1
|
Jiang K, Luo C, Li YM, Wang K, Huang S, You XH, Liu Y, Luo E, Xu JZ, Zhang L, Li ZM. An immunomodulatory and osteogenic bacterial cellulose scaffold for bone regeneration via regulating the immune microenvironment. Int J Biol Macromol 2024; 281:136375. [PMID: 39383912 DOI: 10.1016/j.ijbiomac.2024.136375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Creating a bone homeostasis microenvironment that balances osteogenesis and immunity is a substantial challenge for bone regeneration. Here, we prepared an immunomodulatory and osteogenic bacterial cellulose scaffold (FOBS) via a facile one-pot approach. The aldehyde groups were generated via selective oxidation of the hydroxyl groups of bacterial cellulose, offering the bonding sites for dopamine through a Schiff base reaction. At the same time, the deposition of Ca2+ and PO43- was promoted on the aldehyde cellulose scaffold because of the high affinity of the catechol moiety for Ca2+. Compared with that of the unmodified scaffold, the hydroxyapatite content of FOBS increased by 47.1 % according to the ICP results. Interestingly, FOBS regulated the immune microenvironment to accelerate the conversion of M1 to M2 macrophages. The expressions of ARG-1 and Dectin-1 (M2) in the FOBS group increased by >100 %. The expression of osteogenic differentiation of BMSCs was also upregulated. In a rat cranial defect model, the BV/TV of FOBS was significantly increased. Further immunohistochemical analysis revealed that an improved immune microenvironment promoted the osteogenic differentiation of stem cells in vivo. This work provides an effective and easy-to-operate strategy for the development of the bone tissue engineering scaffolds.
Collapse
Affiliation(s)
- Kai Jiang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chuan Luo
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yuan-Min Li
- Key Laboratory of Transplant Engineering and Immunology, NHC, Chengdu 610065, China; Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Kai Wang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Shishu Huang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Xuan-He You
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Li Zhang
- Department of Rehabilitation Medicine, West China Second Hospital, Sichuan University, Chengdu 610065, China.
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Ekram B, Tolba E, El-Sayed AF, Müller WEG, Schröder HC, Wang X, Abdel-Hady BM. Cell migration, DNA fragmentation and antibacterial properties of novel silver doped calcium polyphosphate nanoparticles. Sci Rep 2024; 14:565. [PMID: 38177275 PMCID: PMC10766647 DOI: 10.1038/s41598-023-50849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024] Open
Abstract
To combat infections, silver was used extensively in biomedical field but there was a need for a capping agent to eliminate its cytotoxic effects. In this study, polymeric calcium polyphosphate was doped by silver with three concentrations 1, 3 or 5 mol.% and were characterized by TEM, XRD, FTIR, TGA. Moreover, cytotoxicity, antibacterial, cell migration and DNA fragmentation assays were done to assure its safety. The results showed that the increase in silver percentage caused an increase in particle size. XRD showed the silver peaks, which indicated that it is present in its metallic form. The TGA showed that thermal stability was increased by increasing silver content. The antibacterial tests showed that the prepared nanoparticles have an antibacterial activity against tested pathogens. In addition, the cytotoxicity results showed that the samples exhibited non-cytotoxic behavior even with the highest doping concentration (5% Ag-CaPp). The cell migration assay showed that the increase in the silver concentration enhances cell migration up to 3% Ag-CaPp. The DNA fragmentation test revealed that all the prepared nanoparticles caused no fragmentation. From the results we can deduce that 3% Ag-CaPp was the optimum silver doped calcium polyphosphate concentration that could be used safely for medical applications.
