1
|
Bejan A, Anisiei A, Andreica BI, Rosca I, Marin L. Chitosan nanofibers encapsulating copper oxide nanoparticles: A new approach towards multifunctional ecological membranes with high antimicrobial and antioxidant efficiency. Int J Biol Macromol 2024; 260:129377. [PMID: 38262824 DOI: 10.1016/j.ijbiomac.2024.129377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
This paper focuses on the preparation of chitosan-based nanofibers embedding copper oxide nanoparticles to create multifunctional materials that meet the demands of contemporary applications. To this end, a mixture of chitosan, quaternized chitosan and poly (ethylene glycol) was used as polymeric matrix, considering their own contribution to the final material's properties and their ability to stabilize the copper oxide nanoparticles. An exhaustive investigation of the nanofibers was done in order to assess their composition and morphology (FTIR, 1H NMR, WXRD, TGA, SEM, TEM, POM, UV-vis) and to study their mechanical, antimicrobial and antioxidant properties, air and water permeability and ability for air filtration. It was shown that the copper oxide nanoparticles were anchored into the polymeric matrix via strong hydrogen bonding and electrostatic interactions, which induced the improvement of the mechanical properties and antioxidant activity. The copper oxide nanoparticles favored the thinning of the fibers during electrospinning process and improved the antibacterial activity and dust filtration capacity. Besides, the fibers displayed air permeability and vapor water transmission rate similar to synthetic nanofibers, while being biodegradable. All these performances recommend the new materials for developing antibacterial eco-materials with good breathability to be used as hygienic textiles, masks, or air filters.
Collapse
Affiliation(s)
- Andrei Bejan
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Alexandru Anisiei
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | | | - Irina Rosca
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania.
| |
Collapse
|
2
|
Marjuban SMH, Rahman M, Duza SS, Ahmed MB, Patel DK, Rahman MS, Lozano K. Recent Advances in Centrifugal Spinning and Their Applications in Tissue Engineering. Polymers (Basel) 2023; 15:polym15051253. [PMID: 36904493 PMCID: PMC10007050 DOI: 10.3390/polym15051253] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Over the last decade, researchers have investigated the potential of nano and microfiber scaffolds to promote wound healing, tissue regeneration, and skin protection. The centrifugal spinning technique is favored over others due to its relatively straightforward mechanism for producing large quantities of fiber. Many polymeric materials have yet to be investigated in search of those with multifunctional properties that would make them attractive in tissue applications. This literature presents the fundamental process of fiber generation, and the effects of fabrication parameters (machine, solution) on the morphologies such as fiber diameter, distribution, alignment, porous features, and mechanical properties. Additionally, a brief discussion is presented on the underlying physics of beaded morphology and continuous fiber formation. Consequently, the study provides an overview of the current advancements in centrifugally spun polymeric fiber-based materials and their morphological features, performance, and characteristics for tissue engineering applications.
Collapse
Affiliation(s)
- Shaik Merkatur Hakim Marjuban
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Musfira Rahman
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77840, USA
| | - Syeda Sharmin Duza
- Microbiology & Immunology Department, Holy Family Red Crescent Medical College & Hospital, Dhaka 1000, Bangladesh
| | - Mohammad Boshir Ahmed
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Dinesh K. Patel
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Correspondence: (D.K.P.); (M.S.R.)
| | - Md Saifur Rahman
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Correspondence: (D.K.P.); (M.S.R.)
| | - Karen Lozano
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| |
Collapse
|
3
|
Bakhtiary N, Pezeshki-Modaress M, Najmoddin N. Wet-electrospinning of nanofibrous magnetic composite 3-D scaffolds for enhanced stem cells neural differentiation. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Liu K, Li W, Ye P, Zhang Z, Ji Q, Wu Z. The Bent-Tube Nozzle Optimization of Force-Spinning With the Gray Wolf Algorithm. Front Bioeng Biotechnol 2021; 9:807287. [PMID: 34976994 PMCID: PMC8714732 DOI: 10.3389/fbioe.2021.807287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/29/2021] [Indexed: 12/02/2022] Open
Abstract
Force-spinning is a popular way to fabricate various fine fibers such as polymer and metal nanofibers, which are being widely employed in medical and industrial manufacture. The spinneret is the key of the device for spinning fibers, and the physical performance and morphology of the spun nanofibers are largely determined by its structure parameters. In this article, the effect of spinneret parameters on the outlet velocity is explored and the spinneret parameters are also optimized to obtain the maximum outlet velocity. The mathematical model of the solution flow in four areas is established at first, and the relationship between outlet velocity and structure parameters is acquired. This model can directly reflect the flow velocity of the solution in each area. Then, the optimal parameters of outlet diameter, bending angle, and curvature radius are obtained combined with the gray wolf algorithm (GWA). It is found that a curved-tube nozzle with a bending angle of 9.1°, nozzle diameter of 0.6 mm, and curvature radius of 10 mm can obtain the maximum outlet velocity and better velocity distribution. Subsequently, the simulation is utilized to analyze and compare the velocity situation of different parameters. Finally, the fiber of 5 wt% PEO solution is manufactured by a straight-tube nozzle and optimized bent-tube nozzle in the laboratory, and the morphology and diameter distribution were observed using a scanning electron microscope (SEM). The results showed that the outlet velocity was dramatically improved after the bent-tube parameters were optimized by GWA, and nanofibers of better surface quality could be obtained using optimized bent-tube nozzles.
