1
|
Lourenço MC, Nascimento T, Filho PJS, Marques AC, Ramos-Andrés M. Acidic Oxidative Depolymerization Towards Functionalized Low-Molecular-Weight Lignin and High-Value-Added Aliphatic Monomers: Operating Conditions, Scale-Up, and Crosslinking. Int J Mol Sci 2025; 26:4872. [PMID: 40430011 DOI: 10.3390/ijms26104872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/03/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Lignin, a complex aromatic biopolymer abundant as waste in biorefineries and the pulp and paper industry, holds significant potential for valorization. This study presents the oxidative depolymerization of Lignoboost lignin (LB) using H2O2 under mild, solvent- and catalyst-free, inherently acidic conditions at 50-70 °C. The process aimed to produce functionalized low-molecular-weight oligomers, retaining aromaticity, and aliphatic dicarboxylic acids, rather than complete monomerization. The depolymerized LB was rich in aromatic dimers-trimers (68.6 wt.%) with high functionalization (2.75 mmol/g OHphen, 3.58 mmol/g OHcarb, 19.5 wt.% of H in -CH=CH-), and aliphatic dicarboxylic acids (53.4 wt.% of monomers). Acidic conditions provided higher depolymerization and functionalization than alkaline, alongside simplified product recovery. The process was also successfully applied to Kraft lignin, demonstrating versatility and robustness even with higher polymeric content feedstocks. The optimized conditions were scaled up (×25), improving efficiency and yielding Mw 464 g/mol and Đ 1.3. As proof of concept, the scaled-up product underwent radical crosslinking, resulting in a new biopolymer with higher thermal stability than LB (54.2 wt.% residual mass at 600 °C versus 36.1 wt.%). This green, scalable process enhances lignin valorization by producing functionalized low-molecular-weight lignin oligomers and dicarboxylic acids that can be used independently or together to form crosslinked networks.
Collapse
Affiliation(s)
- Marta C Lourenço
- Centro de Recursos Naturais e Ambiente (CERENA), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Talita Nascimento
- Centro de Recursos Naturais e Ambiente (CERENA), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Pedro José Sanches Filho
- Centro de Química Estrutural (CEQ), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Ana C Marques
- CERENA, Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Marta Ramos-Andrés
- Centro de Recursos Naturais e Ambiente (CERENA), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
2
|
Rodrigues JS, de Freitas ASM, Botaro VR, Ferreira M, Fraceto LF. Tailoring kraft lignin for high-performance nanoparticles: from structure to function. Int J Biol Macromol 2025; 312:144181. [PMID: 40373897 DOI: 10.1016/j.ijbiomac.2025.144181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 05/05/2025] [Accepted: 05/11/2025] [Indexed: 05/17/2025]
Abstract
In the context of biorefineries, kraft lignin (KL) has emerged as an underexplored yet promising resource. Its phenolic structures are crucial, offering a wide range of applications, from advanced materials to nanotechnology. This study investigates the sequential fractionation of KL in acetic acid (HOAc), a green solvent, to produce lignin nanoparticles (LNP). KL fractions were obtained at HOAc concentrations ranging from 10 % to 60 %. The most promising fractions, namely KL_30%, KL_40%, KL_50%, and the final residue (FR), were selected based on high extraction yield and distinct molar masses (Mw) for LNP preparation using the antisolvent precipitation method. The study explores the influence of Mw, chemical composition, and functionality of LNPs on their properties. The results demonstrated an inverse correlation between Mw and the hydrodynamic diameter of LNPs, where lower Mw fractions (KL_30% and KL_40%) resulted in larger particle sizes, while KL_50%, despite its higher Mw, produced the smallest LNPs. This finding reinforces the idea that Mw alone does not dictate particle size, and the chemical functionality of lignin - particularly the balance between phenolic and aliphatic groups - plays a crucial role in determining aggregation behavior, surface charge, and colloidal stability. A deeper understanding of these structure-function relationships opens new opportunities for optimizing lignin fractionation and tailoring LNPs for specific applications in nanotechnology and advanced materials.
