1
|
Patil D, Aravindan S, Yadav MJ, Rao PV. Surface modification of a commercial bone plate (Ti6Al4V) implant for improved antibacterial and cytocompatibility via thermal dewetting of a silver thin film. Biomed Phys Eng Express 2024; 10:035017. [PMID: 38564254 DOI: 10.1088/2057-1976/ad34dc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
The high demand for bone grafts has motivated the development of implants with excellent osteogenic activity, whereas the risk of implant-associated infection, particularly given the rise of antimicrobial resistance, has compelled the development of implants with innovative antimicrobial strategies in which a small amount of bactericidal agent can effectively kill a wide range of bacteria. To induce antibacterial property, the surface of Grade-5 bone plate titanium implants used in clinical applications was modified using direct current (DC) sputter coating followed by thermal annealing. The 15 nm silver film-coated implants were thermally annealed in the furnace for 15 min at 750 °C. The modified implant surface's antibacterial efficacy againstEscherichia coli(E. coli),Staphylococcus aureus(S. aureus),Salmonella typhi, andMethicillin-resistant staphylococcus aureusbacteria has been assessed using a colony-forming assay. On the modified implant surface, the growth ofE. coliandS. aureusbacteria is reduced by 99.72%, while highly drug-resistant bacteria are inhibited by 96.59%. The MTT assay was used to assess the cytotoxicity of the modified bone-implant surface against NIH3T3 mouse fibroblast cells. The modified bone-implant surface promoted fibroblast growth and demonstrated good cytocompatibility. Furthermore, the mechanical properties of the implant were not harmed by this novel surface modification method. This method is simple and provides new insight into surface modification of commercial metallic implants to have effective antibacterial properties against various classes of bacteria.
Collapse
Affiliation(s)
- Deepak Patil
- Department of Production Engineering, National Institute of Technology Tiruchirappalli, Tamil Nandu - 620015, India
| | - Sivanandam Aravindan
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, Delhi - 110016, India
| | - Mahesh J Yadav
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, Delhi - 110016, India
| | | |
Collapse
|
2
|
Rial R, Liu Z, Messina P, Ruso JM. Role of nanostructured materials in hard tissue engineering. Adv Colloid Interface Sci 2022; 304:102682. [PMID: 35489142 DOI: 10.1016/j.cis.2022.102682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 01/05/2023]
Abstract
The rise in the use of biomaterials in bone regeneration in the last decade has exponentially multiplied the number of publications, methods, and approaches to improve and optimize their functionalities and applications. In particular, biomimetic strategies based on the self-assembly of molecules to design, create and characterize nanostructured materials have played a very relevant role. We address this idea on four different but related points: self-setting bone cements based on calcium phosphate, as stable tissue support and regeneration induction; metallic prosthesis coatings for cell adhesion optimization and prevention of inflammatory response exacerbation; bio-adhesive hybrid materials as multiple drug delivery localized platforms and finally bio-inks. The effect of the physical, chemical, and biological properties of the newest biomedical devices on their bone tissue regenerative capacity are summarized, described, and analyzed in detail. The roles of experimental conditions, characterization methods and synthesis routes are emphasized. Finally, the future opportunities and challenges of nanostructured biomaterials with their advantages and shortcomings are proposed in order to forecast the future directions of this field of research.
Collapse
|
3
|
Antibacterial Activity and Drug Release of Ciprofloxacin Loaded PVA-nHAp Nanocomposite Coating on Ti-6Al-4 V. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02361-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Wang F, Wang X, Xie E, Wang F, Gan Q, Ping S, Wei J, Li F, Wang Z. Simultaneous incorporation of gallium oxide and tantalum microparticles into micro-arc oxidation coating of titanium possessing antibacterial effect and stimulating cellular response. BIOMATERIALS ADVANCES 2022; 135:212736. [PMID: 35929211 DOI: 10.1016/j.bioadv.2022.212736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022]
Abstract
Orthopedic implants with both osteogenesis and antibacterial functions are particularly promising for bone repair and substitutes. In this study, a micro-arc oxidation (MAO) coating containing titanium dioxide (TiO2), gallium oxide (Ga2O3) and tantalum oxide (Ta2O5) on the titanium surface (MGT) was fabricated by dispersing Ga2O3 and Ta microparticles in the electrolyte. The results showed that the simultaneous incorporation of Ga2O3 and Ta microparticles into the MAO coating resulted in optimized surface performance (e.g., micro-topography, roughness, wettability, surface energy, and protein absorption) of MGT compared with pure titanium (pTi). In addition, MGT exhibited outstanding corrosion resistance owing to the presence of both Ga2O3 and Ta microparticles, which exhibit excellent corrosion resistance and their microparticles were incorporated into the micropores of the coating. Moreover, MGT with good cytocompatibility and optimized surface resulted in improved cellular responses (e.g., proliferation and osteogenic differentiation) of rat bone mesenchymal stem cells, which was attributed to Ta microparticles with outstanding osteogenic bioactivity. Furthermore, the excellent antibacterial effect of MGT was attributed to the slow release of Ga3+ from the coating. Thus, the simultaneous incorporation of Ga2O3 and Ta microparticles into the MAO coating of MGT exhibited excellent cytocompatibility, osteogenic bioactivity, antibacterial functions, and corrosion resistance, suggesting that MGT possesses great potential for bone repair applications.
