1
|
Tang H, Wang X, Qiu S, Wang Y, Zhang X, Zhang Y. Low-density electrospun fibrous network promotes mechanotransduction and matrix remodeling in fibroblasts. BIOMATERIALS ADVANCES 2025; 174:214316. [PMID: 40245813 DOI: 10.1016/j.bioadv.2025.214316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/22/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
The mechanical interactions between cells and fiber-dominated extracellular matrix (ECM) are crucial in regulating matrix-remodeling and cellular physiological processes. Electrospun fibers, as a type of biomimicking fibers, provide an ideal platform for engineering a variety of tissues in vitro. However, the mechanisms by which electrospun fibers promote cellular matrix-remodeling, particularly concerning the characteristic mechanical compliance in the fibers, remain inadequately understood due to the crossing and entanglement of electrospun ultrafine fibers in those densely packed fibrous mats. This study devised low-density fibrous network and mechanically sensitive fibroblasts to investigate how cells sense, respond to, and remodel the residing microenvironment at both cellular and molecular levels. The results showed that the fibroblasts cultured on the low-density fibrous network exhibited a contractile phenotype, as evidenced by the upregulated transcription and synthesis of ECM-related proteins as well as fiber recruitment capability, thereby displaying a greater capacity in matrix-remodeling. Analysis of mechanotransduction-related markers revealed that the RhoA-ROCK signaling pathway was activated in the low-density fibrous network-substrated fibroblasts. Additionally, enhanced cytoskeletal assembly, cell contractility, YAP nuclear translocation, and activation of Piezo1 were observed. Inhibition of ROCK disrupted mechanotransduction, consequently impairing the cell's matrix-remodeling capacity. These findings demonstrate that the low-density electrospun fibrous network promotes the cell-mediated matrix-remodeling by facilitating mechanotransduction signaling. This study establishes a theoretical framework for understanding how electrospun fibers regulate cellular function at the micro-mechanical level and may shed insights on the design of biomimetic fibrous scaffolds for promoting tissue regeneration.
Collapse
Affiliation(s)
- Han Tang
- Institute of Pharmacology & Toxicology, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Key Laboratory of Neuropsychopharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; International Institute for Science, Proya Cosmetics Co., Ltd., Hangzhou 310023, China; College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoli Wang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Sha Qiu
- Department of Traditional Chinese Medicine, Qingdao Central Hospital University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao 266042, China
| | - Yuying Wang
- International Institute for Science, Proya Cosmetics Co., Ltd., Hangzhou 310023, China
| | - Xiangnan Zhang
- Institute of Pharmacology & Toxicology, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Key Laboratory of Neuropsychopharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yanzhong Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Akolawala Q, Accardo A. Engineered Cell Microenvironments: A Benchmark Tool for Radiobiology. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5563-5577. [PMID: 39813590 PMCID: PMC11788991 DOI: 10.1021/acsami.4c20455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
The development of engineered cell microenvironments for fundamental cell mechanobiology, in vitro disease modeling, and tissue engineering applications increased exponentially during the last two decades. In such context, in vitro radiobiology is a field of research aiming at understanding the effects of ionizing radiation (e.g., X-rays/photons, high-speed electrons, and high-speed protons) on biological (cancerous) tissues and cells, in particular in terms of DNA damage leading to cell death. Herein, the perspective provides a comparative assessment overview of scaffold-free, scaffold-based, and organ-on-a-chip models for radiobiology, highlighting opportunities, limitations, and future pathways to improve the currently existing approaches toward personalized cancer medicine.