Collapse
Affiliation(s)
- Basma Ekram
- Polymers and Pigments Department, Chemical Industries Research Institute, National Research Centre, Cairo, 12622, Egypt.
| | - Emad Tolba
- Polymers and Pigments Department, Chemical Industries Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Ahmed F El-Sayed
- Microbial Genetics Department, Biotechnology Research Institute, National Research Centre, Cairo, 12622, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| | - Bothaina M Abdel-Hady
- Polymers and Pigments Department, Chemical Industries Research Institute, National Research Centre, Cairo, 12622, Egypt
| |
Collapse
|
3
|
Li C, Ding Z, Han Y. Mn-Doped Nano-Hydroxyapatites as Theranostic Agents with Tumor pH-Amplified MRI-Signal Capabilities for Guiding Photothermal Therapy. Int J Nanomedicine 2023; 18:6101-6118. [PMID: 37915749 PMCID: PMC10617543 DOI: 10.2147/ijn.s429336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
Background The integration of diagnostic and therapeutic functions into a biosafe nanoplatform with intelligent response functions at the tumor microenvironment (TME) is a promising strategy for cancer therapy. Methods Mn-doped nano-hydroxyapatite (nHAPMn) nanoparticles were successfully prepared via a simple coprecipitation method for magnetic resonance imaging (MRI)-guided photothermal therapy. This study is the first to report on the use of Mn to render biodegradable hydroxyapatite suitable for MRI and effective photothermal therapy (PTT) simultaneously by regulating the pH of nHAPMn during the preparation process. Results Combined with near-infrared (NIR) laser irradiation, a photothermal conversion efficiency of 26% and effective photothermal lethality in vitro were achieved. Moreover, the degradation of nHAPMn led to the release of Mn ions and amplified the MRI signals in an acidic TME, which confirmed that nHAPMn had a good pH-responsive MRI capacity in solid tumors. In animal experiments, tumors in the nHAPMn5+NIR group completely abated after 14 days of treatment, with no significant recurrence during the experiment. Conclusion Therefore, nHAPMn is promising as a nanotheranostic agent and can be effective in clinical diagnosis and therapy for treating cancer.
Collapse
Affiliation(s)
- Chengyu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, People’s Republic of China
| | - Ziyou Ding
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, People’s Republic of China
| | - Yingchao Han
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, People’s Republic of China
| |
Collapse
|
4
|
Hou T, Guo Y, Han W, Zhou Y, Netala VR, Li H, Li H, Zhang Z. Exploring the Biomedical Applications of Biosynthesized Silver Nanoparticles Using Perilla frutescens Flavonoid Extract: Antibacterial, Antioxidant, and Cell Toxicity Properties against Colon Cancer Cells. Molecules 2023; 28:6431. [PMID: 37687260 PMCID: PMC10490294 DOI: 10.3390/molecules28176431] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The present study reports the biomimetic synthesis of silver nanoparticles (AgNPs) using a simple, cost effective and eco-friendly method. In this method, the flavonoid extract of Perilla frutescens (PFFE) was used as a bioreduction agent for the reduction of metallic silver into nanosilver, called P. frutescens flavonoid extract silver nanoparticles (PFFE-AgNPs). The Ultraviolet-Visible (UV-Vis) spectrum showed a characteristic absorption peak at 440 nm that confirmed the synthesis of PFFE-AgNPs. A Fourier transform infrared spectroscopic (FTIR) analysis of the PFFE-AgNPs revealed that flavonoids are involved in the bioreduction and capping processes. X-ray diffraction (XRD) and selected area electron diffraction (SAED) patterns confirmed the face-centered cubic (FCC) crystal structure of PFFE-AgNPs. A transmission electron microscopic (TEM) analysis indicated that the synthesized PFFE-AgNPs are 20 to 70 nm in size with spherical morphology and without any aggregation. Dynamic light scattering (DLS) studies showed that the average hydrodynamic size was 44 nm. A polydispersity index (PDI) of 0.321 denotes the monodispersed nature of PFFE-AgNPs. Further, a highly negative surface charge or zeta potential value (-30 mV) indicates the repulsion, non-aggregation, and stability of PFFE-AgNPs. PFFE-AgNPs showed cytotoxic effects against cancer cell lines, including human colon carcinoma (COLO205) and mouse melanoma (B16F10), with IC50 concentrations of 59.57 and 69.33 μg/mL, respectively. PFFE-AgNPs showed a significant inhibition of both Gram-positive (Listeria monocytogens and Enterococcus faecalis) and Gram-negative (Salmonella typhi and Acinetobacter baumannii) bacteria pathogens. PFFE-AgNPs exhibited in vitro antioxidant activity by quenching 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) free radicals with IC50 values of 72.81 and 92.48 µg/mL, respectively. In this study, we also explained the plausible mechanisms of the biosynthesis, anticancer, and antibacterial effects of PFFE-AgNPs. Overall, these findings suggest that PFFE-AgNPs have potential as a multi-functional nanomaterial for biomedical applications, particularly in cancer therapy and infection control. However, it is important to note that further research is needed to determine the safety and efficacy of these nanoparticles in vivo, as well as to explore their potential in other areas of medicine.
