1
|
Tang J, Tong D, Tang C, Wang S, Dang G, Zhao W, Sun S, Zhao C. Straightforward Approach Toward Thermo-Sensitive Hydrogel Coating on Polyethersulfone Membranes with Controlled Drug Delivery for Significant Inhibition of Thrombocytopenia During Hemodialysis. Macromol Biosci 2025:e2400645. [PMID: 40200914 DOI: 10.1002/mabi.202400645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/26/2025] [Indexed: 04/10/2025]
Abstract
Thrombocytopenia is a potential complication associated with hemodialysis due to the unsatisfactory hemocompatibility of current dialysis membranes, which leads to excessive platelet destruction, accelerates organ failure, and threatens the patients' life safety in severe cases. In the clinical application of hemodialysis, there are a proportion of patients suffer thrombocytopenia. For these patients, heparin combined with tirofiban can be used during dialysis to suppress the occurrence of thrombocytopenia, but the medication requires intravenous injection and continuous infusion. To optimize the application of hemodialysis membranes, a dialysis membrane composed of polyethersulfone (PES) base membrane and a temperature-sensitive hydrogel coating poly (N-acryloyl glycinamide) (PNAGA) is designed, and prepared that can continuously release tirofiban through temperature control to reduce the burden of medication on patients and significantly inhibit the occurrence of thrombocytopenia. The resulting membrane exhibits an encapsulation efficiency of 36.2% (72.4 µg mL-1) for tirofiban, with drug release rates of 54.83% at 37 °C and 31.4% at 4 °C after 1 h. Additionally, the membrane shows excellent hydrophilicity and dialysis performance. It also effectively inhibits platelet adhesion (reduced by 92.3%), activation (reduced by 92.8%) and aggregation, and albumin adsorption (reduced by 84.7%). In summary, the work provides a new solution for the preparation of dialysis membranes that can prevent thrombocytopenia, which has potential applications in the safer hemodialysis membrane manufacturing sector.
Collapse
Affiliation(s)
- Junhan Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Dongmei Tong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Chuchu Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shujing Wang
- Department of Nephrology, Kidney Research Institute, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Guodong Dang
- Shandong Haoran Special Plastic Co. Ltd, Weihai, 264211, P. R. China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shudong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
2
|
Ji H, Li Y, Su B, Zhao W, Kizhakkedathu JN, Zhao C. Advances in Enhancing Hemocompatibility of Hemodialysis Hollow-Fiber Membranes. ADVANCED FIBER MATERIALS 2023; 5:1-43. [PMID: 37361105 PMCID: PMC10068248 DOI: 10.1007/s42765-023-00277-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/19/2023] [Indexed: 06/28/2023]
Abstract
Hemodialysis, the most common modality of renal replacement therapy, is critically required to remove uremic toxins from the blood of patients with end-stage kidney disease. However, the chronic inflammation, oxidative stress as well as thrombosis induced by the long-term contact of hemoincompatible hollow-fiber membranes (HFMs) contribute to the increase in cardiovascular diseases and mortality in this patient population. This review first retrospectively analyzes the current clinical and laboratory research progress in improving the hemocompatibility of HFMs. Details on different HFMs currently in clinical use and their design are described. Subsequently, we elaborate on the adverse interactions between blood and HFMs, involving protein adsorption, platelet adhesion and activation, and the activation of immune and coagulation systems, and the focus is on how to improve the hemocompatibility of HFMs in these aspects. Finally, challenges and future perspectives for improving the hemocompatibility of HFMs are also discussed to promote the development and clinical application of new hemocompatible HFMs. Graphical Abstract
Collapse
Affiliation(s)
- Haifeng Ji
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 People’s Republic of China
- Department of Pathology and Lab Medicine & Center for Blood Research & Life Science Institute, 2350 Health Sciences Mall, Life Sciences Centre, The School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Yupei Li
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041 China
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, 610207 China
| | - Baihai Su
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 People’s Republic of China
| | - Jayachandran N. Kizhakkedathu
- Department of Pathology and Lab Medicine & Center for Blood Research & Life Science Institute, 2350 Health Sciences Mall, Life Sciences Centre, The School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 People’s Republic of China
| |
Collapse
|
3
|
He Z, Yang X, Wang N, Mu L, Pan J, Lan X, Li H, Deng F. Anti-Biofouling Polymers with Special Surface Wettability for Biomedical Applications. Front Bioeng Biotechnol 2021; 9:807357. [PMID: 34950651 PMCID: PMC8688920 DOI: 10.3389/fbioe.2021.807357] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
The use of anti-biofouling polymers has widespread potential for counteracting marine, medical, and industrial biofouling. The anti-biofouling action is usually related to the degree of surface wettability. This review is focusing on anti-biofouling polymers with special surface wettability, and it will provide a new perspective to promote the development of anti-biofouling polymers for biomedical applications. Firstly, current anti-biofouling strategies are discussed followed by a comprehensive review of anti-biofouling polymers with specific types of surface wettability, including superhydrophilicity, hydrophilicity, and hydrophobicity. We then summarize the applications of anti-biofouling polymers with specific surface wettability in typical biomedical fields both in vivo and in vitro, such as cardiology, ophthalmology, and nephrology. Finally, the challenges and directions of the development of anti-biofouling polymers with special surface wettability are discussed. It is helpful for future researchers to choose suitable anti-biofouling polymers with special surface wettability for specific biomedical applications.