Collapse
Affiliation(s)
- Qais Akolawala
- Department
of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The
Netherlands
- Holland
Proton Therapy Center (HollandPTC), Huismansingel 4, 2629 JH Delft, The Netherlands
| | - Angelo Accardo
- Department
of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The
Netherlands
| |
Collapse
|
3
|
Brauer E, Herrera A, Fritsche-Guenther R, Görlitz S, Leemhuis H, Knaus P, Kirwan JA, Duda GN, Petersen A. Mechanical heterogeneity in a soft biomaterial niche controls BMP2 signaling. Biomaterials 2024; 309:122614. [PMID: 38788455 DOI: 10.1016/j.biomaterials.2024.122614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
The extracellular matrix is known to impact cell function during regeneration by modulating growth factor signaling. However, how the mechanical properties and structure of biomaterials can be used to optimize the cellular response to growth factors is widely neglected. Here, we engineered a macroporous biomaterial to study cellular signaling in environments that mimic the mechanical stiffness but also the mechanical heterogeneity of native extracellular matrix. We found that the mechanical interaction of cells with the heterogeneous and non-linear deformation properties of soft matrices (E < 5 kPa) enhances BMP-2 growth factor signaling with high relevance for tissue regeneration. In contrast, this effect is absent in homogeneous hydrogels that are often used to study cell responses to mechanical cues. Live cell imaging and in silico finite element modeling further revealed that a subpopulation of highly active, fast migrating cells is responsible for most of the material deformation, while a second, less active population experiences this deformation as an extrinsic mechanical stimulation. At an overall low cell density, the active cell population dominates the process, suggesting that it plays a particularly important role in early tissue healing scenarios where cells invade tissue defects or implanted biomaterials. Taken together, our findings demonstrate that the mechanical heterogeneity of the natural extracellular matrix environment plays an important role in triggering regeneration by endogenously acting growth factors. This suggests the inclusion of such mechanical complexity as a design parameter in future biomaterials, in addition to established parameters such as mechanical stiffness and stress relaxation.
Collapse
Affiliation(s)
- Erik Brauer
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany; Berlin School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany; BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | - Aaron Herrera
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany; Berlin School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany; BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | - Raphaela Fritsche-Guenther
- BIH Metabolomics Platform, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sophie Görlitz
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany; Berlin School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany; BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | | | - Petra Knaus
- Berlin School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany; Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Jennifer A Kirwan
- BIH Metabolomics Platform, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany; Berlin School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany; BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | - Ansgar Petersen
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany; Berlin School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany; BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany.
| |
Collapse
|
4
|
Waldron OP, El-Mallah JC, Lochan D, Wen C, Landmesser ME, Asgardoon M, Dawes J, Horchler SN, Schlidt K, Agrawal S, Wang Y, Ravnic DJ. Ushering in the era of regenerative surgery. Minerva Surg 2024; 79:166-182. [PMID: 38088753 DOI: 10.23736/s2724-5691.23.10113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Tissue loss, irrespective of etiology, often requires extensive reconstruction. In many instances, the need exceeds what current treatments and technologies modern medicine can offer. Tissue engineering has made immense strides within the past few decades due to advances in biologics, biomaterials, and manufacturing. The convergence of these three domains has created limitless potential for future surgical care. Unfortunately, there still exists a disconnect on how to best implant these 'replacement parts' and care for the patient. It is therefore vital to develop paradigms for the integration of advanced surgical and tissue engineering technologies. This paper explores the convergence between tissue engineering and reconstructive surgery. We will describe the clinical problem of tissue loss, discuss currently available solutions, address limitations, and propose processes for integrating surgery and tissue engineering, thereby ushering in the era of regenerative surgery.
Collapse
Affiliation(s)
- Olivia P Waldron
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA
| | - Jessica C El-Mallah
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Dev Lochan
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA
| | - Connie Wen
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Mary E Landmesser
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Mohammadhossein Asgardoon
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Jazzmyn Dawes
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA
| | - Summer N Horchler
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA
| | - Kevin Schlidt
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA
| | - Shailaja Agrawal
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Dino J Ravnic
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA -
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
5
|
Parsons R, Sestito JM, Luke BS. Computational Analysis and Optimization of Geometric Parameters for Fibrous Scaffold Design. ACS OMEGA 2022; 7:41449-41460. [PMID: 36406516 PMCID: PMC9670901 DOI: 10.1021/acsomega.2c05234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Bioresorbable tissue scaffolds are a promising potential treatment for soft-tissue injuries, such as tendon and ligament rupture. These materials provide temporary support to the injured tissues and provide biological cues that promote healing. Previous work has shown that fiber alignment, diameter, and spacing affect cell morphology and migration, which impact healing of the target tissue. However, previous work has not fully characterized the isolated effects of fiber alignment, diameter, and spacing on cell morphology and migration, nor has it revealed the ideal combinations of diameter and spacing to promote cell migration and elongation on fibrous scaffolds. To clarify these effects, a mesoscale model was formulated to describe cell movement on a fibrous scaffold and analyze the isolated effects of fiber alignment, diameter, and spacing. After analyzing the isolated effects, an optimization was performed to find combinations of fiber diameter and spacing that maximized cell elongation and migration, which may lead to improved healing of the target tissue. This analysis may ultimately aid the design of scaffold materials to improve outcomes after tendon or ligament rupture.
