1
|
Zhang L, Chen M, Wang W, Luo Z, Zheng Y. Molecular-Based Nanoplatform Leads to the Formation of a Self-Indicating Responsive Drug Delivery System. Molecules 2025; 30:1782. [PMID: 40333797 PMCID: PMC12029280 DOI: 10.3390/molecules30081782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/12/2025] [Accepted: 04/14/2025] [Indexed: 05/09/2025] Open
Abstract
We report the design and biological evaluation of a nanoplatform featuring controllable aggregation-induced emission (AIE) behavior. The free rotation of benzene rings (4-(1,2,2-triphenylvinyl) benzaldehyde) largely suppresses fluorescence in the pure organic phase. However, water-induced molecular aggregation enhances the fluorescence signal. The delivery system follows the membrane-cytoplasm-nucleus route and it leads to apoptosis in two cancer cells (U937 cells and Hela cells). The AIE moiety accumulates in the cytoplasm, emitting a bright-blue signal, but the anticancer drug doxorubicin selectively targets the nucleus with unique red emission. The current noninvasive method with DOX-triggered apoptosis holds promise for tumor diagnosis and real-time imaging.
Collapse
Affiliation(s)
- Lingbo Zhang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha 410008, China;
| | - Muhua Chen
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China; (M.C.); (W.W.); (Z.L.)
| | - Weihao Wang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China; (M.C.); (W.W.); (Z.L.)
| | - Zhijie Luo
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China; (M.C.); (W.W.); (Z.L.)
| | - Yuhui Zheng
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China; (M.C.); (W.W.); (Z.L.)
| |
Collapse
|
2
|
Zhang M, Sun Z, Sun Y, Zhao L, Yang R, Qu L. A novel amidine-based fluorescent probe TPE-4 + for rapid detection of anionic surfactant sodium dodecyl sulfate. Talanta 2024; 270:125614. [PMID: 38169276 DOI: 10.1016/j.talanta.2023.125614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
An accurate, fast, and simple surfactant detection method is of great significance for monitoring surfactants pollution. Sodium dodecyl sulfate (SDS) is one of the most commonly used anionic surfactants and has been listed as an important monitoring pollutant for surfactant residues. Herein, a novel fluorescent probe named TPE-4+ with four amidines as the recognition functional group and tetraphenylethene as the fluorophore was fabricated. Due to the special intramolecular environment, the probe showed selectively identification towards SDS which made an aggregation induced fluorescence enhencement. Under the optimum conditions, the fluorescence enhencement of TPE-4+ is linearly related to the concentration of SDS in the range of 5.0-60.0 μM with limit of detection (LOD) of 0.010 μM and limit of quantification (LOQ) of 0.034 μM. Relative to the reported methods, the probe in our work showed better selectivity and sensitivity. The proposed method was successfully applied for the SDS determination of disinfecting bowls.
Collapse
Affiliation(s)
- Mingwei Zhang
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhiyuan Sun
- Key Laboratory of Food Safety Quick Testing and Smart Supervision Technology for State Market Regulation, Henan Insitute of Food and Salt Industry Inspection Technology, Zhengzhou, 450003, China
| | - Yuanqiang Sun
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, China
| | - Linping Zhao
- Zhengzhou Zhongdao Biotechnology Company Limited, Zhengzhou, 450001, China
| | - Ran Yang
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Food Safety Quick Testing and Smart Supervision Technology for State Market Regulation, Henan Insitute of Food and Salt Industry Inspection Technology, Zhengzhou, 450003, China.
| | - Lingbo Qu
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Food Safety Quick Testing and Smart Supervision Technology for State Market Regulation, Henan Insitute of Food and Salt Industry Inspection Technology, Zhengzhou, 450003, China.
| |
Collapse
|
3
|
Zhao Z, Zhang L, Zhao Y, Li Y, Shi J, Zhi J, Dong Y. Helical Self-Assembly and Fe 3+ Detection of V-Shaped AIE-Active Chiral Tetraphenylbutadiene-Based Polyamides. Chemistry 2023; 29:e202301035. [PMID: 37200207 DOI: 10.1002/chem.202301035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Chiral aggregation-induced emission (AIE) molecules have drawn attention for their helical self-assembly and special optical properties. The helical self-assembly of AIE-active chiral non-linear main-chain polymers can produce some desired optical features. In this work, a series of V-shaped chiral AIE-active polyamides P1-C3, P1-C6, P1-C12 and linear P2-C3, P2-C6, bearing n-propyl/hexyl/dodecyl side-chains, based on tetraphenylbutadiene (TPB), were prepared. All target main-chain polymers exhibit distinct AIE characteristics. The polymer P1-C6 with moderate length alkyl chains shows better AIE properties. The V-shaped main-chains and the chiral induction of (1R,2R)-(+)-1,2-cyclohexanediamine in each repeating unit promote the polymer chains display helical conformation, and multiple helical polymer chains induce nano-fibers helicity when the polymer chains aggregate and self-assemble in THF/H2 O mixtures. Simultaneously, the helical conformation polymer chains and helical nano-fibers cause P1-C6 produce strong circular dichroism (CD) signals with positive Cotton effect. Moreover, P1-C6 could also occur fluorescence quenching response to Fe3+ selectively with a low detection limit of 3.48 μmol/L.