Collapse
Affiliation(s)
- Fan Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Xuehong Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - En Xie
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Fan Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Gan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Sun Ping
- Department of Orthopaedics, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | - Fengqian Li
- Department of Orthopaedics, Shanghai Eighth People's Hospital, Shanghai 200235, China.
| | - Zimin Wang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
5
|
Antimicrobial Properties of Strontium Functionalized Titanium Surfaces for Oral Applications, A Systematic Review. COATINGS 2021. [DOI: 10.3390/coatings11070810] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this systematic review was to assess the current scientific evidence of the antimicrobial potential of strontium (Sr) when used to functionalize titanium (Ti) for oral applications. Out of an initial list of 1081 potentially relevant publications identified in three electronic databases (MEDLINE via PubMed, Scopus, and Cochrane) up to 1 February 2021, nine publications based on in vitro studies met the inclusion criteria. The antimicrobial potential of Sr was investigated on different types of functionalized Ti substrates, employing different application methods. Nine studies reported on the early, i.e., 6–24 h, and two studies on the late, i.e., 7–28 days, antimicrobial effect of Sr, primarily against Staphylococcus aureus (S. aureus) and/or Escherichia coli (E. coli). Sr-modified samples demonstrated relevant early antimicrobial potential against S. aureus in three studies; only one of which presented statistical significance values, while the other two presented only the percentage of antimicrobial rate and biofilm inhibition. A relevant late biofilm inhibition potential against S. aureus of 40% and 10%—after 7 and 14 days, respectively—was reported in one study. Combining Sr with other metal ions, i.e., silver (Ag), zinc (Zn), and fluorine (F), demonstrated a significant antimicrobial effect and biofilm inhibition against both S. aureus and E. coli. Sr ion release within the first 24 h was generally low, i.e., below 50 µg/L and 0.6 ppm; however, sustained Sr ion release for up to 30 days, while maintaining up to 90% of its original content, was also demonstrated. Thus, in most studies included herein, Sr-functionalized Ti showed a limited immediate (i.e., 24 h) antimicrobial effect, likely due to a low Sr ion release; however, with an adequate Sr ion release, a relevant antimicrobial effect, as well as a biofilm inhibition potential against S. aureus—but not E. coli—was observed at both early and late timepoints. Future studies should assess the antimicrobial potential of Ti functionalized with Sr against multispecies biofilms associated with peri-implantitis.
Collapse
|
6
|
Senevirathne SWMAI, Hasan J, Mathew A, Woodruff M, Yarlagadda PKDV. Bactericidal efficiency of micro- and nanostructured surfaces: a critical perspective. RSC Adv 2021; 11:1883-1900. [PMID: 35424086 PMCID: PMC8693530 DOI: 10.1039/d0ra08878a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/12/2020] [Indexed: 12/21/2022] Open
Abstract
Micro/nanostructured surfaces (MNSS) have shown the ability to inactivate bacterial cells by physical means. An enormous amount of research has been conducted in this area over the past decade. Here, we review the various surface factors that affect the bactericidal efficiency. For example, surface hydrophobicity of the substrate has been accepted to be influential on the bactericidal effect of the surface, but a review of the literature suggests that the influence of hydrophobicity differs with the bacterial species. Also, various bacterial viability quantification methods on MNSS are critically reviewed for their suitability for the purpose, and limitations of currently used protocols are discussed. Presently used static bacterial viability assays do not represent the conditions of which those surfaces could be applied. Such application conditions do have overlaying fluid flow, and bacterial behaviours are drastically different under flow conditions compared to under static conditions. Hence, it is proposed that the bactericidal effect should be assessed under relevant fluid flow conditions with factors such as shear stress and flowrate given due significance. This review will provide a range of opportunities for future research in design and engineering of micro/nanostructured surfaces with varying experimental conditions.