Collapse
Affiliation(s)
- Kang Liu
- Hubei Digital Textile Equipment Key Laboratory, Wuhan Textile University, Wuhan, China
| | - Wenhui Li
- School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan, China
| | - Peiyan Ye
- School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan, China
| | - Zhiming Zhang
- School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan, China
- *Correspondence: Zhiming Zhang,
| | - Qiaoling Ji
- School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan, China
| | - Zijun Wu
- School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan, China
| |
Collapse
|
5
|
Norzain NA, Yu ZW, Lin WC, Su HH. Micropatterned Fibrous Scaffold Produced by Using Template-Assisted Electrospinning Technique for Wound Healing Application. Polymers (Basel) 2021; 13:2821. [PMID: 34451358 PMCID: PMC8400521 DOI: 10.3390/polym13162821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 02/01/2023] Open
Abstract
This paper describes the fabrication of a structural scaffold consisting of both randomly oriented nanofibers and triangular prism patterns on the scaffold surface using a combination technique of electrospinning and collector templates. The polycaprolactone (PCL) nanofibers were electrospun over a triangular prism pattern mold, which acted as a template. The deposited scaffold was removed from the template to produce a standalone structural scaffold of three-dimensional micropatterned nanofibers. The fabricated structural scaffold was compared with flat randomly oriented nanofibers based on in vitro and in vivo studies. The in vitro study indicated that the structural scaffold demonstrated higher fibroblast cell proliferation, cell elongation with a 13.48 ± 2.73 aspect ratio and 70% fibroblast cell orientation compared with flat random nanofibers. Among the treatment groups, the structural scaffold escalated the wound closure to 92.17% on day 14. Histological staining of the healed wound area demonstrated that the structural scaffold exhibited advanced epithelization of the epidermal layer accompanied by mild inflammation. The proliferated fibroblast cells and collagen fibers in the structural scaffold appeared denser and arranged more horizontally. These results determined the potential of micropatterned scaffolds for stimulating cell behavior and their application for wound healing.
Collapse
Affiliation(s)
- Norul Ashikin Norzain
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; (N.A.N.); (Z.-W.Y.)
| | - Zhi-Wei Yu
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; (N.A.N.); (Z.-W.Y.)
| | - Wei-Chih Lin
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; (N.A.N.); (Z.-W.Y.)
| | - Hsing-Hao Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
| |
Collapse
|
6
|
Mehta P, Rasekh M, Patel M, Onaiwu E, Nazari K, Kucuk I, Wilson PB, Arshad MS, Ahmad Z, Chang MW. Recent applications of electrical, centrifugal, and pressurised emerging technologies for fibrous structure engineering in drug delivery, regenerative medicine and theranostics. Adv Drug Deliv Rev 2021; 175:113823. [PMID: 34089777 DOI: 10.1016/j.addr.2021.05.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/11/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022]
Abstract
Advancements in technology and material development in recent years has led to significant breakthroughs in the remit of fiber engineering. Conventional methods such as wet spinning, melt spinning, phase separation and template synthesis have been reported to develop fibrous structures for an array of applications. However, these methods have limitations with respect to processing conditions (e.g. high processing temperatures, shear stresses) and production (e.g. non-continuous fibers). The materials that can be processed using these methods are also limited, deterring their use in practical applications. Producing fibrous structures on a nanometer scale, in sync with the advancements in nanotechnology is another challenge met by these conventional methods. In this review we aim to present a brief overview of conventional methods of fiber fabrication and focus on the emerging fiber engineering techniques namely electrospinning, centrifugal spinning and pressurised gyration. This review will discuss the fundamental principles and factors governing each fabrication method and converge on the applications of the resulting spun fibers; specifically, in the drug delivery remit and in regenerative medicine.