Collapse
Affiliation(s)
- Jéssica S Rodrigues
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março 511, 18087-180 Sorocaba, SP, Brazil
| | - Amanda S M de Freitas
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março 511, 18087-180 Sorocaba, SP, Brazil
| | - Vagner R Botaro
- Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, Brazil
| | - Marystela Ferreira
- Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, Brazil
| | - Leonardo F Fraceto
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março 511, 18087-180 Sorocaba, SP, Brazil.
| |
Collapse
|
3
|
Guo S, Mu Y, Ma M, Zhou W. Depolymerization and demethylation of lignin for sustainable coloration and functionalization of silk fabric. Int J Biol Macromol 2025; 311:144038. [PMID: 40345293 DOI: 10.1016/j.ijbiomac.2025.144038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Conversion of agricultural biomass waste into textile dyes enhances both the environmental sustainability and the textile industry's green and sustainable development. This study introduced a novel strategy to transform the lignin (LN) from corn cob to a polyphenol-rich dye through depolymerization followed by demethylation. The successful modifications were confirmed via FT-IR, UV-vis, and NMR analysis. Depolymerization and demethylation significantly reduced the molecular weight and particle size of LN, from 2797 to 865 g/mol and 3.9 to 0.9 μm, respectively. Consequently, the dye had a 36.1 % higher dye exhaustion rate on silk fabric compared to the unmodified LN. After mordanting with Al3+ ions, the dyed silk fabrics achieved color fastnesses of grade 3-5, meeting the requirement (≥grade 3) for commercial use. Furthermore, demethylation resulted in a 3.7-times increase in the content of phenolic-OH groups of the dye, significantly improving the UV protection and antibacterial properties of the dyed fabrics. The dyed fabrics did not show cytotoxicity to the human skin cells, indicating the high safety for textile use. This work provides a novel way to add value to LN biowaste while simultaneously preparing a functional LN-based dye.
Collapse
Affiliation(s)
- Shengnan Guo
- State Key Laboratory of Bio-based Fiber Materials, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education District, Hangzhou 310018, China
| | - Yifei Mu
- State Key Laboratory of Bio-based Fiber Materials, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education District, Hangzhou 310018, China
| | - Mingbo Ma
- State Key Laboratory of Bio-based Fiber Materials, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education District, Hangzhou 310018, China.
| | - Wenlong Zhou
- State Key Laboratory of Bio-based Fiber Materials, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education District, Hangzhou 310018, China; Zhejiang International Science and Technology Cooperation Base for Artificial Intelligence and Smart Cities (Wenzhou University of Technology), No. 337 Jinhai 3rd Road, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
4
|
Sindhi K, Pingili RB, Beldar V, Bhattacharya S, Rahaman J, Mukherjee D. The role of biomaterials-based scaffolds in advancing skin tissue construct. J Tissue Viability 2025; 34:100858. [PMID: 39827732 DOI: 10.1016/j.jtv.2025.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/17/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Despite extensive clinical studies and therapeutic interventions, addressing significant skin wounds remains challenging, necessitating novel approaches for effective regeneration therapy. In the current review, we analyzed and evaluated the application, advancements, and future directions of biomaterials-based scaffolds for skin tissue construct. In addition, we investigated the role of other biological substitutes in promoting wound healing and skin tissue regeneration. The review highlights the impact of biomaterial-based scaffolds on skin tissue regeneration and wound healing. After presenting the physiological process of skin tissue regeneration, the review emphasizes the different biochemical components significant for skin healing and regeneration. Subsequently, it delves into the role of scaffolds in skin tissue engineering. Recent advancements in nanotechnology are also highlighted with a specific focus on the utilization of nanomaterials for enhancing healing, facilitating tissue regeneration, and promoting skin reconstruction. Biomaterial scaffolds have emerged as a potential intervention for wound healing forming the foundation of skin tissue regeneration. These scaffolds, intricate three-dimensional frameworks, serve as carriers for cells, medications, and genes, facilitating their delivery into the body. The integration of degradable porous scaffolds with biological cells offers a promising avenue for tissue repair. Biomaterials play a crucial role in tissue engineering, providing temporary mechanical support and facilitating cellular processes to augment skin tissue regeneration.
