1
|
Nawaz H, Zhang X, Chen S, Li X, Zhang X, Shabbir I, Xu F. Recent developments in lignin-based fluorescent materials. Int J Biol Macromol 2024; 258:128737. [PMID: 38103672 DOI: 10.1016/j.ijbiomac.2023.128737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Biomass-based fluorescent materials are an alternative to plastic-based materials for their multifunctional applications. Lignin, an inexpensive and easily available raw material, demonstrates outstanding environment-responsive properties such as pH, metal ions, dyes sensing, bioimaging and so on. To date, only a little work has been reported on the synthesis of lignin-based fluorescent materials. In this review report, synthetic approaches and light-responsive applications of lignin-based fluorescent carbon dots and other materials are summarized. The results reveal that lignin-based fluorescent carbon dots are prepared by hydrothermal method, exhibit small size <10 nm, reveal significant quantum yield, biocompatibility, non-toxicity, photostability and display substantial tunable emission and can be efficiently employed for sensing, bioimaging and energy storage applications. Finally, the forthcoming challenges, investigations, and options open for the chemical and/or physical modification of lignin into fluorescent materials for future applications are well-addressed. To our knowledge, this is the first comprehensive review report on lignin-based fluorescent materials and their light-responsive applications. In addition, this review will attract remarkable consideration and thrust for the researchers and biochemical technologists working with the preparation of lignin-based fluorescent materials for broad applications.
Collapse
Affiliation(s)
- Haq Nawaz
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Xun Zhang
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Sheng Chen
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xin Li
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xueming Zhang
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083, China
| | - Irfan Shabbir
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Feng Xu
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Akram Z, Raza A, Mehdi M, Arshad A, Deng X, Sun S. Recent Advancements in Metal and Non-Metal Mixed-Doped Carbon Quantum Dots: Synthesis and Emerging Potential Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2336. [PMID: 37630922 PMCID: PMC10459133 DOI: 10.3390/nano13162336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
In nanotechnology, the synthesis of carbon quantum dots (CQDs) by mixed doping with metals and non-metals has emerged as an appealing path of investigation. This review offers comprehensive insights into the synthesis, properties, and emerging applications of mixed-doped CQDs, underlining their potential for revolutionary advancements in chemical sensing, biosensing, bioimaging, and, thereby, contributing to advancements in diagnostics, therapeutics, and the under standing of complex biological processes. This synergistic combination enhances their sensitivity and selectivity towards specific chemical analytes. The resulting CQDs exhibit remarkable fluorescence properties that can be involved in precise chemical sensing applications. These metal-modified CQDs show their ability in the selective and sensitive detection from Hg to Fe and Mn ions. By influencing their exceptional fluorescence properties, they enable precise detection and monitoring of biomolecules, such as uric acid, cholesterol, and many antibiotics. Moreover, when it comes to bioimaging, these doped CQDs show unique behavior towards detecting cell lines. Their ability to emit light across a wide spectrum enables high-resolution imaging with minimal background noise. We uncover their potential in visualizing different cancer cell lines, offering valuable insights into cancer research and diagnostics. In conclusion, the synthesis of mixed-doped CQDs opens the way for revolutionary advancements in chemical sensing, biosensing, and bioimaging. As we investigate deeper into this field, we unlock new possibilities for diagnostics, therapeutics, and understanding complex biological processes.
Collapse
Affiliation(s)
- Zubair Akram
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (Z.A.); (A.R.); (A.A.); (X.D.)
| | - Ali Raza
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (Z.A.); (A.R.); (A.A.); (X.D.)
| | - Muhammad Mehdi
- College of Chemistry & Pharmacy, Northwest A&F University, Xianyang 712100, China;
| | - Anam Arshad
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (Z.A.); (A.R.); (A.A.); (X.D.)
| | - Xiling Deng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (Z.A.); (A.R.); (A.A.); (X.D.)
| | - Shiguo Sun
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (Z.A.); (A.R.); (A.A.); (X.D.)