Collapse
Affiliation(s)
- Prina Mehta
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Manoochehr Rasekh
- College of Engineering, Design and Physical Sciences, Brunel University London, Middlesex UB8 3PH, UK
| | - Mohammed Patel
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Ekhoerose Onaiwu
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Kazem Nazari
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - I Kucuk
- Institute of Nanotechnology, Gebze Technical University, 41400 Gebze, Turkey
| | - Philippe B Wilson
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Southwell NG25 0QF, UK
| | | | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey, Northern Ireland BT37 0QB, UK.
| |
Collapse
|
7
|
Rastegar A, Mahmoodi M, Mirjalili M, Nasirizadeh N. Platelet-rich fibrin-loaded PCL/chitosan core-shell fibers scaffold for enhanced osteogenic differentiation of mesenchymal stem cells. Carbohydr Polym 2021; 269:118351. [PMID: 34294355 DOI: 10.1016/j.carbpol.2021.118351] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/27/2021] [Accepted: 06/13/2021] [Indexed: 01/18/2023]
Abstract
Here, we fabricated the platelet-rich fibrin (PRF)-loaded PCL/chitosan (PCL/CS-PRF) core-shell nanofibrous scaffold through a coaxial electrospinning method. Our goal was to evaluate the effect of CS-RPF in the core layer of the nanofibrous on the osteogenic differentiation of human mesenchymal stem cells (HMSCs). The elastic modulus of PCL/CS-PRF core-shell scaffold (44 MPa) was about 1.5-fold of PCL/CS scaffold (25 MPa). The specific surface area of the scaffolds increased from 9.98 m2/g for PCL/CS scaffold to 16.66 m2/g for the PCL/CS-PRF core-shell nanofibrous scaffold. Moreover, the release rate of PRF from PCL/CS-PRF nanofibrous scaffold was measured to be 24.50% after 10 days which showed slow and sustained release of PRF from the nanofibrous. The formation of Ca-P on the surface of scaffold immersed in simulated body fluid solution indicated the suitable osteoconductivity of PCL/CS-PRF core-shell nanofibrous scaffold. Also, the value of ALP activity and calcium deposited on the surface of PCL/CS-PRF core-shell nanofibrous scaffold were 81.97 U/L and 40.33 μg/scaffold, respectively after 14 days, which confirmed the significantly higher amounts of ALP and calcium deposition on the scaffold containing PRF compared to PCL/CS scaffold. Due to higher hydrophilicity and porosity of PCL/CS-PRF core-shell nanofibrous scaffold compared to PCL/CS scaffold, a better bone cell growth on surface of PCL/CS-PRF scaffold was observed. The Alizarin red-positive area was significantly higher on PCL/CS-PRF scaffold compared to PCL/CS scaffold, indicating more calcium deposition and osteogenic differentiation of HMSCs in the presence of PRF. Our findings demonstrate that PCL/CS-PRF core-shell scaffolds can provide a strong construct with improved osteogenic for bone tissue engineering applications.
Collapse
Affiliation(s)
- Amirabbas Rastegar
- Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Mahboobeh Mahmoodi
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran.
| | - Mohammad Mirjalili
- Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Navid Nasirizadeh
- Department of Chemical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| |
Collapse
|
8
|
Han S, Nie K, Li J, Sun Q, Wang X, Li X, Li Q. 3D Electrospun Nanofiber-Based Scaffolds: From Preparations and Properties to Tissue Regeneration Applications. Stem Cells Int 2021; 2021:8790143. [PMID: 34221024 PMCID: PMC8225450 DOI: 10.1155/2021/8790143] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 12/28/2022] Open
Abstract
Electrospun nanofibers have been frequently used for tissue engineering due to their morphological similarities with the extracellular matrix (ECM) and tunable chemical and physical properties for regulating cell behaviors and functions. However, most of the existing electrospun nanofibers have a closely packed two-dimensional (2D) membrane with the intrinsic shortcomings of limited cellular infiltration, restricted nutrition diffusion, and unsatisfied thickness. Three-dimensional (3D) electrospun nanofiber-based scaffolds can provide stem cells with 3D microenvironments and biomimetic fibrous structures. Thus, they have been demonstrated to be good candidates for in vivo repair of different tissues. This review summarizes the recent developments in 3D electrospun nanofiber-based scaffolds (ENF-S) for tissue engineering. Three types of 3D ENF-S fabricated using different approaches classified into electrospun nanofiber 3D scaffolds, electrospun nanofiber/hydrogel composite 3D scaffolds, and electrospun nanofiber/porous matrix composite 3D scaffolds are discussed. New functions for these 3D ENF-S and properties, such as facilitated cell infiltration, 3D fibrous architecture, enhanced mechanical properties, and tunable degradability, meeting the requirements of tissue engineering scaffolds were discovered. The applications of 3D ENF-S in cartilage, bone, tendon, ligament, skeletal muscle, nerve, and cardiac tissue regeneration are then presented with a discussion of current challenges and future directions. Finally, we give summaries and future perspectives of 3D ENF-S in tissue engineering and clinical transformation.
