1
|
Wang Q, Haugen HJ, Linke D, Lyngstadaas SP, Sigurjónsson ÓE, Ma Q. Impact of different chemical debridement agents on early cellular responses to titanium dental implants: A transcriptome-based in vitro study on peri-implant tissue regeneration. Colloids Surf B Biointerfaces 2025; 253:114727. [PMID: 40288111 DOI: 10.1016/j.colsurfb.2025.114727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/17/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Poor peri-implant health leads to biofilm accumulation, peri-implantitis, and bone loss. Chemical debridement may help maintain peri-implant health, but its effects on peri-implant cells remain unclear. METHODS Five cleaning agents-hydrogen peroxide (H2O2), Poloxamer, H2O2 +Poloxamer, Perisolv, and Paroex-were applied on titanium (Ti) surfaces. Mouse pre-osteoblasts (MC3T3-E1), human gingival fibroblasts (HGF), and human bone marrow stromal cells (hBMSC) were cultured on agent-treated Ti surfaces for up to 120 minutes to assess morphology, cytotoxicity, adhesion, and proliferation. RNA sequencing was performed on hBMSC. RESULTS Except for Poloxamer, all treatments inhibited cellular spreading. Paroex increased cytotoxicity and inhibited proliferation. Perisolv impaired hBMSC adhesion and variably affected proliferation. H2O2, alone or with Poloxamer, elevated cytotoxicity and inhibited adhesion in hBMSCs but not MC3T3-E1 or HGF. In contrast, Poloxamer-treated Ti surfaces enhanced adhesion and proliferation across all cell types. RNA sequencing revealed that oxidant-based treatments (H2O2, H2O2 +Poloxamer, Perisolv) suppressed key genes for proliferation (HMGA2, JAG1, NOTCH1, YAP1, TBX3), anti-apoptosis (MCL1, BCL2L2), and adhesion (ITGA2, ITGB3, SPP1), while inhibiting MAPK, PI3K-Akt, and pluripotency pathways. CONCLUSION Commercial agents like Perisolv and Paroex impair hBMSC function, with Paroex demonstrating significant cytotoxicity. H2O2 exhibits toxicity, particularly to hBMSCs. Poloxamer improves cell attachment and growth. Given these findings, careful selection of debridement agents is critical to balance cleaning efficacy and cytocompatibility. The adverse effects on hBMSCs necessitate prompt removal postapplication. Further research on biomaterials supporting tissue regeneration postdebridement is needed to restore peri-implant health.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Biomaterial, Faculty of Dentistry, University of Oslo, Norway.
| | | | - Dirk Linke
- Department of Biosciences, Faculty of Natural Sciences, University of Oslo, Norway.
| | | | - Ólafur Eysteinn Sigurjónsson
- School of Science and Engineering, Reykjavík University, Reykjavík, Iceland; The Blood Bank, Landspitali, The National University Hospital of Iceland, Reykjavík, Iceland.
| | - Qianli Ma
- Department of Biomaterial, Faculty of Dentistry, University of Oslo, Norway.
| |
Collapse
|
2
|
Park G, Matsuura T, Komatsu K, Ogawa T. Optimizing implant osseointegration, soft tissue responses, and bacterial inhibition: A comprehensive narrative review on the multifaceted approach of the UV photofunctionalization of titanium. J Prosthodont Res 2025; 69:136-152. [PMID: 38853001 DOI: 10.2186/jpr.jpr_d_24_00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Titanium implants have revolutionized restorative and reconstructive therapy, yet achieving optimal osseointegration and ensuring long-term implant success remain persistent challenges. In this review, we explore a cutting-edge approach to enhancing implant properties: ultraviolet (UV) photofunctionalization. By harnessing UV energy, photofunctionalization rejuvenates aging implants, leveraging and often surpassing the intrinsic potential of titanium materials. The primary aim of this narrative review is to offer an updated perspective on the advancements made in the field, providing a comprehensive overview of recent findings and exploring the relationship between UV-induced physicochemical alterations and cellular responses. There is now compelling evidence of significant transformations in titanium surface chemistry induced by photofunctionalization, transitioning from hydrocarbon-rich to carbon pellicle-free surfaces, generating superhydrophilic surfaces, and modulating the electrostatic properties. These changes are closely associated with improved cellular attachment, spreading, proliferation, differentiation, and, ultimately, osseointegration. Additionally, we discuss clinical studies demonstrating the efficacy of UV photofunctionalization in accelerating and enhancing the osseointegration of dental implants. Furthermore, we delve into recent advancements, including the development of one-minute vacuum UV (VUV) photofunctionalization, which addresses the limitations of conventional UV methods as well as the newly discovered functions of photofunctionalization in modulating soft tissue and bacterial interfaces. By elucidating the intricate relationship between surface science and biology, this body of research lays the groundwork for innovative strategies aimed at enhancing the clinical performance of titanium implants, marking a new era in implantology.
Collapse
Affiliation(s)
- Gunwoo Park
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
| |
Collapse
|
3
|
Kunrath MF, Giraldo‐Osorno PM, Mendes K, Gomes ATPC, Rosa N, Barros M, Dahlin C. Unveiling the consequences of early human saliva contamination on membranes for guided bone regeneration. J Periodontal Res 2024; 59:1196-1209. [PMID: 38644743 PMCID: PMC11626699 DOI: 10.1111/jre.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/23/2024]
Abstract
AIMS GBR membranes have various surface properties designed to elicit positive responses in regenerative clinical procedures; dental clinicians attempt to employ techniques to prevent the direct interaction of contaminated oral fluids with these biomaterials. However, saliva is uninterruptedly exhibited in oral surgical procedures applying GBR membranes, suggesting a persistent interaction with biomaterials and the surrounding oral tissues. This fundamental study aimed to investigate potential alterations in the physical, chemical, and key biological properties of membranes for guided bone regeneration (GBR) caused by isolated early interaction with human saliva. METHODS A reproducible step-by-step protocol for collecting and interacting human saliva with membranes was developed. Subsequently, membranes were evaluated for their physicochemical properties, protein quantification, DNA, and 16S rRNA levels viability of two different cell lines at 1 and 7 days, and ALP activity. Non-interacted membranes and pure saliva of donors were applied as controls. RESULTS Qualitative morphological alterations were noticed; DNA extraction and 16S quantification revealed significantly higher values. Furthermore, the viability of HGF-1 and MC3T3-E1 cells was significantly (p < .05) reduced following saliva interaction with biodegradable membranes. Saliva contamination did not prejudice PTFE membranes significantly in any biological assay. CONCLUSIONS These outcomes demonstrated a susceptible response of biodegradable membranes to isolated early human saliva interaction, suggesting impairment of structural morphology, reduced viability to HGF-1 and MC3T3-E1, and higher absorption/adherence of DNA/16S rRNA. As a result, clinical oral procedures may need corresponding refinements.