Collapse
Affiliation(s)
- S W M A I Senevirathne
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| | - J Hasan
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| | - A Mathew
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| | - M Woodruff
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| | - P K D V Yarlagadda
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| |
Collapse
|
7
|
Liu J, Liu J, Attarilar S, Wang C, Tamaddon M, Yang C, Xie K, Yao J, Wang L, Liu C, Tang Y. Nano-Modified Titanium Implant Materials: A Way Toward Improved Antibacterial Properties. Front Bioeng Biotechnol 2020; 8:576969. [PMID: 33330415 PMCID: PMC7719827 DOI: 10.3389/fbioe.2020.576969] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/22/2020] [Indexed: 01/01/2023] Open
Abstract
Titanium and its alloys have superb biocompatibility, low elastic modulus, and favorable corrosion resistance. These exceptional properties lead to its wide use as a medical implant material. Titanium itself does not have antibacterial properties, so bacteria can gather and adhere to its surface resulting in infection issues. The infection is among the main reasons for implant failure in orthopedic surgeries. Nano-modification, as one of the good options, has the potential to induce different degrees of antibacterial effect on the surface of implant materials. At the same time, the nano-modification procedure and the produced nanostructures should not adversely affect the osteogenic activity, and it should simultaneously lead to favorable antibacterial properties on the surface of the implant. This article scrutinizes and deals with the surface nano-modification of titanium implant materials from three aspects: nanostructures formation procedures, nanomaterials loading, and nano-morphology. In this regard, the research progress on the antibacterial properties of various surface nano-modification of titanium implant materials and the related procedures are introduced, and the new trends will be discussed in order to improve the related materials and methods.
Collapse
Affiliation(s)
- Jianqiao Liu
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Youjiang Medical University for Nationalities, Baise, China
| | - Jia Liu
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Shokouh Attarilar
- Department of Pediatric Orthopaedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chong Wang
- College of Mechanical Engineering, Dongguan University of Technology, Dongguan, China
| | - Maryam Tamaddon
- Institute of Orthopaedic and Musculoskeletal Science, Division of Surgery & Orthopaedic Science, University College London, The Royal National National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Chengliang Yang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Kegong Xie
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jinguang Yao
- Youjiang Medical University for Nationalities, Baise, China
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chaozong Liu
- Institute of Orthopaedic and Musculoskeletal Science, Division of Surgery & Orthopaedic Science, University College London, The Royal National National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Yujin Tang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
8
|
Ziąbka M, Kiszka J, Trenczek-Zając A, Radecka M, Cholewa-Kowalska K, Bissenik I, Kyzioł A, Dziadek M, Niemiec W, Królicka A. Antibacterial composite hybrid coatings of veterinary medical implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110968. [PMID: 32409094 DOI: 10.1016/j.msec.2020.110968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 01/07/2023]
Abstract
The aim of the work was to develop innovative antibacterial hybrid coatings applied on implants that are used for anastomoses of animals' long bones and to assess their physicochemical and biological properties. Plates made of the titanium alloy were covered with composite hybrid layers so as to protect the implant surface against corrosion and to enhance it with antibacterial properties.The hybrid coatings were obtained electrochemical oxidation and sol-gel. First, a layer of titanium nanotubes was applied to the implants surface through anodization. Next, the sol-gel method was used to create the second layer with silver nanoparticles. The microstructure examination of the materials was performed with the SEM. The phase composition analysis was carried out via the X-ray diffraction. The surface parameters (roughness, contact angle and free surface energy) were assessed. Biological studies of implants were conducted, including the analysis of degradation processes, cell response and bactericidal activity. The results confirmed that the hybrid antibacterial layers effectively protected the implant surface against scratches and corrosion and eliminated bacteria, which in turn would promote bone healing. The advantageous physicochemical and biological properties of metallic implants with hybrid composite layers raise hopes for their applicability in the veterinary treatment of bone fractures.