Collapse
|
6
|
Vasudevan J, Jiang K, Fernandez J, Lim CT. Extracellular matrix mechanobiology in cancer cell migration. Acta Biomater 2022; 163:351-364. [PMID: 36243367 DOI: 10.1016/j.actbio.2022.10.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/11/2022] [Accepted: 10/06/2022] [Indexed: 11/01/2022]
Abstract
The extracellular matrix (ECM) is pivotal in modulating tumor progression. Besides chemically stimulating tumor cells, it also offers physical support that orchestrates the sequence of events in the metastatic cascade upon dynamically modulating cell mechanosensation. Understanding this translation between matrix biophysical cues and intracellular signaling has led to rapid growth in the interdisciplinary field of cancer mechanobiology in the last decade. Substantial efforts have been made to develop novel in vitro tumor mimicking platforms to visualize and quantify the mechanical forces within the tissue that dictate tumor cell invasion and metastatic growth. This review highlights recent findings on tumor matrix biophysical cues such as fibrillar arrangement, crosslinking density, confinement, rigidity, topography, and non-linear mechanics and their implications on tumor cell behavior. We also emphasize how perturbations in these cues alter cellular mechanisms of mechanotransduction, consequently enhancing malignancy. Finally, we elucidate engineering techniques to individually emulate the mechanical properties of tumors that could help serve as toolkits for developing and testing ECM-targeted therapeutics on novel bioengineered tumor platforms. STATEMENT OF SIGNIFICANCE: Disrupted ECM mechanics is a driving force for transitioning incipient cells to life-threatening malignant variants. Understanding these ECM changes can be crucial as they may aid in developing several efficacious drugs that not only focus on inducing cytotoxic effects but also target specific matrix mechanical cues that support and enhance tumor invasiveness. Designing and implementing an optimal tumor mimic can allow us to predictively map biophysical cue-modulated cell behaviors and facilitate the design of improved lab-grown tumor models with accurately controlled structural features. This review focuses on the abnormal changes within the ECM during tumorigenesis and its implications on tumor cell-matrix mechanoreciprocity. Additionally, it accentuates engineering approaches to produce ECM features of varying levels of complexity which is critical for improving the efficiency of current engineered tumor tissue models.
Collapse
|
7
|
Tortorici M, Brauer E, Thiele M, Duda GN, Petersen A. Characterizing cell recruitment into isotropic and anisotropic biomaterials by quantification of spatial density gradients in vitro. Front Bioeng Biotechnol 2022; 10:939713. [PMID: 35992332 PMCID: PMC9389461 DOI: 10.3389/fbioe.2022.939713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
The success of cell-free in situ tissue engineering approaches depends on an appropriate recruitment of autologous cells from neighboring tissues. This identifies cellular migration as a critical parameter for the pre-clinical characterization of biomaterials. Here, we present a new method to quantify both the extent and the spatial anisotropy of cell migration in vitro. For this purpose, a cell spheroid is used as a cell source to provide a high number of cells for cellular invasion and, at the same time, to guarantee a controlled and spatially localized contact to the material. Therefore, current limitations of assays based on 2D cell sources can be overcome. We tested the method on three biomaterials that are in clinical use for soft tissue augmentation in maxilla-facial surgery and a substrate used for 3D in vitro cell culture. The selected biomaterials were all collagen-derived, but differed in their internal architecture. The analysis of cellular isodensity profiles within the biomaterials allowed the identification of the extent and the preferential directions of migration, as well as their relation to the biomaterials and their specific pore morphologies. The higher cell density within the biomaterials resulting from the here-introduced cell spheroid assay compared to established 2D cell layer assays suggests a better representation of the in vivo situation. Consequently, the presented method is proposed to advance the pre-clinical evaluation of cell recruitment into biomaterials, possibly leading to an improved prediction of the regeneration outcome.