Collapse
Affiliation(s)
- Zhoukun He
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
| | - Xiaochen Yang
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Na Wang
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Linpeng Mu
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Jinyuan Pan
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Xiaorong Lan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Hongmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Fei Deng
- Department of Nephrology, Jinniu Hospital of Sichuan Provincial People’s Hospital and Chengdu Jinniu District People’s Hospital, Chengdu, China
- Department of Nephrology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Abstract
Polyethersulfone (PES) films are widely employed in the construction of membranes where there is a desire to make the surface more hydrophilic. Therefore, UV photo-oxidation was studied in order to oxidize the surface of PES and increase hydrophilicity. UV photo-oxidation using low pressure mercury lamps emitting both 253.7 and 184.9 nm radiation were compared with only 253.7 nm photons. The modified surfaces were characterized using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and water contact angle (WCA) measurements. Both sets of lamps gave similar results, showing an increase of the oxygen concentration up to a saturation level of ca. 29 at.% and a decrease in the WCA, i.e., an increase in hydrophilicity, down to ca. 40°. XPS detected a decrease of sp2 C-C aromatic group bonding and an increase in the formation of C-O, C=O, O=C-O, O=C-OH, O-(C=O)-O, and sulphonate and sulphate moieties. Since little change in surface roughness was observed by AFM, the oxidation of the surface caused the increase in hydrophilicity.
Collapse
|
5
|
Single-walled carbon nanotubes grafted with dextran as additive to improve separation performance of polymer membranes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117584] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Heparin-mimicking semi-interpenetrating composite membrane with multiple excellent performances for promising hemodialysis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118740] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Saha P, Santi M, Emondts M, Roth H, Rahimi K, Großkurth J, Ganguly R, Wessling M, Singha NK, Pich A. Stimuli-Responsive Zwitterionic Core-Shell Microgels for Antifouling Surface Coatings. ACS APPLIED MATERIALS & INTERFACES 2020; 12:58223-58238. [PMID: 33331763 DOI: 10.1021/acsami.0c17427] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fouling on filtration membranes is induced by the nonspecific interactions between the membrane surface and the foulants, and effectively hinders their efficient use in various applications. Here, we established a facile method for the coating of membrane surface with a dual stimuli-responsive antifouling microgel system enriched with a high polyzwitterion content. Different poly(sulfobetaine) (PSB) zwitterionic polymers with defined molecular weights and narrow dispersities were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and integrated onto poly(N-vinylcaprolactam) (PVCL) microgels via a controlled dosage of a cross-linker, adapting a precipitation polymerization technique to obtain a core-shell microstructure. Increasing the PSB macro-RAFT concentration resulted in a shift of both upper critical solution temperature and lower critical solution temperature toward higher temperatures. Cryogenic transmission electron microscopy at different temperatures suggested the formation of a core-shell morphology with a PVCL-rich core and a PSB-rich shell. On the other hand, the significant variations of different characteristic proton signals and reversible phase transitions of the microgel constituents were confirmed by temperature-dependent 1H NMR studies. Utilizing a quartz crystal microbalance with dissipation monitoring, we have been able to observe and quantitatively describe the antipolyelectrolyte behavior of the zwitterionic microgels. The oscillation frequency of the sensor proved to change reversibly according to the variations of the NaCl concentration, showing, in fact, the effect of the interaction between the salt and the opposite charges present in the microgel deposited on the sensor. Poly(ethersulfone) membranes, chosen as the model surface, when functionalized with zwitterionic microgel coatings, displayed protein-repelling property, stimulated by different transition temperatures, and showed even better performances at increasing NaCl concentration. These kinds of stimuli-responsive zwitterionic microgel can act as temperature-triggered drug delivery systems and as potential coating materials to prevent bioadhesion and biofouling as well.
