1
|
Noor H, David IG, Jinga ML, Popa DE, Buleandra M, Iorgulescu EE, Ciobanu AM. State of the Art on Developments of (Bio)Sensors and Analytical Methods for Rifamycin Antibiotics Determination. SENSORS (BASEL, SWITZERLAND) 2023; 23:976. [PMID: 36679772 PMCID: PMC9863535 DOI: 10.3390/s23020976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
This review summarizes the literature data reported from 2000 up to the present on the development of various electrochemical (voltammetric, amperometric, potentiometric and photoelectrochemical), optical (UV-Vis and IR) and luminescence (chemiluminescence and fluorescence) methods and the corresponding sensors for rifamycin antibiotics analysis. The discussion is focused mainly on the foremost compound of this class of macrocyclic drugs, namely rifampicin (RIF), which is a first-line antituberculosis agent derived from rifampicin SV (RSV). RIF and RSV also have excellent therapeutic action in the treatment of other bacterial infectious diseases. Due to the side-effects (e.g., prevalence of drug-resistant bacteria, hepatotoxicity) of long-term RIF intake, drug monitoring in patients is of real importance in establishing the optimum RIF dose, and therefore, reliable, rapid and simple methods of analysis are required. Based on the studies published on this topic in the last two decades, the sensing principles, some examples of sensors preparation procedures, as well as the performance characteristics (linear range, limits of detection and quantification) of analytical methods for RIF determination, are compared and correlated, critically emphasizing their benefits and limitations. Examples of spectrometric and electrochemical investigations of RIF interaction with biologically important molecules are also presented.
Collapse
Affiliation(s)
- Hassan Noor
- Department of Surgery, Faculty of Medicine, “Lucian Blaga” University Sibiu, Lucian Blaga Street 25, 550169 Sibiu, Romania
| | - Iulia Gabriela David
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania
| | - Maria Lorena Jinga
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania
| | - Dana Elena Popa
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania
| | - Mihaela Buleandra
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania
| | - Emilia Elena Iorgulescu
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania
| | - Adela Magdalena Ciobanu
- Department of Psychiatry “Prof. Dr. Al. Obregia” Clinical Hospital of Psychiatry, Berceni Av. 10, District 4, 041914 Bucharest, Romania
- Discipline of Psychiatry, Neurosciences Department, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Dionisie Lupu Street 37, 020021 Bucharest, Romania
| |
Collapse
|
2
|
Radić J, Perović D, Gričar E, Kolar M. Potentiometric Determination of Maprotiline Hydrochloride in Pharmaceutical and Biological Matrices Using a Novel Modified Carbon Paste Electrode. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22239201. [PMID: 36501902 PMCID: PMC9739387 DOI: 10.3390/s22239201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/12/2023]
Abstract
Potentiometry with membrane selective electrodes is preferable for measuring the various constituents of pharmaceuticals. In this work, carbon paste electrodes (CPE) were prepared, modified, and tested for the determination of maprotiline hydrochloride, which acts as an antidepressant. The proposed CPE was based on an ionic association complex of maprotiline-tetraphenylborate, 2-nitrophenyloctyl as a binder, and sodium tetraphenylborate as an ionic lipophilic additive. The optimized composition improved potentiometric properties up to theoretical Nernst response values of -59.5 ± 0.8 mV dec-1, in the concentration range of maprotiline from 1.6 × 10-7 to 1.0 × 10-2 mol L-1, and a detection limit of 1.1 × 10-7 mol L-1. The CPE provides excellent reversibility and reproducibility, exhibits a fast response time, and is applicable over a wide pH range. No significant effect was observed in several interfering species tested. The proposed electrode was used for the precise determination of maprotiline in pure solutions, urine samples, and a real sample-the drug Ludiomil.
Collapse
Affiliation(s)
- Josip Radić
- Department of Environmental Chemistry, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, 21000 Split, Croatia
| | - Dorotea Perović
- Department of Environmental Chemistry, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, 21000 Split, Croatia
| | - Ema Gričar
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Mitja Kolar
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
The use of nanocomposite approach in the construction of carbon paste electrode and its application for the potentiometric determination of iodide. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02973-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
4
|
Kotadiya RM, Patel FN. Analytical Methods Practiced to Quantitation of Rifampicin: A Captious Survey. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200704144231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Rifampicin (RIF), also known as rifampin, a bactericidal antibiotic having
broad antibacterial activity against various gram-positive and gram-negative bacteria acts by inhibiting
DNA dependent RNA polymerase. RIF has been administered in different dosage forms like tablets,
capsules, injections, oral suspension, powder, etc. for the treatment of several types of bacterial infections,
including tuberculosis, Mycobacterium avium complex, leprosy and Legionnaires’ disease.