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
3
|
Li G, Liu Z, Gao W, Tang B. Recent advancement in graphene quantum dots based fluorescent sensor: Design, construction and bio-medical applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Wei D, Lv S, Zuo J, Zhang S, Liang S. Recent advances research and application of lignin-based fluorescent probes. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Facile Synthesis of Carbon Dots from Biomass Material and Multi-Purpose Applications. J Fluoresc 2022; 32:783-789. [DOI: 10.1007/s10895-021-02870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
|
6
|
Otoni CG, Azeredo HMC, Mattos BD, Beaumont M, Correa DS, Rojas OJ. The Food-Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agri-Food Residues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102520. [PMID: 34510571 PMCID: PMC11468898 DOI: 10.1002/adma.202102520] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The most recent strategies available for upcycling agri-food losses and waste (FLW) into functional bioplastics and advanced materials are reviewed and the valorization of food residuals are put in perspective, adding to the water-food-energy nexus. Low value or underutilized biomass, biocolloids, water-soluble biopolymers, polymerizable monomers, and nutrients are introduced as feasible building blocks for biotechnological conversion into bioplastics. The latter are demonstrated for their incorporation in multifunctional packaging, biomedical devices, sensors, actuators, and energy conversion and storage devices, contributing to the valorization efforts within the future circular bioeconomy. Strategies are introduced to effectively synthesize, deconstruct and reassemble or engineer FLW-derived monomeric, polymeric, and colloidal building blocks. Multifunctional bioplastics are introduced considering the structural, chemical, physical as well as the accessibility of FLW precursors. Processing techniques are analyzed within the fields of polymer chemistry and physics. The prospects of FLW streams and biomass surplus, considering their availability, interactions with water and thermal stability, are critically discussed in a near-future scenario that is expected to lead to next-generation bioplastics and advanced materials.
Collapse
Affiliation(s)
- Caio G. Otoni
- Department of Materials Engineering (DEMa)Federal University of São Carlos (UFSCar)Rod. Washington Luiz, km 235São CarlosSP13565‐905Brazil
| | - Henriette M. C. Azeredo
- Embrapa Agroindústria TropicalRua Dra. Sara Mesquita 2270FortalezaCE60511‐110Brazil
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentaçãoRua XV de Novembro 1452São CarlosSP13560‐970Brazil
| | - Bruno D. Mattos
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
| | - Marco Beaumont
- Department of ChemistryUniversity of Natural Resources and Life SciencesVienna (BOKU), Konrad‐Lorenz‐Str. 24TullnA‐3430Austria
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentaçãoRua XV de Novembro 1452São CarlosSP13560‐970Brazil
| | - Orlando J. Rojas
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
- Bioproducts InstituteDepartments of Chemical & Biological Engineering, Chemistry and Wood ScienceThe University of British Columbia2360 East MallVancouverBCV6T 1Z3Canada
| |
Collapse
|
7
|
Wang Z, Zhang L, Hao Y, Dong W, Liu Y, Song S, Shuang S, Dong C, Gong X. Ratiometric fluorescent sensors for sequential on-off-on determination of riboflavin, Ag + and l-cysteine based on NPCl-doped carbon quantum dots. Anal Chim Acta 2021; 1144:1-13. [PMID: 33453785 DOI: 10.1016/j.aca.2020.11.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 01/25/2023]
Abstract
The fluorescent sensor, especially ratiometric fluorescent sensor, is one of the most important applications for CQDs, which is becoming a research hotspot. Herein, carbon quantum dots co-doped with nitrogen, phosphorus and chlorine (NPCl-CQDs) were synthesized by acid-base neutralization reaction exothermic carbonization method. The as-fabricated NPCl-CQDs could emit blue fluorescence and possess excellent fluorescence properties. Based on the FRET, multifunctional and ratiometric fluorescent sensors for "on-off-on" sequential determination of riboflavin, Ag+, and Cys with good selectivity and high sensitivity were established. The linear range of riboflavin, Ag+, and Cys are 0.50-10.18 μM and 15.89-27.76 μM, 0.66-1.46 mM and 1.50-4.20 mM, and 0.01-0.15 μM and 0.15-0.36 μM with the limit of detection of 3.50 nM, 26.38 μM, and 0.96 nM, respectively. Furthermore, the sensors were successfully used to determine riboflavin, Ag+, and Cys in tablets, river water, and human urine with the recoveries of 95.2-104.0%, 95.6-102.0%, and 94.8-106.4%, respectively. More importantly, the as-constructed "on-off-on" NPCl-CQDs-based ratiometric fluorescent sensors were applied for detecting riboflavin, Ag+, and Cys in HeLa cells with satisfying results. The finding of this study shows the feasibility and effectiveness of the NPCl-CQDs as the available ratiometric fluorescent sensors for the determination of riboflavin, Ag+, and Cys in real samples and living cells.