Collapse
Affiliation(s)
- Tianyu Hou
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China; (Y.G.); (W.H.); (Y.Z.); (V.R.N.); (H.L.); (H.L.)
| | | | | | | | | | | | | | - Zhijun Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China; (Y.G.); (W.H.); (Y.Z.); (V.R.N.); (H.L.); (H.L.)
| |
Collapse
|
5
|
Yildiz T, Durdu S, Ozcan K, Usta M. Characterization and investigation of biological properties of silver nanoparticle-doped hydroxyapatite-based surfaces on zirconium. Sci Rep 2023; 13:6773. [PMID: 37101002 PMCID: PMC10130180 DOI: 10.1038/s41598-023-33992-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023] Open
Abstract
The infections leading to failed implants can be controlled mainly by metal and metal oxide-based nanoparticles. In this work, the randomly distributed AgNPs-doped onto hydroxyapatite-based surfaces were produced on zirconium by micro arc oxidation (MAO) and electrochemical deposition processes. The surfaces were characterized by XRD, SEM, EDX mapping and EDX area and contact angle goniometer. AgNPs-doped MAO surfaces, which is beneficial for bone tissue growth exhibited hydrophilic behaviors. The bioactivity of the AgNPs-doped MAO surfaces is improved compared to bare Zr substrate under SBF conditions. Importantly, the AgNPs-doped MAO surfaces exhibited antimicrobial activity for E. coli and S. aureus compared to control samples.
Collapse
Affiliation(s)
- Tuba Yildiz
- Materials Science and Engineering, Gebze Technical University, 41400, Gebze, Turkey
| | - Salih Durdu
- Industrial Engineering, Giresun University, 28200, Giresun, Turkey.
- Genetics and Bioengineering, Giresun University, 28200, Giresun, Turkey.
- Faculty of Engineering, Giresun University, 28200, Giresun, Turkey.
| | - Kadriye Ozcan
- Genetics and Bioengineering, Giresun University, 28200, Giresun, Turkey
| | - Metin Usta
- Materials Science and Engineering, Gebze Technical University, 41400, Gebze, Turkey.
- Aluminum Research Center (GTU-AAUM), Gebze Technical University, 41400, Gebze, Turkey.