Collapse
Affiliation(s)
- Pabitra Saha
- DWI-Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen 52074, Germany
| | - Marta Santi
- DWI-Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen 52074, Germany
| | - Meike Emondts
- DWI-Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen 52074, Germany
| | - Hannah Roth
- DWI-Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Chemical Process Engineering AVT.CVT, RWTH Aachen University, Aachen 52074, Germany
| | - Khosrow Rahimi
- DWI-Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen 52074, Germany
| | | | - Ritabrata Ganguly
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Matthias Wessling
- DWI-Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Chemical Process Engineering AVT.CVT, RWTH Aachen University, Aachen 52074, Germany
| | - Nikhil K Singha
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Andrij Pich
- DWI-Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen 52074, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Maastricht 6229 GT, The Netherlands
| |
Collapse
|
8
|
Wang Z, Sun W, Wei Z, Bao J, Song X, Li Y, Ji H, Zhang J, He C, Su B, Zhao W, Zhao C. Selective potassium uptake via biocompatible zeolite-polymer hybrid microbeads as promising binders for hyperkalemia. Bioact Mater 2020; 6:543-558. [PMID: 32995679 PMCID: PMC7498761 DOI: 10.1016/j.bioactmat.2020.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 02/05/2023] Open
Abstract
Patients with chronic kidney disease are at high risk of hyperkalemia that is associated with various life-threatening complications. Treatments primarily rely on orally administered potassium binding agents, along with low curative effects and various side effects. Herein, direct serum potassium uptake was realized via zeolite–heparin-mimicking-polymer hybrid microbeads. The preparation process involved the synthesis of the heparin-mimicking polymer via the in situ cross-linking polymerization of acrylic acid and N-vinylpyrrolidone in polyethersulfone solution, the fabrication of microbeads via zeolite-mixing, electro-spraying and phase-inversion, and the subsequent aqueous-phase modifications based on ion-exchange and metal-leaching. An ultra-high (about 88%) amount of zeolite could be incorporated and well locked inside the polymer matrix. Potassium uptake capability was verified in water, normal saline and human serum, showing high selectivity and fast adsorption. The microbeads exhibited satisfying blood compatibility, negligible hemolysis ratio, prolonged clotting time, inhibited contact activation, and enhanced antifouling property toward serum proteins and cells. The proposed approach toward zeolite–heparin-mimicking-polymer hybrid microbeads provided a cheap, efficient and safe treatment protocol of hyperkalemia for the high-risk patients. Zeolite–heparin-mimicking-polymer hybrid microbeads were prepared for potassium uptake. An ultra-high (~88%) amount of zeolite could be well locked inside the polymer matrix. Potassium uptake by microbeads exhibited high selectivity and fast adsorption. The microbeads exhibited excellent blood compatibility. The proposed method is cheap, efficient and safe to treat hyperkalemia.
Collapse
Affiliation(s)
- Zhoujun Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Wei Sun
- Laboratory Department of General Hospital of Western Theatek Command, Chengdu, 610000, China
| | - Zhiwei Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianxu Bao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xin Song
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yupei Li
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.,Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, 610207, China
| | - Haifeng Ji
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jue Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Baihai Su
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.,Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, 610207, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,College of Chemical Engineering, Sichuan University, Chengdu, 610065, China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
9
|
Zhang S, Manasa P, Wang Q, Li D, Dang X, XiaoqinNiu, Ran F. Grafting copolymer of thermo-responsive and polysaccharide chains for surface modification of high performance membrane. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Lv C, Chen S, Xie Y, Wei Z, Chen L, Bao J, He C, Zhao W, Sun S, Zhao C. Positively-charged polyethersulfone nanofibrous membranes for bacteria and anionic dyes removal. J Colloid Interface Sci 2019; 556:492-502. [DOI: 10.1016/j.jcis.2019.08.062] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/19/2022]
|
11
|
Ji H, Xu H, Jin L, Song X, He C, Liu X, Xiong L, Zhao W, Zhao C. Surface engineering of low-fouling and hemocompatible polyethersulfone membranes via in-situ ring-opening reaction. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|