical cartilage repair.
Collapse
Affiliation(s)
- Chenyu Wang
- Department of OrthopedicsThe Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Naibo Feng
- Department of OrthopedicsThe Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Fei Chang
- Department of OrthopedicsThe Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Jincheng Wang
- Department of OrthopedicsThe Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Baoming Yuan
- Department of OrthopedicsThe Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Yilong Cheng
- Department of Applied ChemistrySchool of ScienceXi'an Jiaotong University Xi'an 710049 P. R. China
| | - He Liu
- Department of OrthopedicsThe Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Jiakuo Yu
- Knee Surgery Department of the Institute of Sports MedicinePeking University Third Hospital Beijing 100191 P. R. China
| | - Jun Zou
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow University Suzhou 215006 P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
26
|
|