Collapse
Affiliation(s)
- Shanshan Han
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Kexin Nie
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Qingqing Sun
- Center for Functional Sensor and Actuator, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Xiaofeng Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
9
|
Zheng W, Shi C, Hu Y, Wang X, Wang Y. Theoretical and experimental studies on the fabrication of cylindrical-electrode-assisted solution blowing spinning nanofibers. E-POLYMERS 2021. [DOI: 10.1515/epoly-2021-0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
Cylindrical-electrode-assisted solution blowing spinning (CSBS) is a novel technique of fabricating nanofibers. In this paper, a combination of numerical simulation, theoretical analysis, and experiment is used to study the influences of CSBS airflow field and electric field on the fabrication of CSBS nanofibers for the first time. The effects of air pressure and injection speed on the morphology of CSBS fiber are studied. The research results show that the increase in air pressure will increase the centerline velocity and the centerline turbulence intensity within the effective stretching distance of the airflow. The increase in centerline velocity will result in a decrease in the diameter of CSBS fibers. There is a negative correlation between jet diameter and surface charge density of CSBS jet. The increase in air pressure will increase the stretching of the jet by the air flow, which will make the jet more likely to become thinner again because of the charge repulsion. Increasing air pressure will reduce the porosity of the nonwoven. As the injection speed increases, the diameter of CSBS fiber increases, and the porosity of the nonwoven decreases first and then increases. This work provides theoretical and experimental bases for the controllable preparation of CSBS nanofibers.
Collapse
Affiliation(s)
- Wenxing Zheng
- College of Jewelry and Jade Carving, Nanyang Normal University , Nanyang 473061 , Henan , China
| | - Changwei Shi
- College of Light Industry and Textile, Qiqihar University , Qiqihar 161000 , China
| | - Yabing Hu
- College of Jewelry and Jade Carving, Nanyang Normal University , Nanyang 473061 , Henan , China
| | - Xinhou Wang
- College of Mechanical Engineering, Donghua University , Shanghai 201620 , China
| | - Yiheng Wang
- College of Jewelry and Jade Carving, Nanyang Normal University , Nanyang 473061 , Henan , China
| |
Collapse
|
10
|
Affiliation(s)
- Bülin Atıcı
- Nano-Science and Nano-Engineering Program, Graduate School of Science, Engineering and Technology, Istanbul Technical University, Istanbul, Turkey
| | - Cüneyt H. Ünlü
- Chemistry, Istanbul Technical University, Turkey, Istanbul
| | - Meltem Yanilmaz
- Nano-Science and Nano-Engineering Program, Graduate School of Science, Engineering and Technology, Istanbul Technical University, Istanbul, Turkey
- Textile Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
11
|
Saeed M, Beigi-Boroujeni S, Rajabi S, Rafati Ashteiani G, Dolatfarahi M, Özcan M. A simple, green chemistry technology for fabrication of tissue-engineered scaffolds based on mussel-inspired 3D centrifugal spun. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111849. [PMID: 33579483 DOI: 10.1016/j.msec.2020.111849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 11/18/2022]
Abstract
The fabrication of 3D fibrous scaffolds with highly interconnected pores has been crucial in the development of tissue regeneration techniques. The present study describes the fabrication of 3D fibrous scaffolds by freeze-drying of polydopamine (PDA) coated centrifugal spun gelatin fibers. We wanted to combine the mussel-inspired chemistry, Maillard reaction, and the 3D microstructural advantages of centrifugal spun fibers to develop the green fibrous scaffolds at low cost, high speed, and desired mold shape. The resultant PDA-gelatin fibers exhibited a smooth 3D microstructure with a uniform formation of PDA thin ad-layer that enhanced the mechanical properties and stability of the scaffolds, and thereby decreased the degradation rate. All scaffolds showed promising properties including good dimensional and mechanical stability under wet state, optimal porosity over 94%, and high water uptake of approximately 1500%. The results of cell culture studies, further confirmed that all scaffolds exhibited appropriate biocompatibility, cell proliferation, migration, and infiltration. Particularly, the PDA-coated scaffolds showed a significant enhancement in proliferation, migration, and infiltration of HDF-GFP+ cells. These results show that a 3D porous fibrous scaffold with simplifying tunable density and desirable shape on a large scale can be readily prepared for different fields of tissue engineering applications.