Collapse
Affiliation(s)
- Zixuan Zhao
- School of Chemistry and Chemical Engineering Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Lulu Zhang
- School of Chemistry and Chemical Engineering Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Ying Zhao
- School of Chemistry and Chemical Engineering Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Yanji Li
- School of Chemistry and Chemical Engineering Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Jianbing Shi
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Junge Zhi
- School of Chemistry and Chemical Engineering Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Yuping Dong
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| |
Collapse
|
4
|
Improved sensitivity of gold nanoclusters toward trypsin under synergistic adsorption of CdTe quantum dots. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Yu W, Yu X, Qiu Z, Xu C, Gao M, Zheng J, Zhang J, Wang G, Cheng Y, Zhu M. 1+1>2: Fiber Synergy in Aggregation‐Induced Emission. Chemistry 2022; 28:e202201664. [DOI: 10.1002/chem.202201664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Wanting Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Zhenduo Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Chengjian Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Mengyue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Junjie Zheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Junyan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Gang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| |
Collapse
|
6
|
Sharath Kumar KS, Girish YR, Ashrafizadeh M, Mirzaei S, Rakesh KP, Hossein Gholami M, Zabolian A, Hushmandi K, Orive G, Kadumudi FB, Dolatshahi-Pirouz A, Thakur VK, Zarrabi A, Makvandi P, Rangappa KS. AIE-featured tetraphenylethylene nanoarchitectures in biomedical application: Bioimaging, drug delivery and disease treatment. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Shellaiah M, Chen YT, Thirumalaivasan N, Aazaad B, Awasthi K, Sun KW, Wu SP, Lin MC, Ohta N. Pyrene-Based AIEE Active Nanoprobe for Zn 2+ and Tyrosine Detection Demonstrated by DFT, Bioimaging, and Organic Thin-Film Transistor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28610-28626. [PMID: 34110776 DOI: 10.1021/acsami.1c04744] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The development of aggregation-induced emission enhancement (AIEE) active nanoprobes without any synthetic complication for solution-state and organic thin-film transistor (OTFT)-based sensory applications is still a challenging task. In this study, the novel pyrene-incorporated Schiff base (5-phenyl-4-((pyren-1-ylmethylene)amino)-4H-1,2,4-triazole-3-thiol; PT2) with an AIEE property was synthesized via a one-pot reaction and was reported for detecting Zn2+ and tyrosine in the solution state and OTFT. In the AIEE studies of PT2 (in CH3CN) at various water fractions (fw: 0-97.5%), the existence of J-aggregation, crystalline changes, and nanofibers formation was confirmed by ultraviolet absorption/photoluminescence (UV/PL) spectroscopy, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), and dynamic-light scattering (DLS) techniques. Similarly, PT2-based Zn2+ detection and sensory reversibility with tyrosine were demonstrated by UV/PL studies with evidence related to crystalline/nanolevel changes in PXRD, SEM, TEM, AFM, and DLS data. Distinct decay profiles associated with the AIEE and sensory responses of PT2 were observed in time-resolved photoluminescence spectra. From the standard deviation and linear fittings of PL titrations, detection limits (LODs) of the Zn2+ with PT2 and the tyrosine with PT2-Zn2+ were estimated as 0.79 and 45 nM, respectively. High-resolution mass and 1H NMR results confirmed 2:1 and 1:1 stoichiometry and binding sites of PT2-Zn2+-PT2* and tyrosine-Zn2+ complexes. Moreover, the values of association constants determined by linear fittings were 4.205 × 10-7 and 1.73 × 10-8 M-2, correspondingly. Optimization via the density functional theory disclosed the binding sites and suppression of twisted intramolecular charge transfer/photoinduced electron transfer (TICT/PET) as well as the involvement of restricted intramolecular rotation in the AIEE and PET "ON-OFF-ON" mechanisms in the Zn2+ and tyrosine sensors. Results from the B16-F10 cellular and zebrafish imaging of AIEE, Zn2+, and tyrosine sensors further attested the applicability of PT2 in biological samples. Finally, the PT2 and pentacene-incorporated OTFT devices were fabricated. The devices displayed more than 90% change in drain-source current when reacted with Zn2+ with an LOD of 5.46 μM but showed no response to tyrosine, thereby confirming the reversibility. Moreover, the OTFT devices also demonstrated Zn2+ ion detection in tap water and lake water samples.