Collapse
Affiliation(s)
- Marcel F. Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGöteborgSweden
- Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD)Universidade Católica PortuguesaViseuPortugal
- Dentistry Department, School of Health and Life SciencesPontifical Catholic University of Rio Grande do Sul (PUCRS)Porto AlegreBrazil
| | - Paula Milena Giraldo‐Osorno
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGöteborgSweden
| | - Karina Mendes
- Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD)Universidade Católica PortuguesaViseuPortugal
| | - Ana T. P. C. Gomes
- Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD)Universidade Católica PortuguesaViseuPortugal
| | - Nuno Rosa
- Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD)Universidade Católica PortuguesaViseuPortugal
| | - Marlene Barros
- Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD)Universidade Católica PortuguesaViseuPortugal
| | - Christer Dahlin
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGöteborgSweden
| |
Collapse
|
4
|
Kotsakis GA, Xie L, Siddiqui DA, Daubert D, Graham DJ, Gil FJ. Dynamic assessment of titanium surface oxides following mechanical damage reveals only partial passivation under inflammatory conditions. NPJ MATERIALS DEGRADATION 2024; 8:98. [PMID: 39583186 PMCID: PMC11578884 DOI: 10.1038/s41529-024-00514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/10/2024] [Indexed: 11/26/2024]
Abstract
Motivated by clinical problems of titanium implant degradation, we developed a workflow that enabled assessment of surface oxide dynamics as a function of clinical interventions and inflammation conditions. We found that mechanical damage led to decrease of stoichiometric TiO2 ratio in the passivation oxide film and further resulted in accelerated degradation under inflammatory anaerobic conditions. This method can be employed for the assessment of surface oxides to monitor implant safety.
Collapse
Affiliation(s)
| | - Li Xie
- Rutgers School of Dental Medicine, Newark, NJ USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan China
| | | | - Diane Daubert
- School of Dentistry, University of Washington, Seattle, WA USA
| | - Daniel J. Graham
- Department of Bioengineering, University of Washington, Seattle, WA USA
| | - Francisco Javier Gil
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallés, Barcelona, Spain
| |
Collapse
|
5
|
Riivari S, Areid N, Närvä E, Willberg J, Närhi T. Saliva exposure reduces gingival keratinocyte growth on TiO 2-coated titanium. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:25. [PMID: 38635066 PMCID: PMC11026266 DOI: 10.1007/s10856-024-06792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
Bioactive, nanoporous TiO2-coating has been shown to enhance cell attachment on titanium implant surface. The aim of this study was to evaluate, whether the saliva proteins affect the epithelial cell adhesion on TiO2-coated and non-coated titanium. Grade V titanium discs were polished. Half of the discs were provided with TiO2-coating produced in sol with polycondensation method. Half of the TiO2-coated and non-coated discs were treated with pasteurized saliva for 30 min. After saliva treatment, the total protein amounts on surfaces were measured. Next, the hydrophilicity of discs were measured with water contact angle measurements. Further, the gingival keratinocyte adhesion strength was measured after 2 and 6 h of cultivation using serial trypsinization. In addition, cell growth and proliferation were measured after 1, 3, and 7 days of cell culture. Finally, cell morphology, spreading and adhesion protein signals were detected with high resolution confocal microscopy. As a result, in sol coated TiO2-surface had significantly higher hydrophilicity when compared to non-coated titanium, meanwhile both non-coated and TiO2-coated surfaces with saliva treatment had a significant increase in hydrophilicity. Importantly, the amounts of adhered saliva proteins were equal between TiO2-coated and non-coated surfaces. Adhesion strength against enzymatic detachment was weakest on non-coated titanium after saliva exposure. Cell proliferation and cell spreading were highest on TiO2-coated titanium, but saliva exposure significantly decreased cell proliferation and spreading on TiO2-coated surface. To conclude, even though saliva exposure makes titanium surfaces more hydrophilic, it seems to neutralize the bioactive TiO2-coating and decrease cell attachment to TiO2-coated surface.
Collapse
Affiliation(s)
- Sini Riivari
- Department of Prosthetic Dentistry and Stomatognathic Physiology, University of Turku, FI-20520, Turku, Finland.
| | - Nagat Areid
- Department of Prosthetic Dentistry and Stomatognathic Physiology, University of Turku, FI-20520, Turku, Finland
| | - Elisa Närvä
- Institute of Biomedicine and Cancer Research Laboratory FICAN West, University of Turku, FI-20520, Turku, Finland
| | - Jaana Willberg
- Department of Oral Pathology and Oral Radiology, University of Turku, FI-20520, Turku, Finland
- Turku University Hospital and University of Turku, FI-20520, Turku, Finland
| | - Timo Närhi
- Department of Prosthetic Dentistry and Stomatognathic Physiology, University of Turku, FI-20520, Turku, Finland
- Wellbeing Services County of South-West Finland and University of Turku, FI-20520, Turku, Finland
| |
Collapse
|
6
|
Kitajima H, Hirota M, Osawa K, Iwai T, Saruta J, Mitsudo K, Ogawa T. Optimization of blood and protein flow around superhydrophilic implant surfaces by promoting contact hemodynamics. J Prosthodont Res 2023; 67:568-582. [PMID: 36543189 DOI: 10.2186/jpr.jpr_d_22_00225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
PURPOSE We examined blood and protein dynamics potentially influenced by implant threads and hydrophilic/hydrophobic states of implant surfaces. METHODS A computational fluid dynamics model was created for a screw-shaped implant with a water contact angle of 70° (hydrophobic surface) and 0° (superhydrophilic surface). Movements and density of blood and fibrinogen as a representative wound healing protein were visualized and quantified during constant blood inflow. RESULTS Blood plasma did not occupy 40-50% of the implant interface or the inside of threads around hydrophobic implants, whereas such blood voids were nearly completely eliminated around superhydrophilic implants. Whole blood field vectors were disorganized and random within hydrophobic threads but formed vortex nodes surrounded by stable blood streams along the superhydrophilic implant surface. The averaged vector within threads was away from the implant surface for the hydrophobic implant and towards the implant surface for the superhydrophilic implant. Rapid and massive whole blood influx into the thread zone was only seen for the superhydrophilic implant, whereas a line of conflicting vectors formed at the entrance of the thread area of the hydrophobic implant to prevent blood influx. The fibrinogen density was up to 20-times greater at the superhydrophilic implant interface than the hydrophobic one. Fibrinogen density was higher at the interface than outside the threads only for the superhydrophilic implant. CONCLUSIONS Implant threads and surface hydrophilicity have profound effects on vector and distribution of blood and proteins. Critically, implant threads formed significant biological voids at the interface that were negated by superhydrophilicity-induced contact hemodynamics.
Collapse
Affiliation(s)
- Hiroaki Kitajima
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Makoto Hirota
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- Department of Oral and Maxillofacial Surgery/Orthodontics, Yokohama City University Medical Center, Yokohama, Japan
| | - Kohei Osawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Toshinori Iwai
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Juri Saruta
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
- Department of Education Planning, School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
| |
Collapse
|
7
|
Kunrath MF, Dahlin C. Does saliva contamination interfere or stimulate regenerative processes applying current biomaterials on oral surgical sites? Br Dent J 2023; 234:305-307. [PMID: 36899235 DOI: 10.1038/s41415-023-5573-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 03/12/2023]
Abstract
Innovative dental biomaterials have been developed in order to stimulate higher biocompatibility and faster healing times using responsive surfaces for regenerative procedures. However, saliva is one of the fluids to interact with these biomaterials in the first instance. Studies have revealed significant negative effects on the biomaterials' properties, biocompatibility and bacterial colonisation after saliva contact. Nevertheless, the current literature is unclear about the profound effects of saliva on regenerative procedures. The scientific community urges further detailed studies associating innovative biomaterials/saliva/microbiology/immunology in order to clarify clinical outcomes. This paper discusses and provides information about the challenges of research using human saliva, the lack of standardisation in protocols applying saliva, and tentative applications of saliva proteins associated with innovative dental biomaterials.