Collapse
Affiliation(s)
- Komal Sindhi
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur, 425405, Maharashtra, India
| | - Ravindra Babu Pingili
- Department of Pharmacology, School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur, 425405, Maharashtra, India
| | - Vishal Beldar
- Department of Pharmacognosy, School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur, 425405, Maharashtra, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur, 425405, Maharashtra, India
| | - Jiyaur Rahaman
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur, 425405, Maharashtra, India; Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, V.L. Mehta Road, Vile Parle (West), Mumbai, 400056, Maharashtra, India
| | - Dhrubojyoti Mukherjee
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur, 425405, Maharashtra, India.
| |
Collapse
|
5
|
Zhang X, Li R, Li S, Cui W, Wang D, Zhu Y, Liu Z, Hou Y, Lee S. Tri-network PVA/chitosan/gelatin hydrogel modified by tannic acid with self-healing, adhesive and anti-inflammatory properties to accelerate wound healing. Int J Biol Macromol 2025; 308:142280. [PMID: 40157689 DOI: 10.1016/j.ijbiomac.2025.142280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/02/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Wound inflammation is a key issue in wound healing as it often causes serious complications and delays wound healing. In this study, hemostatic and antimicrobial hydrogels composed of polyvinyl alcohol (PVA), chitosan (CS) and gelatin (Gel) were prepared. Phenylboronic acid (3-CPBA) and tannic acid (TA) were introduced to modify the multinetwork hydrogel to promote wound repair. PGCPT-1.2 hydrogel had a water content of >85 % and was biocompatible. Due to the antibacterial effect of chitosan itself. The PGCPT hydrogel exhibited 100 % antimicrobial activity against both Escherichia coli and Staphylococcus aureus within 12 h. The hydrogel exhibited shape memory behavior and self-healing ability. Histological analysis showed that PGCPT-1.2 hydrogel reduced tumor necrosis factor-α (TNF-α) levels by accelerating collagen deposition. The wound healing rate at day 14 was 97 % ± 0.4 %. PGCPT-1.2 hydrogel dressing with 1.2 % TA addition had the best effect in promoting wound healing, and it is a promising dressing for promoting wound healing and a therapeutic strategy worth developing.
Collapse
Affiliation(s)
- Xiuwen Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ren Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuangying Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenpeng Cui
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dong Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yueyuan Zhu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhaopeng Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yushun Hou
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaoxiang Lee
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
6
|
Yang Y, Ou Z, Wang Z, Yang T, Zhu J, Liu X. Preparation and characterization of a novel oligomeric gum from Eucommia ulmoides crosslinked with carboxymethyl chitosan antibacterial wound dressing for quick hemostasis. Int J Biol Macromol 2025; 308:142652. [PMID: 40158605 DOI: 10.1016/j.ijbiomac.2025.142652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/25/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
It is the expectation of wound management to develop high-efficiency wound dressing which can control bleeding and prevent infection in clinics. In this study, a new wound dressing was synthesized by cross-linking oligomeric gum from Eucommia ulmoides (OGE) and carboxymethyl chitosan (CC) with genipin. The chemical structure, micromorphology and wettability of the synthetic OGE-CC were characterized. The physical properties and biocompatibility evaluation of OGE-CC showed that the material displayed excellent swelling ratio, high porosity and no cytotoxicity. It also demonstrated strong antimicrobial activity, achieving 99.99% antibacterial efficacy against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P.aeruginosa). Compared with the maximum average compressive stress (MACS) of the commercial gelatin-based dressing (GBD, 95 ± 7 kPa), the OGE-CC (2:1) displayed a higher MACS of 166 ± 4 kPa, which indicated its superior compressive properties. OGE-CC displayed stable states under varying temperatures and humidity levels. In addition, OGE-CC showed faster hemostatic effects than GBD and silicone-based dressing (SBD) in mice models of tail amputation and hepatic hemorrhage. OGE-CC can degrade in PBS solution with the highest degradation rate of 63.24 ± 2.01 % after 20 days. These results suggested that OGE-CC had the potential to be developed as an antibacterial and hemostasis wound dressing.