Collapse
Affiliation(s)
- Martina Tortorici
- Julius Wolff Institute, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Erik Brauer
- Julius Wolff Institute, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Mario Thiele
- Julius Wolff Institute, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Georg N. Duda
- Julius Wolff Institute, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Ansgar Petersen
- Julius Wolff Institute, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: Ansgar Petersen,
| |
Collapse
|
8
|
Time-resolved in situ synchrotron-microCT: 4D deformation of bone and bone analogues using digital volume correlation. Acta Biomater 2021; 131:424-439. [PMID: 34126266 DOI: 10.1016/j.actbio.2021.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/07/2021] [Accepted: 06/07/2021] [Indexed: 02/08/2023]
Abstract
Digital volume correlation (DVC) in combination with high-resolution micro-computed tomography (microCT) imaging and in situ mechanical testing is gaining popularity for quantifying 3D full-field strains in bone and biomaterials. However, traditional in situ time-lapsed (i.e., interrupted) mechanical testing cannot fully capture the dynamic strain mechanisms in viscoelastic biological materials. The aim of this study was to investigate the time-resolved deformation of bone structures and analogues via continuous in situ synchrotron-radiation microCT (SR-microCT) compression and DVC to gain a better insight into their structure-function relationships. Fast SR-microCT imaging enabled the deformation behaviour to be captured with high temporal and spatial resolution. Time-resolved DVC highlighted the relationship between local strains and damage initiation and progression in the different biostructures undergoing plastic deformation, bending and/or buckling of their main microstructural elements. The results showed that SR-microCT continuous mechanical testing complemented and enhanced the information obtained from time-lapsed testing, which may underestimate the 3D strain magnitudes as a result of the stress relaxation occurring in between steps before image acquisition in porous biomaterials. Altogether, the findings of this study highlight the importance of time-resolved in situ experiments to fully characterise the time-dependent mechanical behaviour of biological tissues and biomaterials and to further explore their micromechanics under physiologically relevant conditions. STATEMENT OF SIGNIFICANCE: Time-resolved synchrotron X-ray tomography in combination with in situ mechanical testing provided the first four-dimensional analysis of the mechanical deformation of bone and bone analogues. To unravel the interplay of damage initiation and progression with local deformation, digital volume correlation was used to map the local strain field while microstructural changes were tracked with high temporal and spatial resolution. The results highlighted the importance of fast imaging and time-resolved in situ experiments to capture the real deformation of complex porous materials to fully characterize the local strain-damage relationship. The findings are notably improving the understanding of time-dependent mechanical behaviour of bone tissue, with the potential to be extend to highly viscoelastic biomaterials and soft tissues.