Collapse
Affiliation(s)
- Marcel F Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, PO Box 412, SE 405 30, Göteborg, Sweden; Department of Dentistry, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
| | - Christer Dahlin
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, PO Box 412, SE 405 30, Göteborg, Sweden; Department of Oral, Maxillofacial Surgery and Research and Development, NU Hospital Organisation, Trollhättan, Sweden
| |
Collapse
|
8
|
A Novel High-Energy Vacuum Ultraviolet Light Photofunctionalization Approach for Decomposing Organic Molecules around Titanium. Int J Mol Sci 2023; 24:ijms24031978. [PMID: 36768297 PMCID: PMC9916712 DOI: 10.3390/ijms24031978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/01/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Titanium undergoes biological aging, represented by increased hydrophobicity and surface accumulation of organic molecules over time, which compromises the osseointegration of dental and orthopedic implants. Here, we evaluated the efficacy of a novel UV light source, 172 nm wavelength vacuum UV (VUV), in decomposing organic molecules around titanium. Methylene blue solution used as a model organic molecule placed in a quartz ampoule with and without titanium specimens was treated with four different UV light sources: (i) ultraviolet C (UVC), (ii) high-energy UVC (HUVC), (iii) proprietary UV (PUV), and (iv) VUV. After one minute of treatment, VUV decomposed over 90% of methylene blue, while there was 3-, 3-, and 8-fold more methylene blue after the HUVC, PUV, and UVC treatments, respectively. In dose-dependency experiments, maximal methylene blue decomposition occurred after one minute of VUV treatment and after 20-30 min of UVC treatment. Rapid and effective VUV-mediated organic decomposition was not influenced by the surface topography of titanium or its alloy and even occurred in the absence of titanium, indicating only a minimal photocatalytic contribution of titanium dioxide to organic decomposition. VUV-mediated but not other light source-mediated methylene blue decomposition was proportional to its concentration. Plastic tubes significantly reduced methylene blue decomposition for all light sources. These results suggest that VUV, in synergy with quartz ampoules, mediates rapid and effective organic decomposition compared with other UV sources. This proof-of-concept study paves the way for rapid and effective VUV-powered photofunctionalization of titanium to overcome biological aging.
Collapse
|
9
|
Decomposing Organic Molecules on Titanium with Vacuum Ultraviolet Light for Effective and Rapid Photofunctionalization. J Funct Biomater 2022; 14:jfb14010011. [PMID: 36662058 PMCID: PMC9861116 DOI: 10.3390/jfb14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Ultraviolet (UV) photofunctionalization counteracts the biological aging of titanium to increase the bioactivity and osseointegration of titanium implants. However, UV photofunctionalization currently requires long treatment times of between 12 min and 48 h, precluding routine clinical use. Here, we tested the ability of a novel, xenon excimer lamp emitting 172 nm vacuum UV (VUV) to decompose organic molecules coated on titanium as a surrogate of photofunctionalization. Methylene blue as a model organic molecule was coated on grade 4 commercially pure titanium and treated with four UV light sources: (i) ultraviolet C (UVC), (ii) high-energy UVC (HUVC), (iii) proprietary UV (PUV), and (iv) VUV. After one minute of treatment, VUV decomposed 57% of methylene blue compared with 2%, 36%, and 42% for UVC, HUVC, and PUV, respectively. UV dose-dependency testing revealed maximal methylene blue decomposition with VUV within one minute. Equivalent decomposition was observed on grade 5 titanium alloy specimens, and placing titanium specimens in quartz ampoules did not compromise efficacy. Methylene blue was decomposed even on polymethyl methacrylate acrylic specimens at 20-25% lower efficiency than on titanium specimens, indicating a relatively small contribution of titanium dioxide-mediated photocatalytic decomposition to the total decomposition. Load-testing revealed that VUV maintained high efficacy of methylene blue decomposition regardless of the coating density, whereas other UV light sources showed low efficacy with thin coatings and plateauing efficacy with thicker coatings. This study provides foundational data on rapid and efficient VUV-mediated organic decomposition on titanium. In synergy with quartz ampoules used as containers, VUV has the potential to overcome current technical challenges hampering the clinical application of UV photofunctionalization.
Collapse
|
10
|
Kitajima H, Hirota M, Komatsu K, Isono H, Matsuura T, Mitsudo K, Ogawa T. Ultraviolet Light Treatment of Titanium Microfiber Scaffolds Enhances Osteoblast Recruitment and Osteoconductivity in a Vertical Bone Augmentation Model: 3D UV Photofunctionalization. Cells 2022; 12:cells12010019. [PMID: 36611812 PMCID: PMC9818481 DOI: 10.3390/cells12010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Vertical bone augmentation to create host bone prior to implant placement is one of the most challenging regenerative procedures. The objective of this study is to evaluate the capacity of a UV-photofunctionalized titanium microfiber scaffold to recruit osteoblasts, generate intra-scaffold bone, and integrate with host bone in a vertical augmentation model with unidirectional, limited blood supply. Scaffolds were fabricated by molding and sintering grade 1 commercially pure titanium microfibers (20 μm diameter) and treated with UVC light (200-280 nm wavelength) emitted from a low-pressure mercury lamp for 20 min immediately before experiments. The scaffolds had an even and dense fiber network with 87% porosity and 20-50 mm inter-fiber distance. Surface carbon reduced from 30% on untreated scaffold to 10% after UV treatment, which corresponded to hydro-repellent to superhydrophilic conversion. Vertical infiltration testing revealed that UV-treated scaffolds absorbed 4-, 14-, and 15-times more blood, water, and glycerol than untreated scaffolds, respectively. In vitro, four-times more osteoblasts attached to UV-treated scaffolds than untreated scaffolds three hours after seeding. On day 2, there were 70% more osteoblasts on UV-treated scaffolds. Fluorescent microscopy visualized confluent osteoblasts on UV-treated microfibers two days after seeding but sparse and separated cells on untreated microfibers. Alkaline phosphatase activity and osteocalcin gene expression were significantly greater in osteoblasts grown on UV-treated microfiber scaffolds. In an in vivo model of vertical augmentation on rat femoral cortical bone, the interfacial strength between innate cortical bone and UV-treated microfiber scaffold after two weeks of healing was double that observed between bone and untreated scaffold. Morphological and chemical analysis confirmed seamless integration of the innate cortical and regenerated bone within microfiber networks for UV-treated scaffolds. These results indicate synergy between titanium microfiber scaffolds and UV photofunctionalization to provide a novel and effective strategy for vertical bone augmentation.