Collapse
Affiliation(s)
- Yichun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zemin Ou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhimin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tianxiao Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingjing Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xiaoqian Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
7
|
Su J, Liu C, Sun A, Yan J, Sang F, Xin Y, Zhao Y, Wang S, Dang Q. Hemostatic and antimicrobial properties of chitosan-based wound healing dressings: A review. Int J Biol Macromol 2025; 306:141570. [PMID: 40023410 DOI: 10.1016/j.ijbiomac.2025.141570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Uncontrolled bleeding and microbial infections pose significant hurdles in wound healing, and the use of specialized functional dressings is pivotal in overcoming these obstacles. Among the various wound dressings currently under investigation, those based on chitosan and its derivatives have garnered significant attention due to their superior biocompatibility, antimicrobial properties, hemostatic capabilities, and healing promoting ability. In this comprehensive review, we initially delve into the hemostatic capabilities of chitosan, elucidating its interactions with blood cells and plasma proteins. We also dissect the intricate antimicrobial mechanisms of chitosan, which operate through both intracellular and extracellular pathways. The centerpiece of this review is the systematic classification of dressings based on chitosan and its derivatives, across various forms, such as hydrogels, sponges, membranes, fibers, and powders. This is followed by an exhaustive analysis of their hemostatic and antibacterial efficacy in wound healing, providing a robust foundation for further research and the advancement of clinical applications in the field.
Collapse
Affiliation(s)
- Jieyu Su
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Chengsheng Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Ao Sun
- Faculty of Science, National University of Singapore, 6 Science Drive 2, 117546, Singapore
| | - Jingquan Yan
- National Engineering Technology Research Center for Marine Drugs, Marine Biomedical Research Institute of Qingdao, Ocean University of China, Qingdao 266003, PR China
| | - Feng Sang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Ying Xin
- Department of Endocrine and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Yan Zhao
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Shiyun Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Qifeng Dang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China.
| |
Collapse
|
8
|
Zhou T, Liu Z, Xu L, Mao X, Jin H, Xiong Y, Chen G, Lv Y, Cen L, Wang C, Zhang Y, Ye K, Shen Q, Zhou J, Lv B, Dai J, Yu C, Shen Z. Konjac glucomannan/sodium alginate/ε-poly-l-lysine hydrogel promotes esophageal and colonic wound healing. Int J Biol Macromol 2025; 306:141146. [PMID: 39986528 DOI: 10.1016/j.ijbiomac.2025.141146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
Endoscopic submucosal dissection (ESD) is widely used to treat gastrointestinal mucosal and submucosal lesions. However, it may cause bleeding, perforation, and stricture. Although these complications can be avoided by introducing materials such as polyglycolic acid and carboxymethyl cellulose sheets, such approaches are expensive and time-consuming. Herein, we report a hydrogel prepared by combining a colloidal solution composed of konjac glucomannan (KGM) and sodium alginate (SA) and a fixative solution containing ε-poly-l-lysine (ε-PLL) and calcium chloride. The two solutions were mixed on the wound surface to form the KGM/SA/ε-PLL hydrogel through hydrogen bonds, coordination bonds, and electrostatic attraction. The effectiveness and convenience of applying the KGM/SA/ε-PLL hydrogel to promote wound healing in the esophagus and colon were assessed in vitro and in vivo. We found that the hydrogel stimulated epithelial proliferation, reduced inflammation, promoted recapillarization, and inhibited fibrosis in the esophagus and colon. Therefore, the KGM/SA/ε-PLL hydrogel is an effective and convenient agent that can promote post-ESD wound healing and is recommended for ulcer bed protection in daily clinical practice.