Collapse
Affiliation(s)
- Mahdi Saeed
- Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran; Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran.
| | - Saeed Beigi-Boroujeni
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur, Monterrey, 2501, N.L., Mexico; Hard Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Sarah Rajabi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Golnaz Rafati Ashteiani
- Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Dolatfarahi
- Hard Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mutlu Özcan
- University of Zürich, Division of Dental Biomaterials, Center for Dental and Oral Medicine, Clinic for Reconstructive Dentistry, Zürich, Switzerland
| |
Collapse
|
12
|
Chavez RO, Lodge TP, Huitron J, Chipara M, Alcoutlabi M. Centrifugally spun carbon fibers prepared from aqueous poly(vinylpyrrolidone) solutions as binder‐free anodes in lithium‐ion batteries. J Appl Polym Sci 2020. [DOI: 10.1002/app.50396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Timothy P. Lodge
- Department of Chemical Engineering and Materials Science and Department of Chemistry University of Minnesota Minneapolis Minnesota USA
| | - Juan Huitron
- Department of Mechanical Engineering University of Texas Edinburg Texas USA
| | - Mircea Chipara
- Department of Physics and Astronomy The University of Texas Rio Grande Valley Edinburg Texas USA
| | - Mataz Alcoutlabi
- Department of Mechanical Engineering University of Texas Edinburg Texas USA
| |
Collapse
|
13
|
Vocetkova K, Sovkova V, Buzgo M, Lukasova V, Divin R, Rampichova M, Blazek P, Zikmund T, Kaiser J, Karpisek Z, Amler E, Filova E. A Simple Drug Delivery System for Platelet-Derived Bioactive Molecules, to Improve Melanocyte Stimulation in Vitiligo Treatment. NANOMATERIALS 2020; 10:nano10091801. [PMID: 32927642 PMCID: PMC7559479 DOI: 10.3390/nano10091801] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
Abstract
Vitiligo is the most common depigmentation disorder of the skin. Currently, its therapy focuses on the halting of the immune response and stimulation of the regenerative processes, leading to the restoration of normal melanocyte function. Platelet-rich plasma (PRP) represents a safe and cheap regenerative therapy option, as it delivers a wide spectrum of native growth factors, cytokines and other bioactive molecules. The aim of this study was to develop a simple delivery system to prolong the effects of the bioactive molecules released from platelets. The surface of electrospun and centrifugally spun poly-ε-caprolactone (PCL) fibrous scaffolds was functionalized with various concentrations of platelets; the influence of the morphology of the scaffolds and the concentration of the released platelet-derived bioactive molecules on melanocytes, was then assessed. An almost two-fold increase in the amount of the released bioactive molecules was detected on the centrifugally spun vs. electrospun scaffolds, and a sustained 14-day release of the bioactive molecules was demonstrated. A strong concentration-dependent response of melanocyte to the bioactive molecules was observed; higher concentrations of bioactive molecules resulted in improved metabolic activity and proliferation of melanocytes. This simple system improves melanocyte viability, offers on-site preparation and is suitable for prolonged topical PRP administration.
Collapse
Affiliation(s)
- Karolina Vocetkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (V.S.); (M.B.); (V.L.); (R.D.); (M.R.); (E.F.)
- Department of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic;
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic
- Correspondence:
| | - Vera Sovkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (V.S.); (M.B.); (V.L.); (R.D.); (M.R.); (E.F.)
- Department of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic;
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic
| | - Matej Buzgo
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (V.S.); (M.B.); (V.L.); (R.D.); (M.R.); (E.F.)
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic
| | - Vera Lukasova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (V.S.); (M.B.); (V.L.); (R.D.); (M.R.); (E.F.)
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic
| | - Radek Divin
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (V.S.); (M.B.); (V.L.); (R.D.); (M.R.); (E.F.)
- Department of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic;
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic
| | - Michala Rampichova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (V.S.); (M.B.); (V.L.); (R.D.); (M.R.); (E.F.)
| | - Pavel Blazek
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 616 00 Brno, Czech Republic; (P.B.); (T.Z.); (J.K.)