Introduction: To ensure the quality, efficacy, safety and effectiveness of RIF drug product, effective
and reliable analytical methods are of utmost importance. To quantify RIF for quality control or pharmacokinetic
purposes, alternative analytical methods have been developed along with the official compendial
methods.
Methods:In this review paper, an extensive literature survey was conducted to gather information on
various analytical instrumental methods used so far for RIF.
Results:These methods were high-performance liquid chromatography (42%), hyphenated techniques
(18%), spectroscopy (15%), high-performance thin-layer chromatography or thin-layer chromatography
(7%) and miscellaneous (18%).
Conclusion:All these methods were selective and specific for the RIF analysis.
Collapse
Affiliation(s)
- Rajendra Muljibhai Kotadiya
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Dist. Anand, Gujarat,India
| | - Foram Narottambhai Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Dist. Anand, Gujarat,India
| |
Collapse
|
5
|
A Novel Reduced Graphene Oxide Modified Carbon Paste Electrode for Potentiometric Determination of Trihexyphenidyl Hydrochloride in Pharmaceutical and Biological Matrices. SENSORS 2021; 21:s21092955. [PMID: 33922519 PMCID: PMC8122888 DOI: 10.3390/s21092955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/02/2022]
Abstract
A novel promising carbon paste electrode with excellent potentiometric properties was prepared for the analysis of trihexyphenidyl hydrochloride (THP), the acetylcholine receptor and an anticholinergic drug in real samples. It contains 10.2% trihexyphenidy-tetraphenylborate ionic pair as the electroactive material, with the addition of 3.9% reduced graphene oxide and 0.3% of anionic additive into the paste, which consists of 45.0% dibutylphthalate as the solvent mediator and 40.6% graphite. Under the optimized experimental conditions, the electrode showed a Nernstian slope of 58.9 ± 0.2 mV/decade with a regression coefficient of 0.9992. It exhibited high selectivity and reproducibility as well as a fast and linear dynamic response range from 4.0 × 10−7 to 1.0 × 10−2 M. The electrode remained usable for up to 19 days. Analytical applications showed excellent recoveries ranging from 96.8 to 101.7%, LOD was 2.5 × 10−7 M. The electrode was successfully used for THP analysis of pharmaceutical and biological samples.
Collapse
|
6
|
Electroanalysis of isoniazid and rifampicin: Role of nanomaterial electrode modifiers. Biosens Bioelectron 2019; 146:111731. [PMID: 31614253 DOI: 10.1016/j.bios.2019.111731] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 02/02/2023]
Abstract
Thanks to operational simplicity, speediness, possibility of miniaturization and real-time nature, electrochemical sensing is a supreme alternative for non-electrochemical methodologies in drug quantification. This review, highlights different nanotech-based sensory designs for electroanalysis of isoniazid and rifampicin, the most important medicines for patients with tuberculosis. We first, concisely mention analyses with bare electrodes, associated impediments and inspected possible strategies and then critically review the last two decades works with focus on different nano-scaled electrode modifiers. We organized and described the materials engaged in several categories: Surfactants modifiers, polymeric modifiers, metallic nanomaterials, carbon based nano-modifiers (reduced graphene oxide, multi-walled carbon nanotubes, ordered mesoporous carbon) and a large class of multifarious nano composites-based sensors and biosensors. The main drawbacks and superiorities associated with each array as well as the current trend in the areas is attempted to discuss. Summary of 79 employed electrochemical approaches for analysis of isoniazid and rifampicin has also been presented.
Collapse
|
7
|
Novel QCM and SPR sensors based on molecular imprinting for highly sensitive and selective detection of 2,4-dichlorophenoxyacetic acid in apple samples. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:483-491. [DOI: 10.1016/j.msec.2019.04.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/11/2019] [Accepted: 04/20/2019] [Indexed: 11/22/2022]
|