Collapse
Affiliation(s)
- Muthaiah Shellaiah
- Department of Applied Chemistry, National Yang Ming Chiao Tung University (formerly National Chiao Tung University), Hsinchu 300, Taiwan
| | - Yu-Ting Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University (formerly National Chiao Tung University), Hsinchu 300, Taiwan
| | - Natesan Thirumalaivasan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University (formerly National Chiao Tung University), Hsinchu 300, Taiwan
| | - Basheer Aazaad
- Department of Applied Chemistry, National Yang Ming Chiao Tung University (formerly National Chiao Tung University), Hsinchu 300, Taiwan
| | - Kamlesh Awasthi
- Department of Applied Chemistry, National Yang Ming Chiao Tung University (formerly National Chiao Tung University), Hsinchu 300, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Kien Wen Sun
- Department of Applied Chemistry, National Yang Ming Chiao Tung University (formerly National Chiao Tung University), Hsinchu 300, Taiwan
| | - Shu-Pao Wu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University (formerly National Chiao Tung University), Hsinchu 300, Taiwan
| | - Ming-Chang Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University (formerly National Chiao Tung University), Hsinchu 300, Taiwan
| | - Nobuhiro Ohta
- Department of Applied Chemistry, National Yang Ming Chiao Tung University (formerly National Chiao Tung University), Hsinchu 300, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
8
|
Wen X, Yan L, Fan Z. One-step construction of a novel AIE probe based on diaminomaleonitrile and its application in double-detection of hypochlorites and formaldehyde gas. NEW J CHEM 2021; 45:8155-8165. [DOI: 10.1039/d1nj00932j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
A novel and efficient probe with AIE property was designed and synthesized for application in double-detection of hypochlorites and formaldehyde gas.
Collapse
Affiliation(s)
- Xiaoye Wen
- Department of Chemistry
- Shanxi Normal University
- Linfen 041004
- China
| | - Li Yan
- Department of Chemistry
- Shanxi Normal University
- Linfen 041004
- China
| | - Zhefeng Fan
- Department of Chemistry
- Shanxi Normal University
- Linfen 041004
- China
| |
Collapse
|
9
|
Li C, Wang YT, Chen Y, Wang Y. Hyperbranched Poly(amido amine) Entrapped Tetraphenylethene as a Fluorescence Probe for Sequential Quadruple-Target Detection and Its Potential as a Chemical Logic Gate. Anal Chem 2020; 92:9755-9763. [PMID: 32575978 DOI: 10.1021/acs.analchem.0c01155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Fluorescence sensors exhibit great potential as molecular logic gates to perform computation on a nanometer scale. For achieving the more complex artificial intelligence activities, developing complex logic gates using multitarget sensing systems with multi-input characteristics is highly desirable. Herein, a water-soluble quadruple-target fluorescence sensor that embeds a small amount (4.1 wt %) of tetraphenylethene (TPE) units into hyperbranched poly(amido amine) (TPE-HPA) has been designed. The nonfluorescent TPE-HPA could experience the fluorescence "off-on-off-on-off" by sequential addition of sodium hexametaphosphate (SHMP), Fe3+, ascorbic acid (AA), and H2O2. The as-prepared quadruple-target sensor showed good sensitivity and selectivity to SHMP, Fe3+, AA, and H2O2, and the limit of detection values were 29 nM, 20 nM, 0.66 μM, and 0.78 μM, respectively. On the basis of the multitarget sensing nature of TPE-HPA, chemical or electrochemical-induced logic gates were constructed, including YES, NOT, OR, NOR, NAND, INHIBIT, IMP, and higher logic systems.
Collapse
Affiliation(s)
- Cheng Li
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, People's Republic of China
| | - Yi-Ting Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, People's Republic of China
| | - Yu Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, People's Republic of China.,Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Yong Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, People's Republic of China
| |
Collapse
|
10
|
Feng A, Jiang F, Huang G, Liu P. Synthesis of the cationic fluorescent probes for the detection of anionic surfactants by electrostatic self-assembly. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117446. [PMID: 31400744 DOI: 10.1016/j.saa.2019.117446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/10/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Anionic surfactants were widespread used in car cleaning agents, household detergents, agricultural and industrial processes, and considered as a major source of environmental pollutant. Therefore, it is necessary to develop a fast, simple, highly selective and sensitive probe for the detection of anionic surfactants. Here, we synthesized two aggregation induced emission (AIE)-active molecules 4,4',4″,4‴-(ethene-1,1,2,2-tetrayltetrakis(benzene-4,1-diyl))tetrakis (1-(4-bromobenzyl)pyridin-1-ium) bromide (TPE-Br) and 4,4',4″,4‴-(ethene-1,1,2,2-trayltetrakis(benzene-4,1-diyl))tetrakis(1-methylpyridin-1-ium)iodide (TPE-I), which were then applied as fluorescence probes for detecting sodium dodecyl sulfate (SDS) with high selectivity and sensitivity. In the presence of SDS, a multi-fold fluorescence emission intensity enhancement was observed in both two probes (TPE-Br and TPE-I) due to the electrostatic self-assembly of AIE molecular. The limits of detection are 71.5 and 120 nM for TPE-Br and TPE-I, respectively. This study may provide a new strategy for environmental monitoring by AIE-based fluorescent probe.
Collapse
Affiliation(s)
- Aiqing Feng
- Department of Life Science, Luoyang Normal University, Luoyang 471934, PR China
| | - Fangru Jiang
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang 524048, China
| | - Guiyuan Huang
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang 524048, China
| | - Peilian Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang 524048, China.
| |
Collapse
|