Collapse
Affiliation(s)
- Hiroaki Kitajima
- Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Kanagawa, Japan
| | - Makoto Hirota
- Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
- Department of Oral and Maxillofacial Surgery/Orthodontics, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama 236-0004, Kanagawa, Japan
- Correspondence: ; Tel./Fax: +81-45-785-8438
| | - Keiji Komatsu
- Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | - Hitoshi Isono
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Kanagawa, Japan
| | - Takanori Matsuura
- Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Kanagawa, Japan
| | - Takahiro Ogawa
- Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| |
Collapse
|
11
|
Kunrath MF, Correia A, Teixeira ER, Hubler R, Dahlin C. Superhydrophilic Nanotextured Surfaces for Dental Implants: Influence of Early Saliva Contamination and Wet Storage. NANOMATERIALS 2022; 12:nano12152603. [PMID: 35957034 PMCID: PMC9370139 DOI: 10.3390/nano12152603] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022]
Abstract
Hydrophilic and nanotextured surfaces for dental implants have been reported as relevant properties for early osseointegration. However, these surface characteristics are quite sensitive to oral interactions. Therefore, this pilot study aimed to investigate the superficial alterations caused on hydrophilic nanotubular surfaces after early human saliva interaction. Titanium disks were treated using an anodization protocol followed by reactive plasma application in order to achieve nanotopography and hydrophilicity, additionally; surfaces were stored in normal atmospheric oxygen or wet conditioning. Following, samples were interacted with saliva for 10 min and analyzed regarding physical–chemical properties and cellular viability. Saliva interaction did not show any significant influence on morphological characteristics, roughness measurements and chemical composition; however, hydrophilicity was statistically altered compromising this feature when the samples were stored in common air. Cellular viability tested with pre-osteoblasts cell line (MC3T3-E1) reduced significantly at 48 h on the samples without wet storage after saliva contamination. The applied wet-storage methodology appears to be effective in maintaining properties such as hydrophilicity during saliva interaction. In conclusion, saliva contamination might impair important properties of hydrophilic nanotubular surfaces when not stored in wet conditions, suggesting the need of saliva-controlled sites for oral application of hydrophilic surfaces and/or the use of modified-package methods associated with their wet storage.
Collapse
Affiliation(s)
- Marcel F. Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30 Göteborg, Sweden
- Department of Dentistry, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil;
- Materials and Nanoscience Laboratory, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil;
- Correspondence: (M.F.K.); (C.D.); Tel.: +46-0722063757 (M.F.K.)
| | - André Correia
- Universidade Católica Portuguesa, Faculty of Dental Medicine, Centre for Interdisciplinary Research in Health, 3504-505 Viseu, Portugal;
| | - Eduardo R. Teixeira
- Department of Dentistry, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil;
| | - Roberto Hubler
- Materials and Nanoscience Laboratory, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil;
| | - Christer Dahlin
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30 Göteborg, Sweden
- Correspondence: (M.F.K.); (C.D.); Tel.: +46-0722063757 (M.F.K.)
| |
Collapse
|
12
|
Kitajima H, Komatsu K, Matsuura T, Ozawa R, Saruta J, Taleghani SR, Cheng J, Ogawa T. Impact of nano-scale trabecula size on osteoblastic behavior and function in a meso-nano hybrid rough biomimetic zirconia model. J Prosthodont Res 2022; 67:288-299. [PMID: 35858802 DOI: 10.2186/jpr.jpr_d_22_00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PURPOSE A novel implant model consisting of meso-scale cactus-inspired spikes and nano-scale bone-inspired trabeculae was recently developed to optimize meso-scale roughness on zirconia. In this model, the meso-spike dimension had a significant impact on osteoblast function. To explore how different nano-textures impact this model, here we examined the effect of different nano-trabecula sizes on osteoblast function while maintaining the same meso-spike conformation. METHODS Zirconia disks with meso-nano hybrid surfaces were created by laser etching. The meso-spikes were fixed to 40 μm high, whereas the nano-texture was etched as large and small trabeculae of average Feret diameter 237.0 and 134.1 nm, respectively. A polished surface was also prepared. Rat bone marrow-derived and human mesenchymal stromal cell-induced osteoblasts were cultured on these disks. RESULTS Hybrid rough surfaces, regardless of nano-trabecula dimension, robustly promoted the osteoblastic differentiation of both rat and human osteoblasts compared to those on polished surfaces. Hybrid surfaces with small nano-trabeculae further enhanced osteoblastic differentiation compared with large nano-trabeculae. However, the difference in osteoblastic differentiation between small and large nano-trabeculae was much smaller than the difference between the polished and hybrid rough surfaces. The nano-trabecula size did not influence osteoblast attachment and proliferation, or protein adsorption. Both hybrid surfaces were hydro-repellent. The atomic percentage of surface carbon was lower on the hybrid surface with small nano-trabeculae. CONCLUSIONS Small nano-trabeculae promoted osteoblastic differentiation more than large nano-trabeculae when combined with meso-scale spikes. However, the biological impact of different nano-trabeculae was relatively small compared with that of different dimensions of meso-spikes.
Collapse
Affiliation(s)
- Hiroaki Kitajima
- Weintraub Center for Reconstructive Biotechnology and the Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668
| | - Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology and the Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668
| | - Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology and the Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668
| | - Ryotaro Ozawa
- Weintraub Center for Reconstructive Biotechnology and the Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668
| | - Juri Saruta
- Weintraub Center for Reconstructive Biotechnology and the Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668
| | - Samira Rahim Taleghani
- Weintraub Center for Reconstructive Biotechnology and the Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668
| | - James Cheng
- Weintraub Center for Reconstructive Biotechnology and the Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology and the Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668
| |
Collapse
|
13
|
A Novel Cell Delivery System Exploiting Synergy between Fresh Titanium and Fibronectin. Cells 2022; 11:cells11142158. [PMID: 35883601 PMCID: PMC9317518 DOI: 10.3390/cells11142158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
Delivering and retaining cells in areas of interest is an ongoing challenge in tissue engineering. Here we introduce a novel approach to fabricate osteoblast-loaded titanium suitable for cell delivery for bone integration, regeneration, and engineering. We hypothesized that titanium age influences the efficiency of protein adsorption and cell loading onto titanium surfaces. Fresh (newly machined) and 1-month-old (aged) commercial grade 4 titanium disks were prepared. Fresh titanium surfaces were hydrophilic, whereas aged surfaces were hydrophobic. Twice the amount of type 1 collagen and fibronectin adsorbed to fresh titanium surfaces than aged titanium surfaces after a short incubation period of three hours, and 2.5-times more fibronectin than collagen adsorbed regardless of titanium age. Rat bone marrow-derived osteoblasts were incubated on protein-adsorbed titanium surfaces for three hours, and osteoblast loading was most efficient on fresh titanium adsorbed with fibronectin. The number of osteoblasts loaded using this synergy between fresh titanium and fibronectin was nine times greater than that on aged titanium with no protein adsorption. The loaded cells were confirmed to be firmly attached and functional. The number of loaded cells was strongly correlated with the amount of protein adsorbed regardless of the protein type, with fibronectin simply more efficiently adsorbed on titanium surfaces than collagen. The role of surface hydrophilicity of fresh titanium surfaces in increasing protein adsorption or cell loading was unclear. The hydrophilicity of protein-adsorbed titanium increased with the amount of protein but was not the primary determinant of cell loading. In conclusion, the osteoblast loading efficiency was dependent on the age of the titanium and the amount of protein adsorption. In addition, the efficiency of protein adsorption was specific to the protein, with fibronectin being much more efficient than collagen. This is a novel strategy to effectively deliver osteoblasts ex vivo and in vivo using titanium as a vehicle.