| |
Collapse
|
6
|
Turhan EA, Akbaba S, Tezcaner A, Evis Z. Boron nitride nanofiber/Zn-doped hydroxyapatite/polycaprolactone scaffolds for bone tissue engineering applications. BIOMATERIALS ADVANCES 2023; 148:213382. [PMID: 36963343 DOI: 10.1016/j.bioadv.2023.213382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
In this study, Zn doped hydroxyapatite (Zn HA)/boron nitride nanofiber (BNNF)/poly-ε-caprolactone (PCL) composite aligned fibrous scaffolds are produced with rotary jet spinning (RJS) for bone tissue engineering applications. It is hypothesized that addition of Zn HA and BNNF will contribute to cell viability as well as mechanical and osteogenic properties of the PCL scaffolds. Zn HA was synthesized by mixing Ca and P sources followed by sonication and aging whereas BNNF was obtained by the reaction of melamine with boric acid followed by freeze-drying for annealing of fibers. It is found that incorporation of both Zn HA and BNNF in PCL fibers resulted in higher calcium phosphate (CaP) precipitation on the scaffolds. Also, in vitro cell culture studies showed that presence of both Zn HA and BNNF also had synergistic effect for enhanced proliferation and osteogenic activity of Saos-2 cells. Mechanical properties of PCL-Zn HA-BNNF were found similar to that of non-load bearing bones. Furthermore, the presence of Zn HA and BNNF had synergistic effects to cell attachment, proliferation and spreading without causing cytotoxic effect on cells. The highest ALP activity was obtained in the PCL-Zn HA- BNNF group at days 7 and 14 due to release of zinc, calcium, phosphate and boron. Considering its mechanical and bioactivity properties, PCL-Zn HA-BNNF composite scaffolds hold promise as non-load bearing bone substitutes.
Collapse
Affiliation(s)
- Emine Ayşe Turhan
- Department of Micro and Nanotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Sema Akbaba
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey; Boron Research Institute, Turkish Energy Nuclear and Mineral Research Agency, Ankara 06520, Turkey
| | - Ayşen Tezcaner
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey; Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey; Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Zafer Evis
- Department of Micro and Nanotechnology, Middle East Technical University, Ankara 06800, Turkey; Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey.
| |
Collapse
|
7
|
Bian A, Jia F, Wu Z, Li M, Yang H, Huang X, Xie L, Qiao H, Lin H, Huang Y. In Vitro Cytocompatibility and Anti‐biofilm Properties of Electrodeposited Ternary‐Ion‐Doped Hydroxyapatite Coatings on Ti for Orthopaedic Applications. ChemistrySelect 2023. [DOI: 10.1002/slct.202203683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Anqi Bian
- College of Lab Medicine Hebei North University Key Laboratory of Biomedical Materials of Zhangjiakou Zhangjiakou 075000 China
| | - Fenghuan Jia
- College of Lab Medicine Hebei North University Key Laboratory of Biomedical Materials of Zhangjiakou Zhangjiakou 075000 China
| | - Zongze Wu
- Department of Interventional Radiology Shenzhen People's Hospital (The Second Clinical Medical College Jinan University The First Affiliated Hospital Southern University of Science and Technology) Shenzhen 518020 China
| | - Meiyu Li
- College of Lab Medicine Hebei North University Key Laboratory of Biomedical Materials of Zhangjiakou Zhangjiakou 075000 China
| | - Hao Yang
- Key Laboratory for Green Chemical Process of Ministry of Education Wuhan Institute of Technology Wuhan 430205 China
| | - Xiao Huang
- School of Physical Education Guangxi University of Science and Technology Liuzhou 545006 China
| | - Lei Xie
- School of Medicine University of Electronic Science and Technology of China Chengdu 610054 China
| | - Haixia Qiao
- College of Lab Medicine Hebei North University Key Laboratory of Biomedical Materials of Zhangjiakou Zhangjiakou 075000 China
| | - He Lin
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Yong Huang
- College of Lab Medicine Hebei North University Key Laboratory of Biomedical Materials of Zhangjiakou Zhangjiakou 075000 China
- School of Medicine University of Electronic Science and Technology of China Chengdu 610054 China
| |
Collapse
|
8
|
Liu Y, He L, Li J, Luo J, Liang K, Yin D, Tao S, Yang J, Li J. Mussel-Inspired Organic–Inorganic Implant Coating Based on a Layer-by-Layer Method for Anti-infection and Osteogenesis. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yifang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- School of Stomatology, Shandong First Medical University, Jinan 250021, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Libang He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu 610065, P. R. China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Kunneng Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Derong Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Siying Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Kumar M, Mukherjee S, Thakur AK, Raval N, An AK, Gikas P. Aminoalkyl-organo-silane treated sand for the adsorptive removal of arsenic from the groundwater: Immobilizing the mobilized geogenic contaminants. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127916. [PMID: 34986561 DOI: 10.1016/j.jhazmat.2021.127916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Arsenic (As), a geogenic legacy pollutant can be present in environmental matrices (water, soil, plants, or animal) in two redox states (As(III) or As(V)). In the present study, charged mono- and di-amino functionalized triethoxy and methoxyorganosilane (TT1 and TT2- 1% and 5%) were impregnated with quartz sand particles for the treatment of As polluted water. Spectroscopic characterization of organosilane treated sand (STS) indicated the co-existence of minerals (Mg, Mn, Ti), amide, and amidoalkyl groups, which implies the suitability of silanized materials as a metal(loids) immobilization agent from water. Changes in peaks were observed after As sorption in Fourier thermal infrared and EDS images indicating the involvement of chemisorption. Batch sorption studies were performed with the optimized experimental parameters, where an increased removal (>20% for TT2-1% and >60% for TT1-1%) of As was observed with sorbate concentration (50 µg L-1), temp. (25 ± 2 ºC) and sorbent dosages (of 10 g L-1) at 120 min contact time. Among the different adsorbent dosages, 10 g L-1 of both TT1 and TT2 was selected as an optimum dosage (maximum adsorption capacity ≈ 2.91 μg g-1). The sorption model parameters suggested the possibility of chemisorption, charge/ion-dipole interaction for the removal of arsenate.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, Uttrakhand, 248007, India; Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India.
| | - Santanu Mukherjee
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Alok Kumar Thakur
- Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| | - Nirav Raval
- Encore Insoltech Pvt Ltd, Gift City Road, Randesan, Gandhinagar, 382007, India; Department of Earth and Environmental Science, KSKV Kachchh University, Bhuj-Kachchh, Gujarat, 370001, India
| | | | - Petros Gikas
- School of Chemical and Environmental Engineering, Technical University at Crete, Chania 73100, Greece
| |
Collapse
|
10
|
Qiu Y, Gao Y, Liu Y, Li Z, Wei Q, Xu W, Wang Y. Near-infrared electrospun fiber with bimetallic coating for antibacterial and bone regeneration. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Mabrouk M, Mousa SM, ElGhany WAA, Abo-elfadl MT, El-Bassyouni GT. Bioactivity and cell viability of Ag+- and Zr4+-co-doped biphasic calcium phosphate. APPLIED PHYSICS A 2021; 127:948. [DOI: 10.1007/s00339-021-05051-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/28/2021] [Indexed: 09/02/2023]
|
12
|
Saxena V, Pandey LM. Design and characterization of biphasic ferric hydroxyapatite-zincite nanoassembly for bone tissue engineering. CERAMICS INTERNATIONAL 2021; 47:28274-28287. [DOI: 10.1016/j.ceramint.2021.06.244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
13
|
Sochacka P, Jurczyk MU, Kowalski K, Wirstlein PK, Jurczyk M. Ultrafine-Grained Ti-31Mo-Type Composites with HA and Ag, Ta 2O 5 or CeO 2 Addition for Implant Applications. MATERIALS 2021; 14:ma14030644. [PMID: 33573314 PMCID: PMC7866795 DOI: 10.3390/ma14030644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
Ultrafine-grained Ti31Mo alloy and Ti31Mo5HA, Ti31Mo5HA-Ag (or Ta2O5, CeO2) composites with a grain size of approximately 2 μm were produced by the application of mechanical alloying and powder metallurgy. Additionally, the surface of the Ti31Mo alloy was modified. In the first stage, the specimens were immersed in 5M NaOH for 24 h at 60 °C. In the second stage, hydroxyapatite (HA) was deposited on the sample surface. The cathodic deposition at −5 V vs. open circuit potential (OCP) in the electrolyte containing 0.25M CaNa2-EDTA (di-calcium ethylenediaminetetraacetic acid), 0.25M K2HPO4 in 1M NaOH at 120 °C for 2 h was applied. The bulk Ti31Mo alloy is a single β-type phase. In the alkali-modified surface titanium oxide, Ti3O is formed. After hydrothermal treatment, the surface layer mostly consists of the Ca10(PO4)6(OH)2 (81.23%) with about 19% content of CaHPO4·2H2O. Using optical profiler, roughness 2D surface topography parameters were estimated. The in vitro cytocompatibility of synthesized materials was studied. The cell lines of normal human osteoblasts (NHost) and human periodontal ligament fibroblasts (HPdLF) was conducted in the presence of tested biomaterials. Ultrafine-grained Ti-based composites altered with HA and Ag, Ta2O5 or CeO2 have superior biocompatibility than the microcrystalline Ti metal. NHost and HPdLF cells in the contact with the synthesized biomaterial showed stable proliferation activity. Biocompatibility tests carried out indicate that the ultrafine-grained Ti31Mo5HA composites with Ag, Ta2O5, or CeO2 could be a good candidate for implant applications.