Collapse
|
9
|
Drzeniek NM, Mazzocchi A, Schlickeiser S, Forsythe SD, Moll G, Geißler S, Reinke P, Gossen M, Gorantla VS, Volk HD, Soker S. Bio-instructive hydrogel expands the paracrine potency of mesenchymal stem cells. Biofabrication 2021; 13:10.1088/1758-5090/ac0a32. [PMID: 34111862 PMCID: PMC10024818 DOI: 10.1088/1758-5090/ac0a32] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/10/2021] [Indexed: 02/03/2023]
Abstract
The therapeutic efficacy of clinically applied mesenchymal stromal cells (MSCs) is limited due to their injection into harshin vivoenvironments, resulting in the significant loss of their secretory function upon transplantation. A potential strategy for preserving their full therapeutic potential is encapsulation of MSCs in a specialized protective microenvironment, for example hydrogels. However, commonly used injectable hydrogels for cell delivery fail to provide the bio-instructive cues needed to sustain and stimulate cellular therapeutic functions. Here we introduce a customizable collagen I-hyaluronic acid (COL-HA)-based hydrogel platform for the encapsulation of MSCs. Cells encapsulated within COL-HA showed a significant expansion of their secretory profile compared to MSCs cultured in standard (2D) cell culture dishes or encapsulated in other hydrogels. Functionalization of the COL-HA backbone with thiol-modified glycoproteins such as laminin led to further changes in the paracrine profile of MSCs. In depth profiling of more than 250 proteins revealed an expanded secretion profile of proangiogenic, neuroprotective and immunomodulatory paracrine factors in COL-HA-encapsulated MSCs with a predicted augmented pro-angiogenic potential. This was confirmed by increased capillary network formation of endothelial cells stimulated by conditioned media from COL-HA-encapsulated MSCs. Our findings suggest that encapsulation of therapeutic cells in a protective COL-HA hydrogel layer provides the necessary bio-instructive cues to maintain and direct their therapeutic potential. Our customizable hydrogel combines bioactivity and clinically applicable properties such as injectability, on-demand polymerization and tissue-specific elasticity, all features that will support and improve the ability to successfully deliver functional MSCs into patients.
Collapse
Affiliation(s)
- Norman M Drzeniek
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Andrea Mazzocchi
- Known Medicine Inc., 675 Arapeen Dr, Suite 103A-1, Salt Lake City, UT 84108, United States of America.,Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States of America
| | - Stephan Schlickeiser
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany
| | - Steven D Forsythe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States of America
| | - Guido Moll
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sven Geißler
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Petra Reinke
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Manfred Gossen
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin 13353, Germany.,Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstr. 55, Teltow 14513, Germany
| | - Vijay S Gorantla
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States of America
| | - Hans-Dieter Volk
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States of America
| |
Collapse
|
10
|
Vaiani L, Migliorini E, Cavalcanti-Adam EA, Uva AE, Fiorentino M, Gattullo M, Manghisi VM, Boccaccio A. Coarse-grained elastic network modelling: A fast and stable numerical tool to characterize mesenchymal stem cells subjected to AFM nanoindentation measurements. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111860. [PMID: 33579492 DOI: 10.1016/j.msec.2020.111860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022]
Abstract
The knowledge of the mechanical properties is the starting point to study the mechanobiology of mesenchymal stem cells and to understand the relationships linking biophysical stimuli to the cellular differentiation process. In experimental biology, Atomic Force Microscopy (AFM) is a common technique for measuring these mechanical properties. In this paper we present an alternative approach for extracting common mechanical parameters, such as the Young's modulus of cell components, starting from AFM nanoindentation measurements conducted on human mesenchymal stem cells. In a virtual environment, a geometrical model of a stem cell was converted in a highly deformable Coarse-Grained Elastic Network Model (CG-ENM) to reproduce the real AFM experiment and retrieve the related force-indentation curve. An ad-hoc optimization algorithm perturbed the local stiffness values of the springs, subdivided in several functional regions, until the computed force-indentation curve replicated the experimental one. After this curve matching, the extraction of global Young's moduli was performed for different stem cell samples. The algorithm was capable to distinguish the material properties of different subcellular components such as the cell cortex and the cytoskeleton. The numerical results predicted with the elastic network model were then compared to those obtained from hertzian contact theory and Finite Element Method (FEM) for the same case studies, showing an optimal agreement and a highly reduced computational cost. The proposed simulation flow seems to be an accurate, fast and stable method for understanding the mechanical behavior of soft biological materials, even for subcellular levels of detail. Moreover, the elastic network modelling allows shortening the computational times to approximately 33% of the time required by a traditional FEM simulation performed using elements with size comparable to that of springs.