Collapse
|
14
|
Kunrath MF, Dahlin C. The Impact of Early Saliva Interaction on Dental Implants and Biomaterials for Oral Regeneration: An Overview. Int J Mol Sci 2022; 23:2024. [PMID: 35216139 PMCID: PMC8875286 DOI: 10.3390/ijms23042024] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/11/2022] Open
Abstract
The presence of saliva in the oral environment is relevant for several essential health processes. However, the noncontrolled early saliva interaction with biomaterials manufactured for oral rehabilitation may generate alterations in the superficial properties causing negative biological outcomes. Therefore, the present review aimed to provide a compilation of all possible physical-chemical-biological changes caused by the early saliva interaction in dental implants and materials for oral regeneration. Dental implants, bone substitutes and membranes in dentistry possess different properties focused on improving the healing process when in contact with oral tissues. The early saliva interaction was shown to impair some positive features present in biomaterials related to quick cellular adhesion and proliferation, such as surface hydrophilicity, cellular viability and antibacterial properties. Moreover, biomaterials that interacted with contaminated saliva containing specific bacteria demonstrated favorable conditions for increased bacterial metabolism. Additionally, the quantity of investigations associating biomaterials with early saliva interaction is still scarce in the current literature and requires clarification to prevent clinical failures. Therefore, clinically, controlling saliva exposure to sites involving the application of biomaterials must be prioritized in order to reduce impairment in important biomaterial properties developed for rapid healing.
Collapse
Affiliation(s)
- Marcel Ferreira Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, P.O. Box 412, SE 405 30 Goteborg, Sweden;
- Department of Dentistry, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), P.O. Box 6681, Porto Alegre 90619-900, RS, Brazil
| | - Christer Dahlin
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, P.O. Box 412, SE 405 30 Goteborg, Sweden;
| |
Collapse
|
15
|
Ultraviolet Treatment of Titanium to Enhance Adhesion and Retention of Oral Mucosa Connective Tissue and Fibroblasts. Int J Mol Sci 2021; 22:ijms222212396. [PMID: 34830275 PMCID: PMC8617952 DOI: 10.3390/ijms222212396] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 01/16/2023] Open
Abstract
Peri-implantitis is an unsolved but critical problem with dental implants. It is postulated that creating a seal of gingival soft tissue around the implant neck is key to preventing peri-implantitis. The objective of this study was to determine the effect of UV surface treatment of titanium disks on the adhesion strength and retention time of oral connective tissues as well as on the adherence of mucosal fibroblasts. Titanium disks with a smooth machined surface were prepared and treated with UV light for 15 min. Keratinized mucosal tissue sections (3 × 3 mm) from rat palates were incubated for 24 h on the titanium disks. The adhered tissue sections were then mechanically detached by agitating the culture dishes. The tissue sections remained adherent for significantly longer (15.5 h) on the UV-treated disks than on the untreated control disks (7.5 h). A total of 94% of the tissue sections were adherent for 5 h or longer on the UV-treated disks, whereas only 50% of the sections remained on the control disks for 5 h. The adhesion strength of the tissue sections to the titanium disks, as measured by tensile testing, was six times greater after UV treatment. In the culture studies, mucosal fibroblasts extracted from rat palates were attached to titanium disks by incubating for 24, 48, or 96 h. The number of attached cells was consistently 15–30% greater on the UV-treated disks than on the control disks. The cells were then subjected to mechanical or chemical (trypsinization) detachment. After mechanical detachment, the residual cell rates on the UV-treated surfaces after 24 and 48 h of incubation were 35% and 25% higher, respectively, than those on the control surfaces. The remaining rate after chemical detachment was 74% on the control surface and 88% on the UV-treated surface for the cells cultured for 48 h. These trends were also confirmed in mouse embryonic fibroblasts, with an intense expression of vinculin, a focal adhesion protein, on the UV-treated disks even after detachment. The UV-treated titanium was superhydrophilic, whereas the control titanium was hydrophobic. X-ray photoelectron spectroscopy (XPS) chemical analysis revealed that the amount of carbon at the surface was significantly reduced after UV treatment, while the amount of TiOH molecules was increased. These ex vivo and in vitro results indicate that the UV treatment of titanium increases the adhesion and retention of oral mucosa connective tissue as a result of increased resistance of constituent fibroblasts against exogenous detachment, both mechanically and chemically, as well as UV-induced physicochemical changes of the titanium surface.
Collapse
|
16
|
Kunrath MF, Hubler R, Silva RM, Barros M, Teixeira ER, Correia A. Influence of saliva interaction on surface properties manufactured for rapid osseointegration in dental implants. BIOFOULING 2021; 37:757-766. [PMID: 34396855 DOI: 10.1080/08927014.2021.1964487] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/10/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Surface treatments are designed to promote modified implant surfaces with positive interactions with the surrounding living tissues. However, the inadvertent early contact of these surfaces with oral fluids during surgery may lead to undesired conditions affecting osseointegration. This study aimed to investigate the possible alterations in the physico-chemical properties of modified-surfaces caused by early saliva exposure. Titanium (Ti) surfaces were exposed to three different samples of human saliva and later analyzed for protein adhesion, physico-chemical surface alterations, and osteogenic cell-viability. The results indicated that surface roughness was the most significant factor influencing saliva protein adsorption; moreover, hydrophilic surfaces had critically lost their characteristics after contact with saliva. Decreased cell viability was observed in cultures after contact with saliva. Early contact with saliva might negatively influence modified surface properties and local cell viability. Careful surgical insertion of implants with hydrophilic surfaces is recommended, particularly in sites where saliva interaction is prone to occur.
Collapse
Affiliation(s)
- Marcel F Kunrath
- Dentistry Department, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Materials and Nanoscience Laboratory, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Roberto Hubler
- Materials and Nanoscience Laboratory, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Raquel M Silva
- Faculty of Dental Medicine, Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Viseu, Portugal
| | - Marlene Barros
- Faculty of Dental Medicine, Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Viseu, Portugal
| | - Eduardo R Teixeira
- Dentistry Department, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - André Correia
- Faculty of Dental Medicine, Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Viseu, Portugal
| |
Collapse
|
17
|
UV-Mediated Photofunctionalization of Indirect Restorative Materials Enhances Bonding to a Resin-Based Luting Agent. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9987860. [PMID: 34195290 PMCID: PMC8181058 DOI: 10.1155/2021/9987860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022]
Abstract
Purpose The potential of UV-mediated photofunctionalization to enhance the resin-based luting agent bonding performance to aged materials was investigated. Methods Sixty samples of each material were prepared. Yttria-stabilized zirconia (YZr) and Pd-Au alloy (Pd-Au) plates were fabricated and sandblasted. Lithium disilicate glass-ceramic (LDS) was CAD-CAM prepared and ground with #800 SiC paper. Half of the specimens were immersed in machine oil for 24 h to simulate the carbon adsorption. Then, all of the specimens (noncarbon- and carbon-adsorbed) were submitted to UV-mediated photofunctionalization with a 15 W UV-LED (265 nm, 300 mA, 7692 μW/cm2) for 0 (control groups), 5, and 15 min and subjected to contact angle (Ɵ) measurement and bonded using a resin cement (Panavia™ V5, Kuraray Noritake, Japan). The tensile bond strength (TBS) test was performed after 24 h. The Ɵ (°) and TBS (MPa) data were statistically analyzed using two-way ANOVA and Bonferroni correction tests (α = 0.05). Results In the carbon-adsorbed groups, UV-mediated photofunctionalization for 5 min significantly decreased Ɵ of all materials and increased TBS of YZr, and UV for 15 min significantly increased the TBS of LDS and Pd-Au. In noncarbon-adsorbed groups, UV-photofunctionalization did not significantly change the Ɵ or TBS except YZr specimens UV-photofunctionalized for 15 min. Conclusion UV-mediated photofunctionalization might have removed the adsorbed hydrocarbon molecules from the materials' surfaces and enhanced bond strengths of Panavia™ V5 to YZr, LDS, and Pd-Au. Additionally, UV-mediated photofunctionalization improved the overall TBS of YZr. Further investigation on the optimum conditions of UV photofunctionalization on indirect restorative materials should be conducted.