Collapse
Affiliation(s)
- Patrycja Sochacka
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawła II 24, 61-138 Poznan, Poland; (K.K.); (M.J.)
- Correspondence: ; Tel.: +48-61-665-3508
| | - Mieczyslawa U. Jurczyk
- Division of Mother’s and Child’s Health, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland;
| | - Kamil Kowalski
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawła II 24, 61-138 Poznan, Poland; (K.K.); (M.J.)
| | - Przemyslaw K. Wirstlein
- Department of Gynaecology and Obstetrics, Division of Reproduction, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland;
| | - Mieczyslaw Jurczyk
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawła II 24, 61-138 Poznan, Poland; (K.K.); (M.J.)
| |
Collapse
|
14
|
Türk S, Altınsoy I, Efe GÇ, Ipek M, Özacar M, Bindal C. A novel multifunctional NCQDs-based injectable self-crosslinking and in situ forming hydrogel as an innovative stimuli responsive smart drug delivery system for cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111829. [PMID: 33579469 DOI: 10.1016/j.msec.2020.111829] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/08/2020] [Accepted: 12/20/2020] [Indexed: 11/16/2022]
Abstract
In this work, we offer an easy approach to develop a novel injectable, pH sensitive and in situ smart drug delivery system for use in cancer treatments. The developed hydrogels containing nitrogen doped carbon quantum dots (NCQD), doxorubicin (Dox) and hydroxyapatite (HA) were obtained by in situ self-crosslinking. Characterization of the synthesized nanomaterials, interactions between NCQD/Dox/HA hydrogel structure were carried out by TEM, FESEM, EDS, FTIR, XPS, XRD, Zeta potential, DLS, UV-Vis, SEM, gelation time, injectability and DIST measurements. In addition, antibacterial evaluation which was performed against Staphylococcus aureus realized that HA compound significantly increased the antibacterial activity of the hybrid hydrogel. The anticancer drug release to the tumor cell microenvironment with a pH of 5.5 was found to be higher compared to the release in the normal physiological range of pH 6.5 and 7.4. MTT and live/dead assays were also performed using L929 fibroblastic cell lines to investigate the cytotoxic behavior of NCQDs, and NCQDs/Dox/HA hydrogels. Furthermore, the NCQDs/Dox/HA hydrogel could transport Dox within a MCF-7 cancerous cell at specifically acidic pH. Additionally, imaging of cell line was observed using NCQDs and their use in imaging applications and multicolor features in the living cell system were evaluated. The overall study showed that in situ formed NCQDs/Dox/HA hydrogel represented a novel and multifunctional smart injectable controlled-release drug delivery system with great potential, which may be considered as an attractive minimal invasive smart material for future intelligent delivery of chemotherapeutic drug and disease therapy applications.