Collapse
Affiliation(s)
- Tianyu Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Zhaoxue Liu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Lei Xu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang, China
| | - Xinli Mao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province, Taizhou 318000, Zhejiang, China
| | - Haifeng Jin
- Department of Gastroenterology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang, China
| | - Yangyang Xiong
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Guangwu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Yong Lv
- Department of Gastroenterology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350000, Fujian, China
| | - Li Cen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Chunren Wang
- National Institutes for Food and Drug Control, Beijing 100101, China
| | - Yu Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang, China
| | - Kexin Ye
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Qien Shen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Jiaming Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Bin Lv
- Department of Gastroenterology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang, China
| | - Jianying Dai
- Department of Research and Development, Hangzhou Yingjian Bioscience and Technology Co., Ltd, Hangzhou 310000, Zhejiang, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China.
| | - Zhe Shen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China.
| |
Collapse
|
9
|
Jung JP, Olutoye OO, Prajati TJ, Jung OS, Yutzy LD, Nguyen KL, Wheat SW, Huang J, Padon BW, Faruk F, Keswani SS, Kogan P, Kaul A, Yu L, Li H, Thevasagayampillai S, Guerra ME, Short WD, Gunaratne PH, Balaji S. Sustained ROS Scavenging and Pericellular Oxygenation by Lignin Composites Rescue HIF-1α and VEGF Levels to Improve Diabetic Wound Neovascularization and Healing. Acta Biomater 2025:S1742-7061(25)00300-9. [PMID: 40286890 DOI: 10.1016/j.actbio.2025.04.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/08/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Although delayed wound healing is an important clinical complication in diabetic patients, few targeted treatments are available, and it remains a challenge to promote diabetic wound healing. Impaired neovascularization is one of the prime characteristics of the diabetic phenotype of delayed wound healing. Additionally, increased levels of reactive oxygen species (ROS) and chronic low-grade inflammation and hypoxia are associated with diabetes, which disrupts mechanisms of wound healing. We developed lignosulfonate composites with several wound healing properties, including sustained oxygen release through calcium peroxide nanoparticles and reactive oxygen species and free radical scavenging by thiolated lignosulfonate nanoparticles. Sustained release of oxygen and ROS-scavenging by these composites promoted endothelial cell (EC) branching and characteristic capillary-like network formation under high glucose conditions in vitro. Gene co-expression network analysis of RNA-sequencing results from ECs cultured on lignin composites showed regulation of inflammatory pathways, alongside the regulation of angiogenic hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth (VEGF) factor pathways. In vivo, lignosulfonate composite treatment promoted VEGF expression and angiogenesis in full thickness skin wounds in diabetic mice, a model of delayed wound healing. Treatment of diabetic wounds with lignosulfonate composites also promoted faster epithelial gap closure and increased granulation tissue deposition by day 7 post-wounding, with a higher presence of pro-healing type macrophages. Our findings demonstrate that lignosulfonate composites promote diabetic wound healing without requiring additional drugs. This highlights the potential of functionalized lignosulfonate for wound healing applications that require balanced antioxidation and controlled oxygen release. STATEMENT OF SIGNIFICANCE: The lignosulfonate composites developed in this study offer a promising solution for delayed wound healing in diabetic patients. By effectively addressing key factors contributing to the multifaceted pathophysiology of the diabetic wounds, including impaired neovascularization, increased ROS levels, and chronic inflammation and wound proteolysis, these composites demonstrate significant potential for promoting wound repair and reducing the complications associated with diabetic wounds. The unique combination of pro-angiogenic, oxygen-releasing, ECM remodeling and antioxidant properties in these lignosulfonate-based materials highlights their potential as a valuable therapeutic option, providing a multi-pronged approach to diabetic wound healing without the need for additional drugs.