Collapse
|
18
|
Compromised Epithelial Cell Attachment after Polishing Titanium Surface and Its Restoration by UV Treatment. MATERIALS 2020; 13:ma13183946. [PMID: 32906598 PMCID: PMC7559826 DOI: 10.3390/ma13183946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022]
Abstract
Titanium-based implant abutments and tissue bars are polished during the finalization. We hypothesized that polishing degrades the bioactivity of titanium, and, if this is the case, photofunctionalization-grade UV treatment can alleviate the adverse effect. Three groups of titanium disks were prepared; machined surface, polished surface and polished surface followed by UV treatment (polished/UV surface). Polishing was performed by the sequential use of greenstone and silicon rubber burs. UV treatment was performed using a UV device for 12 min. Hydrophobicity/hydrophilicity was examined by the contact angle of ddH2O. The surface morphology and chemistry of titanium were examined by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. Human epithelium cells were seeded on titanium disks. The number of cells attached, the spreading behavior of cells and the retention on titanium surfaces were examined. The polished surfaces were smooth with only minor scratches, while the machined surfaces showed traces and metal flashes made by machine-turning. The polished surfaces showed a significantly increased percentage of surface carbon compared to machined surfaces. The carbon percentage on polished/UV surfaces was even lower than that on machined surfaces. A silicon element was detected on polished surfaces but not on polished/UV surfaces. Both machined and polished surfaces were hydrophobic, whereas polished/UV surfaces were hydrophilic. The number of attached cells after 24 h of incubation was 60% lower on polished surfaces than on machined surfaces. The number of attached cells on polished/UV surfaces was even higher than that on machined surfaces. The size and perimeter of cells, which was significantly reduced on polished surfaces, were fully restored on polished/UV surfaces. The number of cells remained adherent after mechanical detachment was reduced to half on polished surfaces compared to machined surfaces. The number of adherent cells on polished/UV surfaces was two times higher than on machined surfaces. In conclusion, polishing titanium causes chemical contamination, while smoothing its surface significantly compromised the attachment and retention of human epithelial cells. The UV treatment of polished titanium surfaces reversed these adverse effects and even outperformed the inherent bioactivity of the original titanium.
Collapse
|
19
|
Komasa S, Takao S, Yang Y, Zeng Y, Li M, Yan S, Zhang H, Komasa C, Kobayashi Y, Nishizaki H, Nishida H, Kusumoto T, Okazaki J. Effects of UV Treatment on Ceria-Stabilized Zirconia/Alumina Nanocomposite (NANOZR). MATERIALS 2020; 13:ma13122772. [PMID: 32570895 PMCID: PMC7345710 DOI: 10.3390/ma13122772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
Nanostructured zirconia/alumina composite (NANOZR) has been explored as a suitable material for fabricating implants for patients with metal allergy. In this study, we examined the effect of UV treatment on the NANOZR surface. The experimental group was UV-treated NANOZR and the control group was untreated NANOZR. Observation of the surface of the UV-treated materials revealed no mechanical or structural change; however, the carbon content on the material surface was reduced, and the material surface displayed superhydrophilicity. Further, the effects of the UV-induced superhydrophilic properties of NANOZR plates on the adhesion behavior of various cells were investigated. Treatment of the NANOZR surface was found to facilitate protein adsorption onto it. An in vitro evaluation using rat bone marrow cells, human vascular endothelial cells, and rat periodontal ligament cells revealed high levels of adhesion in the experimental group. In addition, it was clarified that the NANOZR surface forms active oxygen and suppresses the generation of oxidative stress. Overall, the study results suggested that UV-treated NANOZR is useful as a new ceramic implant material.
Collapse
Affiliation(s)
- Satoshi Komasa
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.K.); (S.T.); (Y.Y.); (Y.Z.); (M.L.); (S.Y.); (H.Z.); (C.K.)
| | - Seiji Takao
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.K.); (S.T.); (Y.Y.); (Y.Z.); (M.L.); (S.Y.); (H.Z.); (C.K.)
| | - Yuanyuan Yang
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.K.); (S.T.); (Y.Y.); (Y.Z.); (M.L.); (S.Y.); (H.Z.); (C.K.)
| | - Yuhao Zeng
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.K.); (S.T.); (Y.Y.); (Y.Z.); (M.L.); (S.Y.); (H.Z.); (C.K.)
| | - Min Li
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.K.); (S.T.); (Y.Y.); (Y.Z.); (M.L.); (S.Y.); (H.Z.); (C.K.)
| | - Sifan Yan
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.K.); (S.T.); (Y.Y.); (Y.Z.); (M.L.); (S.Y.); (H.Z.); (C.K.)
| | - Honghao Zhang
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.K.); (S.T.); (Y.Y.); (Y.Z.); (M.L.); (S.Y.); (H.Z.); (C.K.)
| | - Chisato Komasa
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.K.); (S.T.); (Y.Y.); (Y.Z.); (M.L.); (S.Y.); (H.Z.); (C.K.)
| | - Yasuyuki Kobayashi
- Osaka Research Institute of Industrial Science and Technology, Morinomiya Center, 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan;
| | - Hiroshi Nishizaki
- Department of Japan, Faculty of Health Sciences, Osaka Dental University, 1-4-4, Makino-honmachi, Hirakata-shi, Osaka 573-1121, Japan; (H.N.); (T.K.)
| | - Hisataka Nishida
- Department of Advanced Hard Materials, The Institute of Scientific and Industrial Research (ISIR), Osaka University, Osaka 567-0047, Japan;
| | - Tetsuji Kusumoto
- Department of Japan, Faculty of Health Sciences, Osaka Dental University, 1-4-4, Makino-honmachi, Hirakata-shi, Osaka 573-1121, Japan; (H.N.); (T.K.)
| | - Joji Okazaki
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.K.); (S.T.); (Y.Y.); (Y.Z.); (M.L.); (S.Y.); (H.Z.); (C.K.)