Collapse
Affiliation(s)
- Magdalena Ziąbka
- Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow 30-059, Poland.
| | - Joanna Kiszka
- Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, Krakow 30-059, Poland
| | - Anita Trenczek-Zając
- Department of Inorganic Chemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow 30-059, Poland.
| | - Marta Radecka
- Department of Inorganic Chemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow 30-059, Poland.
| | - Katarzyna Cholewa-Kowalska
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Krakow, Poland.
| | | | - Agnieszka Kyzioł
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland.
| | - Michał Dziadek
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland.
| | - Wiktor Niemiec
- Department of Silicates and Macromolecular Compounds, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow 30-059, Poland.
| | - Aleksandra Królicka
- University of Gdansk, Intercollegiate Faculty of Biotechnology UG-MUG, Laboratory of Biologically Active Compounds, Gdansk 80-307, Poland.
| |
Collapse
|
9
|
Souza JGS, Bertolini M, Costa RC, Cordeiro JM, Nagay BE, de Almeida AB, Retamal-Valdes B, Nociti FH, Feres M, Rangel EC, Barão VAR. Targeting Pathogenic Biofilms: Newly Developed Superhydrophobic Coating Favors a Host-Compatible Microbial Profile on the Titanium Surface. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10118-10129. [PMID: 32049483 DOI: 10.1021/acsami.9b22741] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polymicrobial infections are one of the most common reasons for inflammation of surrounding tissues and failure of implanted biomaterials. Because microorganism adhesion is the first step for biofilm formation, physical-chemical modifications of biomaterials have been proposed to reduce the initial microbial attachment. Thus, the use of superhydrophobic coatings has emerged because of their anti-biofilm properties. However, these coatings on the titanium (Ti) surface have been developed mainly by dual-step surface modification techniques and have not been tested using polymicrobial biofilms. Therefore, we developed a one-step superhydrophobic coating on the Ti surface by using a low-pressure plasma technology to create a biocompatible coating that reduces polymicrobial biofilm adhesion and formation. The superhydrophobic coating on Ti was created by the glow discharge plasma using Ar, O2, and hexamethyldisiloxane gases, and after full physical, chemical, and biological characterizations, we evaluated its properties regarding oral biofilm inhibition. The newly developed coating presented an increased surface roughness and, consequently, superhydrophobicity (contact angle over 150°) and enhanced corrosion resistance (p < 0.05) of the Ti surface. Furthermore, proteomic analysis showed a unique pattern of protein adsorption on the superhydrophobic coating without drastically changing the biologic processes mediated by proteins. Additionally, superhydrophobic treatment did not present a cytotoxic effect on fibroblasts or reduction of proliferation; however, it significantly reduced (≈8-fold change) polymicrobial adhesion (bacterial and fungal) and biofilm formation in vitro. Interestingly, superhydrophobic coating shifted the microbiological profile of biofilms formed in situ in the oral cavity, reducing by up to ≈7 fold pathogens associated with the peri-implant disease. Thus, this new superhydrophobic coating developed by a one-step glow discharge plasma technique is a promising biocompatible strategy to drastically reduce microbial adhesion and biofilm formation on Ti-based biomedical implants.
Collapse
Affiliation(s)
- João G S Souza
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), 901 Limeira Avenue, Piracicaba, São Paulo 13414-903, Brazil
| | - Martinna Bertolini
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06030, United States
| | - Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), 901 Limeira Avenue, Piracicaba, São Paulo 13414-903, Brazil
| | - Jairo M Cordeiro
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), 901 Limeira Avenue, Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), 901 Limeira Avenue, Piracicaba, São Paulo 13414-903, Brazil
| | - Amanda B de Almeida
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), 901 Limeira Avenue, Piracicaba, São Paulo 13414-903, Brazil
| | - Belén Retamal-Valdes
- Dental Research Division, Guarulhos University, 88 Eng. Prestes Maia Street, Guarulhos, São Paulo 07023-070, Brazil
| | - Francisco H Nociti
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), 901 Limeira Avenue, Piracicaba, São Paulo 13414-903, Brazil
| | - Magda Feres
- Dental Research Division, Guarulhos University, 88 Eng. Prestes Maia Street, Guarulhos, São Paulo 07023-070, Brazil
| | - Elidiane C Rangel
- Laboratory of Technological Plasmas, Institute of Science and Technology, São Paulo State University (UNESP), 511 Três de Março Avenue, Sorocaba, São Paulo 18087-180, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), 901 Limeira Avenue, Piracicaba, São Paulo 13414-903, Brazil
| |
Collapse
|
10
|