Collapse
Affiliation(s)
- Jangwook P Jung
- Department of Biological Engineering, Louisiana State University, 167 E.B. Doran Hall, Baton Rouge, LA 70803.
| | - Oluyinka O Olutoye
- Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Feigin Center, C.450.05, 1102 Bates Ave., Houston, TX 77030
| | - Tanuj J Prajati
- Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Feigin Center, C.450.05, 1102 Bates Ave., Houston, TX 77030
| | - Olivia S Jung
- Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Feigin Center, C.450.05, 1102 Bates Ave., Houston, TX 77030
| | - Lane D Yutzy
- Department of Biological Engineering, Louisiana State University, 167 E.B. Doran Hall, Baton Rouge, LA 70803
| | - Kenny L Nguyen
- Department of Biological Engineering, Louisiana State University, 167 E.B. Doran Hall, Baton Rouge, LA 70803
| | - Stephen W Wheat
- Department of Biological Engineering, Louisiana State University, 167 E.B. Doran Hall, Baton Rouge, LA 70803
| | - JoAnne Huang
- Department of Biological Engineering, Louisiana State University, 167 E.B. Doran Hall, Baton Rouge, LA 70803
| | - Benjamin W Padon
- Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Feigin Center, C.450.05, 1102 Bates Ave., Houston, TX 77030
| | - Fayiz Faruk
- Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Feigin Center, C.450.05, 1102 Bates Ave., Houston, TX 77030
| | - Sonya S Keswani
- Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Feigin Center, C.450.05, 1102 Bates Ave., Houston, TX 77030
| | - Phillip Kogan
- Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Feigin Center, C.450.05, 1102 Bates Ave., Houston, TX 77030
| | - Aditya Kaul
- Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Feigin Center, C.450.05, 1102 Bates Ave., Houston, TX 77030
| | - Ling Yu
- Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Feigin Center, C.450.05, 1102 Bates Ave., Houston, TX 77030
| | - Hui Li
- Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Feigin Center, C.450.05, 1102 Bates Ave., Houston, TX 77030
| | - Shiyanth Thevasagayampillai
- Division of Biochemistry, Department of Biology and Biochemistry, Gene Sequencing and Gene Editing Core, College of Natural Sciences and Mathematics, Science & Engineering Research Center, 4028, University of Houston, Houston, TX 77204
| | - Mary E Guerra
- Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Feigin Center, C.450.05, 1102 Bates Ave., Houston, TX 77030
| | - Walker D Short
- Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Feigin Center, C.450.05, 1102 Bates Ave., Houston, TX 77030
| | - Preethi H Gunaratne
- Division of Biochemistry, Department of Biology and Biochemistry, Gene Sequencing and Gene Editing Core, College of Natural Sciences and Mathematics, Science & Engineering Research Center, 4028, University of Houston, Houston, TX 77204
| | - Swathi Balaji
- Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Feigin Center, C.450.05, 1102 Bates Ave., Houston, TX 77030.
| |
Collapse
|
10
|
Liang Y, He J, Li M, Li Z, Wang J, Li J, Guo B. Polymer Applied in Hydrogel Wound Dressing for Wound Healing: Modification/Functionalization Method and Design Strategies. ACS Biomater Sci Eng 2025; 11:1921-1944. [PMID: 40169450 DOI: 10.1021/acsbiomaterials.4c02054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Hydrogel wound dressings have emerged as a promising solution for wound healing due to their excellent mechanical and biochemical properties. Over recent years, there has been significant progress in expanding the variety of raw materials used for hydrogel formulation along with the development of advanced modification techniques and design approaches that enhance their performance. However, a comprehensive review encompassing diverse polymer modification strategies and design innovations for hydrogel dressings is still lacking in the literature. This review summarizes the use of natural polymers (e.g., chitosan, gelatin, sodium alginate, hyaluronic acid, and dextran) and synthetic polymers (e.g., poly(vinyl alcohol), polyethylene glycol, Pluronic F-127, poly(N-isopropylacrylamide), polyacrylamide, and polypeptides) in hydrogel wound dressings. We further explore the advantages and limitations of these polymers and discuss various modification strategies, including cationic modification, oxidative modification, double-bond modification, catechol modification, etc. The review also addresses design principles and synthesis methods, aligning polymer modifications with specific requirements in wound healing. Finally, we discuss future challenges and opportunities in the development of advanced hydrogel-based wound dressings.