- Correspondence: ; Tel.: +81-72-864-3084; Fax: +81-72-864-3184
| |
Collapse
|
20
|
Kobatake R, Doi K, Oki Y, Makihara Y, Umehara H, Kubo T, Tsuga K. Comparative Study of Surface Modification Treatment for Porous Titanium. J Oral Maxillofac Res 2020; 11:e5. [PMID: 32760478 PMCID: PMC7393927 DOI: 10.5037/jomr.2020.11205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/04/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES This study was to investigate suitable surface treatment methods for porous titanium by ex vivo study of material properties and calcium phosphate deposition in simulated body fluid. MATERIAL AND METHODS Porous titanium with acid (H2SO4 and HCl mixed acid) or alkali (NaOH) treatment was prepared. The surfaces were observed, and the weight change ratio (after and before surface treatment) and compression strength were measured. To investigate the apatite formation ability, each sample was immersed in simulated body fluid (SBF). Surface observations were performed, and the weight change ratio (before/after immersing SBF) and calcification (by alizarin red staining) were measured. RESULTS The acid group showed a martensitic micro-scale rough structure and the weight and mechanical strength greatly decreased compared to the other groups. The alkali group exhibited a nano-scale roughness structure with similar weight and mechanical strength. Following immersion in SBF, an apatite-like crystal layer in the alkali group was observed. The weight of all samples increased. The change in weight of the samples in the alkali, acid, and control groups were significantly different, showing the following trend: alkali group (1.6%) > acid group (1.2%) > control group (0.8%). Calcium precipitation values were higher in the samples from alkali group than in those from the acid and control groups. CONCLUSIONS Alkali treatment was found to be a suitable surface modification method for porous titanium, resulting in good mechanical strength and apatite formation ability in simulated body fluid.
Collapse
Affiliation(s)
- Reiko Kobatake
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, HiroshimaJapan.
| | - Kazuya Doi
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, HiroshimaJapan.
| | - Yoshifumi Oki
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, HiroshimaJapan.
| | - Yusuke Makihara
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, HiroshimaJapan.
| | - Hanako Umehara
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, HiroshimaJapan.
| | - Takayasu Kubo
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, HiroshimaJapan.
| | - Kazuhiro Tsuga
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, HiroshimaJapan.
| |
Collapse
|
21
|
Koyama C, Hirota M, Okamoto Y, Iwai T, Ogawa T, Hayakawa T, Mitsudo K. A nitrogen-containing bisphosphonate inhibits osteoblast attachment and impairs bone healing in bone-compatible scaffold. J Mech Behav Biomed Mater 2020; 104:103635. [PMID: 32174393 DOI: 10.1016/j.jmbbm.2020.103635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/09/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
Compromised osteoblast attachment on hydroxyapatite could be involved in the development of bone healing failure. We developed a bone-compatible scaffold that mimics bone structure with sub-micron hydroxyapatite (HA) surfaces, so that we could evaluate the effects of nitrogen-containing bisphosphonate (N-BP) on osteoblast behavior and bone healing. Human osteoblasts were seeded onto the bone-compatible scaffold with or without N-BP, and cell attachment and spreading behavior were evaluated 4 and 24 h after seeding. Then, mineralization was evaluated at 7 and 14 days. The osteoconductive activity of the scaffold was evaluated by implantation for 3 and 6 weeks into a rat cranial bone defect. The numbers of osteoblasts and their diameters were significantly less in N-BP-binding scaffolds than in untreated scaffolds at 4 and 24 h. Mineralization were also significantly less in the N-BP-binding scaffolds than in controls at 7 and 14 days. In vivo study revealed bone formation in N-BP-binding scaffolds was significantly less than in untreated scaffolds at 3 and 6 weeks. These results suggest that N-BP-binding to HA inhibited osteoblast attachment and spreading, thereby compromising bone healing process in the injured bone defect site.
Collapse
Affiliation(s)
- Chika Koyama
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Makoto Hirota
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Yoshiyuki Okamoto
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Toshinori Iwai
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Takahiro Ogawa
- Laboratory for Bone and Implant Sciences, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, 10833 Le Conte Avenue, Box 951668, Los Angeles, CA, 90095-1668, USA
| | - Tohru Hayakawa
- Department of Dental Engineering, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| |
Collapse
|
22
|
Taniyama T, Saruta J, Mohammadzadeh Rezaei N, Nakhaei K, Ghassemi A, Hirota M, Okubo T, Ikeda T, Sugita Y, Hasegawa M, Ogawa T. UV-Photofunctionalization of Titanium Promotes Mechanical Anchorage in A Rat Osteoporosis Model. Int J Mol Sci 2020; 21:ijms21041235. [PMID: 32059603 PMCID: PMC7072956 DOI: 10.3390/ijms21041235] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/14/2022] Open
Abstract
Effects of UV-photofunctionalization on bone-to-titanium integration under challenging systemic conditions remain unclear. We examined the behavior and response of osteoblasts from sham-operated and ovariectomized (OVX) rats on titanium surfaces with or without UV light pre-treatment and the strength of bone-implant integration. Osteoblasts from OVX rats showed significantly lower alkaline phosphatase, osteogenic gene expression, and mineralization activities than those from sham rats. Bone density variables in the spine were consistently lower in OVX rats. UV-treated titanium was superhydrophilic and the contact angle of ddH2O was ≤5°. Titanium without UV treatment was hydrophobic with a contact angle of ≥80°. Initial attachment to titanium, proliferation, alkaline phosphatase activity, and gene expression were significantly increased on UV-treated titanium compared to that on control titanium in osteoblasts from sham and OVX rats. Osteoblastic functions compromised by OVX were elevated to levels equivalent to or higher than those of sham-operated osteoblasts following culture on UV-treated titanium. The strength of in vivo bone-implant integration for UV-treated titanium was 80% higher than that of control titanium in OVX rats and even higher than that of control implants in sham-operated rats. Thus, UV-photofunctionalization effectively enhanced bone-implant integration in OVX rats to overcome post-menopausal osteoporosis-like conditions.
Collapse
Affiliation(s)
- Takashi Taniyama
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (T.T.); (N.M.R.); (K.N.); (A.G.); (M.H.); (T.O.); (T.I.); (Y.S.); (M.H.); (T.O.)
- Department of Orthopedic Surgery, Yokohama City Minato Red Cross Hospital, 3-12-1 Shinyamashita, Yokohama 231-8682, Kanagawa, Japan
| | - Juri Saruta
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (T.T.); (N.M.R.); (K.N.); (A.G.); (M.H.); (T.O.); (T.I.); (Y.S.); (M.H.); (T.O.)
- Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka 238-8580, Kanagawa, Japan
- Correspondence: ; Tel./Fax: +81-46-822-9537
| | - Naser Mohammadzadeh Rezaei
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (T.T.); (N.M.R.); (K.N.); (A.G.); (M.H.); (T.O.); (T.I.); (Y.S.); (M.H.); (T.O.)
| | - Kourosh Nakhaei
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (T.T.); (N.M.R.); (K.N.); (A.G.); (M.H.); (T.O.); (T.I.); (Y.S.); (M.H.); (T.O.)
| | - Amirreza Ghassemi
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (T.T.); (N.M.R.); (K.N.); (A.G.); (M.H.); (T.O.); (T.I.); (Y.S.); (M.H.); (T.O.)
| | - Makoto Hirota
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (T.T.); (N.M.R.); (K.N.); (A.G.); (M.H.); (T.O.); (T.I.); (Y.S.); (M.H.); (T.O.)