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 616 00 Brno, Czech Republic; (P.B.); (T.Z.); (J.K.)
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 616 00 Brno, Czech Republic; (P.B.); (T.Z.); (J.K.)
| | - Zdenek Karpisek
- Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, 616 69 Brno, Czech Republic;
| | - Evzen Amler
- Department of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic;
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic
| | - Eva Filova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (V.S.); (M.B.); (V.L.); (R.D.); (M.R.); (E.F.)
- Department of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic;
| |
Collapse
|
14
|
Filová E, Tonar Z, Lukášová V, Buzgo M, Litvinec A, Rampichová M, Beznoska J, Plencner M, Staffa A, Daňková J, Soural M, Chvojka J, Malečková A, Králíčková M, Amler E. Hydrogel Containing Anti-CD44-Labeled Microparticles, Guide Bone Tissue Formation in Osteochondral Defects in Rabbits. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1504. [PMID: 32751860 PMCID: PMC7466545 DOI: 10.3390/nano10081504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Hydrogels are suitable for osteochondral defect regeneration as they mimic the viscoelastic environment of cartilage. However, their biomechanical properties are not sufficient to withstand high mechanical forces. Therefore, we have prepared electrospun poly-ε-caprolactone-chitosan (PCL-chit) and poly(ethylene oxide)-chitosan (PEO-chit) nanofibers, and FTIR analysis confirmed successful blending of chitosan with other polymers. The biocompatibility of PCL-chit and PEO-chit scaffolds was tested; fibrochondrocytes and chondrocytes seeded on PCL-chit showed superior metabolic activity. The PCL-chit nanofibers were cryogenically grinded into microparticles (mean size of about 500 µm) and further modified by polyethylene glycol-biotin in order to bind the anti-CD44 antibody, a glycoprotein interacting with hyaluronic acid (PCL-chit-PEGb-antiCD44). The PCL-chit or PCL-chit-PEGb-antiCD44 microparticles were mixed with a composite gel (collagen/fibrin/platelet rich plasma) to improve its biomechanical properties. The storage modulus was higher in the composite gel with microparticles compared to fibrin. The Eloss of the composite gel and fibrin was higher than that of the composite gel with microparticles. The composite gel either with or without microparticles was further tested in vivo in a model of osteochondral defects in rabbits. PCL-chit-PEGb-antiCD44 significantly enhanced osteogenic regeneration, mainly by desmogenous ossification, but decreased chondrogenic differentiation in the defects. PCL-chit-PEGb showed a more homogeneous distribution of hyaline cartilage and enhanced hyaline cartilage differentiation.
Collapse
Affiliation(s)
- Eva Filová
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Science, Videnska 1083, 142 20 Prague 4, Czech Republic; (E.F.); (M.B.); (A.L.); (M.R.); (M.P.); (A.S.); (J.D.); (E.A.)
- Institute of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic
| | - Zbyněk Tonar
- Institute of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Husova 3, 305 06 Pilsen, Czech Republic; (Z.T.); (A.M.); (M.K.)
| | - Věra Lukášová
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Science, Videnska 1083, 142 20 Prague 4, Czech Republic; (E.F.); (M.B.); (A.L.); (M.R.); (M.P.); (A.S.); (J.D.); (E.A.)
| | - Matěj Buzgo
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Science, Videnska 1083, 142 20 Prague 4, Czech Republic; (E.F.); (M.B.); (A.L.); (M.R.); (M.P.); (A.S.); (J.D.); (E.A.)
- Institute of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic
| | - Andrej Litvinec
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Science, Videnska 1083, 142 20 Prague 4, Czech Republic; (E.F.); (M.B.); (A.L.); (M.R.); (M.P.); (A.S.); (J.D.); (E.A.)
| | - Michala Rampichová
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Science, Videnska 1083, 142 20 Prague 4, Czech Republic; (E.F.); (M.B.); (A.L.); (M.R.); (M.P.); (A.S.); (J.D.); (E.A.)
| | - Jiří Beznoska
- Hospital of Rudolfa and Stefanie, a. s., Máchova 400, 256 30 Benešov, Czech Republic;
| | - Martin Plencner
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Science, Videnska 1083, 142 20 Prague 4, Czech Republic; (E.F.); (M.B.); (A.L.); (M.R.); (M.P.); (A.S.); (J.D.); (E.A.)