Collapse
Affiliation(s)
- Yongping Liang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiahui He
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Meng Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhenlong Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiaxin Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Juntang Li
- Research Centre of Immunity, Trauma and Environment Medicine, Collaborative Innovation Centre of Medical Equipment, PLA Key Laboratory of Biological Damage Effect and Protection, Luoyang, Henan 471031, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
11
|
An J, Liu Z, Wang Y, Meng K, Wang Y, Sun H, Li M, Tang Z. Drug delivery strategy of hemostatic drugs for intracerebral hemorrhage. J Control Release 2025; 379:202-220. [PMID: 39793654 DOI: 10.1016/j.jconrel.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Intracerebral hemorrhage (ICH) is associated with high rates of mortality and disability, underscoring an urgent need for effective therapeutic interventions. The clinical prognosis of ICH remains limited, primarily due to the absence of targeted, precise therapeutic options. Advances in novel drug delivery platforms, including nanotechnology, gel-based systems, and exosome-mediated therapies, have shown potential in enhancing ICH management. This review delves into the pathophysiological mechanisms of ICH and provides a thorough analysis of existing treatment strategies, with an emphasis on innovative drug delivery approaches designed to address critical pathological pathways. We assess the benefits and limitations of these therapies, offering insights into future directions in ICH research and highlighting the transformative potential of next-generation drug delivery systems in improving patient outcomes.
Collapse
Affiliation(s)
- Junyan An
- China-Japan Union Hospital of Jilin University, Department of Neurosurgery, Changchun, Jilin Province 130033, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhilin Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yihan Wang
- China-Japan Union Hospital of Jilin University, Department of Neurosurgery, Changchun, Jilin Province 130033, China
| | - Ke Meng
- China-Japan Union Hospital of Jilin University, Department of Neurosurgery, Changchun, Jilin Province 130033, China
| | - Yixuan Wang
- China-Japan Union Hospital of Jilin University, Department of Neurosurgery, Changchun, Jilin Province 130033, China
| | - Hai Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Miao Li
- China-Japan Union Hospital of Jilin University, Department of Neurosurgery, Changchun, Jilin Province 130033, China.
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
12
|
Gao Y, Li X, Yang Y, Wang H, Niu X. CMCS-PVA@CA hydrogel dressing: A promoter of wound healing with MRSA virulence attenuation function. Int J Biol Macromol 2025; 295:139614. [PMID: 39793835 DOI: 10.1016/j.ijbiomac.2025.139614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/07/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
Traditional wound dressings, primarily centered on antimicrobial or bactericidal strategies, have inadvertently contributed to the rise of drug-resistant bacterial colonies at wound sites, thus prolonging the healing process. In this study, we developed an innovative hydrogel dressing, CMCS-PVA@CA, incorporating carboxymethyl chitosan (CMCS), polyvinyl alcohol (PVA), and cichoric acid (CA), specifically designed to treat skin wounds infected with methicillin-resistant Staphylococcus aureus (MRSA). Computational biology analyses reveal that CA exerts substantial anti-virulence activity by targeting serine/threonine phosphatase (Stp1), achieving an IC50 of 3.912 μM, thereby mitigating MRSA pathogenicity. Notably, CA lacks intrinsic antibacterial properties, minimizing the risk of fostering drug resistance. Furthermore, CMCS-PVA@CA demonstrates effective wound healing acceleration and meets clinical application standards, with its robust mechanical properties enhancing patient comfort. In essence, this study presents CMCS-PVA@CA as a promising hydrogel dressing offering a viable solution for treating drug-resistant bacterial infections in skin wounds.