Collapse
Affiliation(s)
- S Türk
- Sakarya University, Biomedical, Magnetic and Semi Conductive Materials Research Center (BIMAS-RC), Esentepe Campus, 54187, Sakarya, Turkey; Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications and Sustainably Research & Development Group (BIOEℕAMS R&D Group), 54187, Sakarya, Turkey
| | - I Altınsoy
- Sakarya University, Faculty of Engineering, Department of Metallurgy and Materials Engineering, Esentepe Campus, 54187, Sakarya, Turkey
| | - G Çelebi Efe
- Sakarya University of Applied Sciences, Faculty of Technology Metallurgical and Materials Engineering, Esentepe Campus, 54187, Sakarya, Turkey
| | - M Ipek
- Sakarya University, Faculty of Engineering, Department of Metallurgy and Materials Engineering, Esentepe Campus, 54187, Sakarya, Turkey
| | - M Özacar
- Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications and Sustainably Research & Development Group (BIOEℕAMS R&D Group), 54187, Sakarya, Turkey; Sakarya University, Science & Arts Faculty, Department of Chemistry, Sakarya 54187, Turkey
| | - C Bindal
- Sakarya University, Faculty of Engineering, Department of Metallurgy and Materials Engineering, Esentepe Campus, 54187, Sakarya, Turkey.
| |
Collapse
|
15
|
Awasthi S, Pandey SK, Arunan E, Srivastava C. A review on hydroxyapatite coatings for the biomedical applications: experimental and theoretical perspectives. J Mater Chem B 2021; 9:228-249. [DOI: 10.1039/d0tb02407d] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The production of hydroxyapatite (HAP) composite coatings has continuously been investigated for bone tissue applications during the last few decades due to their significant bioactivity and osteoconductivity.
Collapse
Affiliation(s)
- Shikha Awasthi
- Department of Materials Engineering
- Indian Institute of Science Bangalore
- Bangalore 560012
- India
| | - Sarvesh Kumar Pandey
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science Bangalore
- Bangalore 560012
- India
| | - E. Arunan
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science Bangalore
- Bangalore 560012
- India
| | - Chandan Srivastava
- Department of Materials Engineering
- Indian Institute of Science Bangalore
- Bangalore 560012
- India
| |
Collapse
|
16
|
Marczewski M, Jurczyk MU, Kowalski K, Miklaszewski A, Wirstlein PK, Jurczyk M. Composite and Surface Functionalization of Ultrafine-Grained Ti23Zr25Nb Alloy for Medical Applications. MATERIALS 2020; 13:ma13225252. [PMID: 33233693 PMCID: PMC7699683 DOI: 10.3390/ma13225252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/06/2020] [Accepted: 11/18/2020] [Indexed: 12/26/2022]
Abstract
In this study, the ultrafine-grained Ti23Zr25Nb-based composites with 45S5 Bioglass and Ag, Cu, or Zn additions were produced by application of the mechanical alloying technique. Additionally, the base Ti23Zr25Nb alloy was electrochemically modified in the two stages of processing: electrochemical etching in the solution of H3PO4 and HF followed by electrochemical deposition in Ca(NO3)2, (NH4)2HPO4, and HCl. The in vitro cytocompatibility studies were also done with comparison to the commercially pure titanium. The established cell lines of Normal Human Osteoblasts (NHost, CC-2538) and Human Periodontal Ligament Fibroblasts (HPdLF, CC-7049) were used. The culture was conducted among the tested materials. Ultrafine-grained titanium-based composites modified with 45S5 Bioglass and Ag, Cu, or Zn metals have higher biocompatibility than the reference material in the form of a microcrystalline Ti. Proliferation activity was at a stable level with contact with studied materials. In vitro evaluation research showed that the ultrafine-grained Ti23Zr25Nb-based composites with 45S5 Bioglass and Ag, Cu, or Zn additions, with a Young modulus below 50 GPa, can be further used in the biomedical field.
Collapse
Affiliation(s)
- Mateusz Marczewski
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawła II 24, 61-138 Poznan, Poland; (K.K.); (A.M.); (M.J.)