| | - Andrea Staffa
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Science, Videnska 1083, 142 20 Prague 4, Czech Republic; (E.F.); (M.B.); (A.L.); (M.R.); (M.P.); (A.S.); (J.D.); (E.A.)
| | - Jana Daňková
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Science, Videnska 1083, 142 20 Prague 4, Czech Republic; (E.F.); (M.B.); (A.L.); (M.R.); (M.P.); (A.S.); (J.D.); (E.A.)
| | - Miroslav Soural
- Department of Organic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, 771 46 Olomouc, Czech Republic;
| | - Jiří Chvojka
- Faculty of Textile Engineering, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic;
| | - Anna Malečková
- Institute of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Husova 3, 305 06 Pilsen, Czech Republic; (Z.T.); (A.M.); (M.K.)
| | - Milena Králíčková
- Institute of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Husova 3, 305 06 Pilsen, Czech Republic; (Z.T.); (A.M.); (M.K.)
| | - Evžen Amler
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Science, Videnska 1083, 142 20 Prague 4, Czech Republic; (E.F.); (M.B.); (A.L.); (M.R.); (M.P.); (A.S.); (J.D.); (E.A.)
- Institute of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic
- Student Science s.r.o., Národních Hrdinů 279, Dolní Počernice, 190 12 Prague, Czech Republic
| |
Collapse
|
15
|
A Mini-Review: Needleless Electrospinning of Nanofibers for Pharmaceutical and Biomedical Applications. Processes (Basel) 2020. [DOI: 10.3390/pr8060673] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Electrospinning (ES) is a convenient and versatile method for the fabrication of nanofibers and has been utilized in many fields including pharmaceutical and biomedical applications. Conventional ES uses a needle spinneret for the generation of nanofibers and is associated with many limitations and drawbacks (i.e., needle clogging, limited production capacity, and low yield). Needleless electrospinning (NLES) has been proposed to overcome these problems. Within the last two decades (2004–2020), many research articles have been published reporting the use of NLES for the fabrication of polymeric nanofibers intended for drug delivery and biomedical tissue engineering applications. The objective of the present mini-review article is to elucidate the potential of NLES for designing such novel nanofibrous drug delivery systems and tissue engineering constructs. This paper also gives an overview of the key NLES approaches, including the most recently introduced NLES method: ultrasound-enhanced electrospinning (USES). The technologies underlying NLES systems and an evaluation of electrospun nanofibers are presented. Even though NLES is a promising approach for the industrial production of nanofibers, it is a multivariate process, and more research work is needed to elucidate its full potential and limitations.
Collapse
|
16
|
Chen Y, Liu Y, Xing T, Sun B, Feng Z, Li P, Yang Z, Li S, Chen S. Effects of salt concentration on the structure and properties of composite fiber of carboxymethyl cellulose/N-2-hydroxylpropyl trimethyl ammonium chloride chitosan prepared by polyelectoyte complexation-freeze drying. Int J Biol Macromol 2020; 151:1030-1039. [PMID: 31760008 DOI: 10.1016/j.ijbiomac.2019.11.123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022]
Abstract
The conventional electrospinning process for the preparation of fibers usually require complex equipment and complicated preparation processes, as well as chemical crosslinkers and organic solvents, which limits its application in the preparation of biomedical materials. In the current study, carboxymethyl cellulose/N-2-hydroxylpropyl trimethyl ammonium chloride chitosan (CMC/HACC) composite fibers were fabricated by polyelectrolyte complexation (PEC) and freeze drying coupled method in both pure water and NaCl solution. The structures of the as-prepared fibers and the effects of NaCl concentration on the structures of fibers were studied by FTIR, solid 13C NMR, XRD, XPS and SEM. The formation mechanism of the composite fiber and the effects of NaCl concentration on structure and properties of the composite fiber were simulated in the Materials Studio software and discussed. The swelling properties and the thermal decomposition kinetics of the composite fiber were studied. The results suggest that the addition of NaCl electrolyte to the complexing system significantly affects the structure and properties of the PEC fiber. Our work has provided a new preparation route to the composite fibers of natural polymers with controllable structures and properties by the combination of PEC and freeze drying techniques using NaCl with desired concentration as the electrolyte.