- Department of Oral and Maxillofacial Surgery/Orthodontics, Yokohama City University Medical Center, 4-57 Urafune-cho, Yokohama 232-0024, Kanagawa, Japan
| | - Takahisa Okubo
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (T.T.); (N.M.R.); (K.N.); (A.G.); (M.H.); (T.O.); (T.I.); (Y.S.); (M.H.); (T.O.)
| | - Takayuki Ikeda
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (T.T.); (N.M.R.); (K.N.); (A.G.); (M.H.); (T.O.); (T.I.); (Y.S.); (M.H.); (T.O.)
| | - Yoshihiko Sugita
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (T.T.); (N.M.R.); (K.N.); (A.G.); (M.H.); (T.O.); (T.I.); (Y.S.); (M.H.); (T.O.)
| | - Masakazu Hasegawa
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (T.T.); (N.M.R.); (K.N.); (A.G.); (M.H.); (T.O.); (T.I.); (Y.S.); (M.H.); (T.O.)
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (T.T.); (N.M.R.); (K.N.); (A.G.); (M.H.); (T.O.); (T.I.); (Y.S.); (M.H.); (T.O.)
| |
Collapse
|
23
|
Iwasaki C, Hirota M, Tanaka M, Kitajima H, Tabuchi M, Ishijima M, Park W, Sugita Y, Miyazawa K, Goto S, Ikeda T, Ogawa T. Tuning of Titanium Microfiber Scaffold with UV-Photofunctionalization for Enhanced Osteoblast Affinity and Function. Int J Mol Sci 2020; 21:ijms21030738. [PMID: 31979313 PMCID: PMC7036837 DOI: 10.3390/ijms21030738] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 11/16/2022] Open
Abstract
Titanium (Ti) is an osteoconductive material that is routinely used as a bulk implant to fix and restore bones and teeth. This study explored the effective use of Ti as a bone engineering scaffold. Challenges to overcome were: (1) difficult liquid/cell infiltration into Ti microfiber scaffolds due to the hydrophobic nature of Ti; and (2) difficult cell attachment on thin and curved Ti microfibers. A recent discovery of UV-photofunctionalization of Ti prompted us to examine its effect on Ti microfiber scaffolds. Scaffolds in disk form were made by weaving grade 4 pure Ti microfibers (125 µm diameter) and half of them were acid-etched to roughen the surface. Some of the scaffolds with original or acid-etched surfaces were further treated by UV light before cell culture. Ti microfiber scaffolds, regardless of the surface type, were hydrophobic and did not allow glycerol/water liquid to infiltrate, whereas, after UV treatment, the scaffolds became hydrophilic and immediately absorbed the liquid. Osteogenic cells from two different origins, derived from the femoral and mandibular bone marrow of rats, were cultured on the scaffolds. The number of cells attached to scaffolds during the early stage of culture within 24 h was 3–10 times greater when the scaffolds were treated with UV. The development of cytoplasmic projections and cytoskeletal, as well as the expression of focal adhesion protein, were exclusively observed on UV-treated scaffolds. Osteoblastic functional phenotypes, such as alkaline phosphatase activity and calcium mineralization, were 2–15 times greater on UV-treated scaffolds, with more pronounced enhancement on acid-etched scaffolds compared to that on the original scaffolds. These effects of UV treatment were associated with a significant reduction in atomic carbon on the Ti microfiber surfaces. In conclusion, UV treatment of Ti microfiber scaffolds tunes their physicochemical properties and effectively enhances the attachment and function of osteoblasts, proposing a new strategy for bone engineering.
Collapse
Affiliation(s)
- Chika Iwasaki
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Makoto Hirota
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
- Department of Oral and Maxillofacial Surgery/Orthodontics, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa 232-0024, Japan
| | - Miyuki Tanaka
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Hiroaki Kitajima
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | - Masako Tabuchi
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Manabu Ishijima
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | - Wonhee Park
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | - Yoshihiko Sugita
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | - Ken Miyazawa
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Shigemi Goto
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Takayuki Ikeda
- Department of Complete Denture Prosthodontics, School of Dentistry, Nihon University, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| |
Collapse
|
24
|
González-Blanco C, Rizo-Gorrita M, Luna-Oliva I, Serrera-Figallo MÁ, Torres-Lagares D, Gutiérrez-Pérez JL. Human Osteoblast Cell Behaviour on Titanium Discs Treated with Argon Plasma. MATERIALS 2019; 12:ma12111735. [PMID: 31142007 PMCID: PMC6600745 DOI: 10.3390/ma12111735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022]
Abstract
(1) Background. Titanium is characterized by its biocompatibility and resistance to stress and fatigue. Treatment with argon plasma may favour growth of human osteoblasts with respect to cell adhesion and proliferation. The aim of this study was to analyse the behaviour of human osteoblasts (MG-63) on Grade IV and V titanium possessing a sand-blasted, acid-etched (SLA) surface. SLA is a widely used surface treatment to create micro- and macroretentions to enhance osteoconductive properties on the surface. (2) Methods. One group of each grade of titanium was decontaminated with argon plasma and compared. On each disc, 20 × 104 cells were cultivated for morphological analysis, study of cell viability (regarding a negative control [100% viability]) and mitochondrial energy balance. (3) Results. At 24 h titanium treated with SLA showed a higher percentage of cell viability (47.3 ± 8.1%) compared to titanium IV treated with argon plasma, which presented a percentage of 79.1 ± 1.1%. Grade V titanium treated with argon plasma presented a higher viability percentage 91.3 ± 3.0% whereas nontreated Grade V titanium presented 53.3 ± 4.0%. Cells cultivated on the surfaces with an argon-plasma treatment were enlarged in comparison to non-treated discs. The cells with smaller circularity with a greater spread and spindle shape were the ones cultivated on the Grade V titanium surface. Cells seeded on treated titanium IV and titanium V, treated or not, showed higher mitochondrial activity over nontreated titanium IV. (4) Conclusions. Cells cultivated on those Grade V titanium discs that were decontaminated with argon plasma presented higher levels of cell adhesion and proliferation, lower mitochondrial damage and a higher mean cell area compared to those not decontaminated with argon plasma.
Collapse
Affiliation(s)
- Carolina González-Blanco
- Department of Oral Surgery, College of Dentistry, Seville University, Calle de Avicena s/n 41009 Seville, Spain.
| | - María Rizo-Gorrita
- Department of Oral Surgery, College of Dentistry, Seville University, Calle de Avicena s/n 41009 Seville, Spain.
| | - Irene Luna-Oliva
- Department of Oral Surgery, College of Dentistry, Seville University, Calle de Avicena s/n 41009 Seville, Spain.
| | | | - Daniel Torres-Lagares
- Department of Oral Surgery, College of Dentistry, Seville University, Calle de Avicena s/n 41009 Seville, Spain.
| | - José-Luis Gutiérrez-Pérez
- Department of Oral Surgery, College of Dentistry, Seville University, Calle de Avicena s/n 41009 Seville, Spain.
| |
Collapse
|