Koopaie M, Bordbar-Khiabani A, Kolahdooz S, Darbandsari AK, Mozafari M. Advanced surface treatment techniques counteract biofilm-associated infections on dental implants. MATERIALS RESEARCH EXPRESS 2020; 7:015417. [DOI: 10.1088/2053-1591/ab6a57] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
Abstract
Abstract
Topography and surface chemistry can significantly affect biofilm formation on dental implants. Recently, the γ-TiAl alloy was considered as the most reliable candidates for the preparation of dental implants because of its excellent mechanical strength, chemical stability and biocompatibility. The emphasis of this study lies in the effects of high-speed milling assisted the minimum quantity of lubrication (HSM-MQL), micro-current wire electrical discharge machining (mWEDM), Er,Cr:YSGG laser and sandblasting/large-grit/acid-etching (SLA) treatments on surface morphology, topography, chemical composition, wettability and biofilm-associated infections on the surface of each group. The surface-treated samples were analyzed using a scanning electron microscope (SEM), SEM surface reconstruction, energy dispersive x-ray spectroscopy (EDS) and water contact angle measuring system. SEM and topography images of mWEDM and laser-treated surfaces showed more irregular surfaces compared to SLA and HSM-MQL surfaces. Results showed that mWEDM and laser-treated surfaces revealed hydrophobic behavior. A significant decrease of biofilm formation was observed on mWEDM treated surface due to the hydrophobicity and existence of the copper element in the recast layer chemical composition. Moreover, EDS confirmed that the zirconium, silicon, and fluorine elements were decorated onto the SLA treated γ-TiAl surface that can have a direct effect on the anti-bacterial activity.
Collapse
|
11
|
Guo X, Wang Q, Lai Q, Ouyang Q, Li P, Yu HD, Huang W. Biomass-Templated Fabrication of Metallic Materials for Photocatalytic and Bactericidal Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1271. [PMID: 31003439 PMCID: PMC6514999 DOI: 10.3390/ma12081271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 11/30/2022]
Abstract
In this paper, we report a simple, feasible and low-cost method to fabricate self-standing metallic materials using cellulose-based biomass as sacrificial templates. This process involves the impregnation of metallic precursors to the cellulose fibers of biomass templates and the transformation of the precursors to corresponding metals or metal oxides (as well as the removal of the cellulose framework) at an elevated temperature. The structures of the metallic materials as fabricated take the form of architectures of biomass templates (e.g., chromatography paper, medical absorbent cotton, catkins of reed, seed balls of oriental plane, and petals of peach blossom), and the various kinds of metals and metal oxides fabricated with these templates include silver, gold, anatase, cupric oxide, zinc oxide, etc. We have demonstrated photocatalytic and bactericidal applications of such metallic materials, and they should find more applications in electronics, catalysis, energy storage, biomedicine and so on.
Collapse
Affiliation(s)
- Xueying Guo
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Qianqian Wang
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Qiongyu Lai
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Qiran Ouyang
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Peng Li
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
- Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Hai-Dong Yu
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
- Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Wei Huang
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
- Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
12
|
Wandiyanto JV, Cheeseman S, Truong VK, Kobaisi MA, Bizet C, Juodkazis S, Thissen H, Crawford RJ, Ivanova EP. Outsmarting superbugs: bactericidal activity of nanostructured titanium surfaces against methicillin- and gentamicin-resistantStaphylococcus aureusATCC 33592. J Mater Chem B 2019. [DOI: 10.1039/c9tb00102f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The colonisation of biomaterial surfaces by pathogenic bacteria is a significant issue of concern, particularly in light of the rapid rise of antibiotic resistance.
Collapse
Affiliation(s)
- Jason V. Wandiyanto
- School of Science
- Faculty of Science
- Engineering and Technology
- Swinburne University of Technology
- Hawthorn 3122 VIC
| | - Samuel Cheeseman
- School of Science
- College of Science
- Engineering and Health
- RMIT University
- Melbourne 3000 VIC
| | - Vi Khanh Truong
- School of Science
- College of Science
- Engineering and Health
- RMIT University
- Melbourne 3000 VIC
| | - Mohammad Al Kobaisi
- School of Science
- Faculty of Science
- Engineering and Technology
- Swinburne University of Technology
- Hawthorn 3122 VIC
| | | | - Saulius Juodkazis
- Centre for Micro-Photonics
- Faculty of Science
- Engineering and Technology
- Swinburne University of Technology
- Hawthorn 3122 VIC
| | | | - Russell J. Crawford
- School of Science
- College of Science
- Engineering and Health
- RMIT University
- Melbourne 3000 VIC
| | - Elena P. Ivanova
- School of Science
- College of Science
- Engineering and Health
- RMIT University
- Melbourne 3000 VIC
| |
Collapse
|