- Correspondence: ; Tel.: +48-61-665-3508
| | - Mieczysława U. Jurczyk
- Division of Mother’s and Child’s Health, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland;
| | - Kamil Kowalski
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawła II 24, 61-138 Poznan, Poland; (K.K.); (A.M.); (M.J.)
| | - Andrzej Miklaszewski
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawła II 24, 61-138 Poznan, Poland; (K.K.); (A.M.); (M.J.)
| | - Przemysław K. Wirstlein
- Department of Gynaecology and Obstetrics, Division of Reproduction, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland;
| | - Mieczysław Jurczyk
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawła II 24, 61-138 Poznan, Poland; (K.K.); (A.M.); (M.J.)
| |
Collapse
|
17
|
Yu S, Guo D, Han J, Sun L, Zhu H, Yu Z, Dargusch M, Wang G. Enhancing Antibacterial Performance and Biocompatibility of Pure Titanium by a Two-Step Electrochemical Surface Coating. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44433-44446. [PMID: 32914960 DOI: 10.1021/acsami.0c10032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A two-step electrochemical surface treatment has been developed to modify the CP Ti surface on commercially pure titanium grade 2 (CP Ti): (1) anodic oxidation to form TiO2 nanotube precoatings loaded with silver (Ag) and (2) microarc oxidation (MAO) to produce a porous Ca-P-Ag coating in an electrolyte containing Ag, Ca, and P. One-step MAO in the same electrolyte has also been used to produce porous Ca-P-Ag coatings without anodic oxidation and preloaded Ag as a control. Surface morphologies and alloying chemistry of the two coatings were characterized by SEM, EDS, and XPS. Biocompatibility and antimicrobial properties have been evaluated by the MTT method and co-culture of Staphylococcus aureus, respectively. It is demonstrated that porous coatings with high Ag content can be achieved on the CP Ti by the two-step treatment. The optimized MAO voltage for excellent comprehensive properties of the coating is 350 V, in which a suitable chemical equilibrium between Ag, Ca, and P contents and a Ca/P ratio of 1.67 similar to HA can be obtained, and the Ag particles are in the size of less than 100 nm and embedded into the underneath of the coating surface. After being contacted with S. aureus for 1 and 7 days, the average bactericidal rates were 99.53 and 89.27% and no cytotoxicity was detected. In comparison, the one-step MAO coatings contained less Ag, had a lower Ca/P ratio, and showed lower antimicrobial ability than the two-step treated samples.
Collapse
Affiliation(s)
- Sen Yu
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P R China
- Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an 710016 , P R China
| | - Dagang Guo
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P R China
| | - Jianye Han
- Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an 710016 , P R China
| | - Lijuan Sun
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P R China
| | - Hui Zhu
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P R China
| | - Zhentao Yu
- Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an 710016 , P R China
| | - Matthew Dargusch
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, St Lucia, QLD 4072, Australia
| | - Gui Wang
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
18
|
Karamishamloo M, Mirmohammadi SA, Davachi SM. Polyethylene glycol/polyhedral oligomeric silsesquioxane as an
in situ
photocrosslinkable polymeric nanohybrid. POLYM INT 2020. [DOI: 10.1002/pi.5981] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Morteza Karamishamloo
- Department of Chemical EngineeringCentral Tehran Branch, Islamic Azad University Tehran Iran
| | - Seyed Amin Mirmohammadi
- Department of Chemical EngineeringCentral Tehran Branch, Islamic Azad University Tehran Iran
| | - Seyed Mohammad Davachi
- Soft Tissue Engineering Research CenterTissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University Tehran Iran
- Department of Food ScienceCollege of Agriculture and Life Science, Cornell University Ithaca NY USA
| |
Collapse
|
19
|
Mahmoud ME, Allam EA, Saad EA, El-Khatib AM, Soliman MA. Remediation of Co/Zn ions and their 60Co/65Zn radioactive nuclides from aqueous solutions by acid activated nanobentonite. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.enmm.2019.100277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|