Collapse
Affiliation(s)
- Yu Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Yang Liu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Tao Xing
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China; Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Boyang Sun
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China; Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Zhipan Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Puwang Li
- Agriculture Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, PR China
| | - Ziming Yang
- Agriculture Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, PR China
| | - Sidong Li
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524001, PR China
| | - Shusen Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
17
|
Pereira Rodrigues IC, Tamborlin L, Rodrigues AA, Jardini AL, Ducati Luchessi A, Maciel Filho R, Najar Lopes ÉS, Pellizzer Gabriel L. Polyurethane fibrous membranes tailored by rotary jet spinning for tissue engineering applications. J Appl Polym Sci 2019. [DOI: 10.1002/app.48455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Leticia Tamborlin
- School of Applied SciencesUniversity of Campinas Limeira São Paulo Brazil
- Institute of BiosciencesSão Paulo State University Rio Claro São Paulo Brazil
| | | | - André Luiz Jardini
- National Institute of Biofabrication Campinas São Paulo Brazil
- School of Chemical EngineeringUniversity of Campinas Campinas São Paulo Brazil
| | - Augusto Ducati Luchessi
- School of Applied SciencesUniversity of Campinas Limeira São Paulo Brazil
- Institute of BiosciencesSão Paulo State University Rio Claro São Paulo Brazil
| | - Rubens Maciel Filho
- National Institute of Biofabrication Campinas São Paulo Brazil
- School of Chemical EngineeringUniversity of Campinas Campinas São Paulo Brazil
| | | | | |
Collapse
|
18
|
Lombardo ME, Carfì Pavia F, Vitrano I, Ghersi G, Brucato V, Rosei F, La Carrubba V. PLLA scaffolds with controlled architecture as potential microenvironment for in vitro tumor model. Tissue Cell 2019; 58:33-41. [PMID: 31133244 DOI: 10.1016/j.tice.2019.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/28/2019] [Accepted: 04/13/2019] [Indexed: 12/14/2022]
Abstract
The "microenvironment" where a tumor develops plays a fundamental role in determining its progression, the onset of metastasis and, eventually, its resistance to therapies. Tumor cells can be considered more or less invasive depending both on the nature of the cells and on the site where they are located. Commonly adopted laboratory culture protocols for the investigation of tumor cells take usually place on standard two-dimensional supports. However, such cultures do not allow for reproduction of the biophysical properties of the tumor's microenvironment, thus causing the cells to lose most of their relevant characteristics. In this work MDA-MB 231 breast cancer cells were cultivated within Poly-l-Lactic Acid (PLLA) scaffolds produced via Thermally Induced Phase Separation (TIPS). Starting from a ternary solution (polymer-solvent-nonsolvent) we produced scaffolds with different morphologies, porosities and pore architectures. The influence of porosity and average pore size upon cell adhesion and growth were investigated by using Cell Counting Kit-8 (CCK-8) as cell viability test, a fluorescence assay staining cell with DAPI and Scanning Electron Microscopy (SEM). Our study demonstrates that the average pore size of the polymeric scaffolds influences both the cell adhesion and resulting morphology of the growing breast cancer cells. In particular, the reported data corroborate the evidence that an average pore size ranging from 40 to 50 μm induces tumor cell aggregation and the formation of the irregular tumor masses typically observed in-vivo. In addition, TIPS proved to be a suitable manufacturing technique for finely tuning the scaffolds' architecture, relevant to developing the most effective microenvironment for an in-vitro tumor cells growth closely mimicking in-vivo conditions.
Collapse
Affiliation(s)
- Maria Elena Lombardo
- Dipartimento di Ingegneria, University of Palermo, Viale delle Scienze building 8, 90128 Palermo, Italy; Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1S2, Canada.
| | - Francesco Carfì Pavia
- Dipartimento di Ingegneria, University of Palermo, Viale delle Scienze building 8, 90128 Palermo, Italy; ATeN center, CHAB, University of Palermo, Viale delle Scienze building 18, 90128 Palermo, Italy
| | - Ilenia Vitrano
- Dipartimento di Ingegneria, University of Palermo, Viale delle Scienze building 8, 90128 Palermo, Italy
| | - Giulio Ghersi
- STEBICEF, University of Palermo, Viale delle Scienze building 16, 90128 Palermo, Italy
| | - Valerio Brucato
- Dipartimento di Ingegneria, University of Palermo, Viale delle Scienze building 8, 90128 Palermo, Italy; ATeN center, CHAB, University of Palermo, Viale delle Scienze building 18, 90128 Palermo, Italy
| | - Federico Rosei
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1S2, Canada
| | - Vincenzo La Carrubba
- Dipartimento di Ingegneria, University of Palermo, Viale delle Scienze building 8, 90128 Palermo, Italy; ATeN center, CHAB, University of Palermo, Viale delle Scienze building 18, 90128 Palermo, Italy
| |
Collapse
|