Collapse
Affiliation(s)
- L Vaiani
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari 70126, Italy
| | | | - E A Cavalcanti-Adam
- Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany; Heidelberg University, D-69120 Heidelberg, Germany
| | - A E Uva
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari 70126, Italy
| | - M Fiorentino
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari 70126, Italy
| | - M Gattullo
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari 70126, Italy
| | - V M Manghisi
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari 70126, Italy
| | - A Boccaccio
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari 70126, Italy.
| |
Collapse
|
11
|
Naqvi SM, McNamara LM. Stem Cell Mechanobiology and the Role of Biomaterials in Governing Mechanotransduction and Matrix Production for Tissue Regeneration. Front Bioeng Biotechnol 2020; 8:597661. [PMID: 33381498 PMCID: PMC7767888 DOI: 10.3389/fbioe.2020.597661] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Mechanobiology has underpinned many scientific advances in understanding how biophysical and biomechanical cues regulate cell behavior by identifying mechanosensitive proteins and specific signaling pathways within the cell that govern the production of proteins necessary for cell-based tissue regeneration. It is now evident that biophysical and biomechanical stimuli are as crucial for regulating stem cell behavior as biochemical stimuli. Despite this, the influence of the biophysical and biomechanical environment presented by biomaterials is less widely accounted for in stem cell-based tissue regeneration studies. This Review focuses on key studies in the field of stem cell mechanobiology, which have uncovered how matrix properties of biomaterial substrates and 3D scaffolds regulate stem cell migration, self-renewal, proliferation and differentiation, and activation of specific biological responses. First, we provide a primer of stem cell biology and mechanobiology in isolation. This is followed by a critical review of key experimental and computational studies, which have unveiled critical information regarding the importance of the biophysical and biomechanical cues for stem cell biology. This review aims to provide an informed understanding of the intrinsic role that physical and mechanical stimulation play in regulating stem cell behavior so that researchers may design strategies that recapitulate the critical cues and develop effective regenerative medicine approaches.
Collapse
Affiliation(s)
- S M Naqvi
- Mechanobiology and Medical Device Research Group, Department of Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| | - L M McNamara
- Mechanobiology and Medical Device Research Group, Department of Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
12
|
Schreivogel S, Kuchibhotla V, Knaus P, Duda GN, Petersen A. Load-induced osteogenic differentiation of mesenchymal stromal cells is caused by mechano-regulated autocrine signaling. J Tissue Eng Regen Med 2019; 13:1992-2008. [PMID: 31359634 DOI: 10.1002/term.2948] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 06/28/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
Mechanical boundary conditions critically influence the bone healing process. In this context, previous in vitro studies have demonstrated that cyclic mechanical compression alters migration and triggers osteogenesis of mesenchymal stromal cells (MSC), both processes being relevant to healing. However, it remains unclear whether this mechanosensitivity is a direct consequence of cyclic compression, an indirect effect of altered supply or a specific modulation of autocrine bone morphogenetic protein (BMP) signaling. Here, we investigate the influence of cyclic mechanical compression (ε = 5% and 10%, f = 1 Hz) on human bone marrow MSC (hBMSC) migration and osteogenic differentiation in a 3D biomaterial scaffold, an in vitro system mimicking the mechanical environment of the early bone healing phase. The open-porous architecture of the scaffold ensured sufficient supply even without cyclic compression, minimizing load-associated supply alterations. Furthermore, a large culture medium volume in relation to the cell number diminished autocrine signaling. Migration of hBMSCs was significantly downregulated under cyclic compression. Surprisingly, a decrease in migration was not associated with increased osteogenic differentiation of hBMSCs, as the expression of RUNX2 and osteocalcin decreased. In contrast, BMP2 expression was significantly upregulated. Enabling autocrine stimulation by increasing the cell-to-medium ratio in the bioreactor finally resulted in a significant upregulation of RUNX2 in response to cyclic compression, which could be reversed by rhNoggin treatment. The results indicate that osteogenesis is promoted by cyclic compression when cells condition their environment with BMP. Our findings highlight the importance of mutual interactions between mechanical forces and BMP signaling in controlling osteogenic differentiation.
Collapse
Affiliation(s)
- Sophie Schreivogel
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center and School for Regenerative Therapies, Berlin, Germany
| | | | - Petra Knaus
- Berlin-Brandenburg Center and School for Regenerative Therapies, Berlin, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center and School for Regenerative Therapies, Berlin, Germany
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ansgar Petersen
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center and School for Regenerative Therapies, Berlin, Germany
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|