Collapse
Affiliation(s)
- Zihan Wang
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Li Zhang
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Yumin Hao
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Wenjuan Dong
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Yang Liu
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Shengmei Song
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Shaomin Shuang
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Chuan Dong
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China.
| | - Xiaojuan Gong
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China.
| |
Collapse
|
8
|
Li S, Cao D, Ma W, Hu Z, Meng X, Li Z, Yuan C, Zhou T, Han X. A simple fluorescent probe for detection of Ag + and Cd 2+ and its Cd 2+ complex for sequential recognition of S 2. RSC Adv 2020; 10:18434-18439. [PMID: 35517219 PMCID: PMC9053719 DOI: 10.1039/d0ra01768j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/07/2020] [Indexed: 11/21/2022] Open
Abstract
In this study, we designed and synthesized a simple probe 2-(8-((8-methoxyquinolin-2-yl)methoxy)quinolin-2-yl)benzo[d]thiazole (DQT) for detection of Ag+ and Cd2+ in a CH3OH/HEPES (9 : 1 v/v, pH = 7.30) buffer system. Its structure was characterized by NMR, ESI-HR-MS and DFT calculations, and its fluorescence performance was also investigated. Probe DQT showed fluorescence quenching in response to Ag+ and Cd2+ with low detection limits of 0.42 μM and 0.26 μM, respectively. Importantly, the complexation of the probe with Cd2+ resulted in a red shift from blue to green, making it possible to detect Ag+ and Cd2+ by the naked eye under an ultraviolet lamp. The DQT-Cd2+ complex could be used for sequential recognition of S2-. The recovery response could be repeated 3 times by alternate addition of Cd2+ and S2-. A filter paper strip test further demonstrated the potential of probe DQT as a convenient and rapid assay.
Collapse
Affiliation(s)
- Shengling Li
- School of Chemical Engineering and Technology, North University of China Taiyuan 030051 P.R. China
| | - Duanlin Cao
- School of Chemical Engineering and Technology, North University of China Taiyuan 030051 P.R. China
| | - Wenbing Ma
- School of Chemical Engineering and Technology, North University of China Taiyuan 030051 P.R. China .,National Demonstration Center for Experimental Comprehenisve Chemical Engineering Education, North University of China Taiyuan 030051 P.R. China
| | - Zhiyong Hu
- School of Chemical Engineering and Technology, North University of China Taiyuan 030051 P.R. China .,National Demonstration Center for Experimental Comprehenisve Chemical Engineering Education, North University of China Taiyuan 030051 P.R. China
| | - Xianjiao Meng
- College of Arts and Sciences, Shanxi Agricultural University Taigu Shanxi 030801 P.R. China
| | - Zhichun Li
- School of Chemical Engineering and Technology, North University of China Taiyuan 030051 P.R. China
| | - Changchun Yuan
- School of Chemical Engineering and Technology, North University of China Taiyuan 030051 P.R. China
| | - Tao Zhou
- School of Chemical Engineering and Technology, North University of China Taiyuan 030051 P.R. China
| | - Xinghua Han
- School of Chemical Engineering and Technology, North University of China Taiyuan 030051 P.R. China .,National Demonstration Center for Experimental Comprehenisve Chemical Engineering Education, North University of China Taiyuan 030051 P.R. China
| |
Collapse
|
9
|
Jiang X, Yang Y, Li H, Qi X, Zhou X, Deng M, Lü M, Wu J, Liang S. A Water-Soluble Fluorescent Probe for the Selective Sensing of Ag + and its Application in Imaging of Living Cells and Nematodes. J Fluoresc 2020; 30:121-129. [PMID: 31930435 DOI: 10.1007/s10895-019-02477-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/26/2019] [Indexed: 12/25/2022]
Abstract
In this study, an imidazole-coumarin based fluorescent probe was developed for the selective and sensitive detection of Ag+ in aqueous solution. Using a combination of Job plot, NMR titrations, and DFT calculations, the binding properties between Ag+ and the probe were deeply investigated, and the results revealed a 1:1 binding stoichiometry between the probe and Ag+ with a binding constant of 1.02 × 106 M-1. The detection limit was found to be 150 nM, which satisfies the requirement for the quantitative detection of Ag+ in real water samples. Moreover, the new probe, Ic, was successfully applied to sense Ag+ in HeLa and HepG2 cells as well as in C. elegans, indicating that it could be a useful tool for the environmental monitoring of Ag+ pollution. These results demonstrated that Ic could serve as a high-efficiency and low-cost fluorescent probe for tracking Ag+ in an aquatic environment and biological organisms.
Collapse
Affiliation(s)
- Xueqin Jiang
- The Pharmacy School of Southwest Medical University, Luzhou, China
| | - Youzhe Yang
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hao Li
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoyi Qi
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Xiaogang Zhou
- The Pharmacy School of Southwest Medical University, Luzhou, China
| | - Mingming Deng
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Muhan Lü
- The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Jianming Wu
- The Pharmacy School of Southwest Medical University, Luzhou, China.
- The Sichuan Key Medical Laboratory of New Drug Discovery and Drug Ability Evaluation, Luzhou, China.
| | - Sicheng Liang
- The Pharmacy School of Southwest Medical University, Luzhou, China.
- The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.
| |
Collapse
|