Collapse
Affiliation(s)
- Yawen Gao
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China; School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, PR China
| | - Xuening Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Yanan Yang
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China; Faculty of Food Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, PR China
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
13
|
Yuan ZZ, Fan YZ, Cheng SJ, Wei FJ, Gao J, Wang CX, Song BS, Tan SL, Gao SL, Kang JJ, Liu Y, Li SH. A bibliometric analysis of hydrogel research in various fields: the trends and evolution of hydrogel application. J Nanobiotechnology 2025; 23:70. [PMID: 39891241 PMCID: PMC11783735 DOI: 10.1186/s12951-025-03090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/02/2025] [Indexed: 02/03/2025] Open
Abstract
Hydrogel, a polymer material with a three-dimensional structure, has considerably expanded in research across multiple fields lately. However, the lack of a comprehensive review integrating the research status of hydrogel across diverse fields has hindered the development of hydrogel. This bibliometric analysis reviewed the hydrogel-related research over the past decades, emphasizing the evolution, status, and future directions within a multitude of fields, such as materials science, chemistry, polymer science, engineering, physics, biochemistry molecular biology, pharmacology pharmacy, cell biology, biotechnology applied microbiology, etc. We encapsulated applications and the potential of hydrogel in wound healing, drug delivery, cell encapsulation, bioprinting, tissue engineering, electronic products, environment applications, and disease treatment. This study integrated the current matrix system and characteristics of hydrogels, aiming to offer a cross-field reference for hydrogel researchers and promote the advancement of hydrogel research. Furthermore, we proposed a novel and reproducible bibliometric research paradigm, which can provide a more comprehensive analysis of the trends and trajectory of a research field.
Collapse
Affiliation(s)
- Zhong-Zhu Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu-Zhou Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shao-Jun Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Feng-Jie Wei
- College of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chen-Xi Wang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo-Shuang Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Si-Lu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Si-Lian Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Juan-Juan Kang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China.
| |
Collapse
|
14
|
Zou SL, Xiao LP, Yin WZ, Gui T, Sun RC. Fabrication of biodegradable polyvinyl alcohol-based plastics toward technical lignin valorization. Int J Biol Macromol 2025; 284:138123. [PMID: 39608534 DOI: 10.1016/j.ijbiomac.2024.138123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
The fabrication of composite materials from lignin has attracted increasing attention to reducing the dependence of petrochemical-based resources on carbon neutrality. However, the low content of lignin in the biocomposites remains a challenge. Herein, industrial lignin is fractionated by an organic solvent to reduce its structural heterogeneity. Subsequently, the fractionated lignin samples are integrated with polyvinyl alcohol (PVA) to fabricate plastics characterized by uniform thickness and smooth surfaces. The resultant composite films exhibit tensile strength and strain up to 75 MPa and 1050%, respectively, which surpass state-of-the-art lignin-based bioplastics. The mechanism investigations reveal that the enhanced mechanical properties are due to the internal non-covalent interactions derived from the hydroxyl groups of lignin and PVA. Notably, the PVA/lignin films are biodegradable after 92 days' burial in soil. This study paves the way for the rational design of lignin-based biodegradable polymers as sustainable alternatives to conventional plastics.
Collapse
Affiliation(s)
- Shuang-Lin Zou
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Ling-Ping Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| | - Wen-Zheng Yin
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Tao Gui
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Run-Cang Sun
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
15
|
Phiri R, Mavinkere Rangappa S, Siengchin S, Oladijo OP, Ozbakkaloglu T. Advances in lightweight composite structures and manufacturing technologies: A comprehensive review. Heliyon 2024; 10:e39661. [PMID: 39524787 PMCID: PMC11550074 DOI: 10.1016/j.heliyon.2024.e39661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The field of lightweight composite structures has witnessed significant advancements in recent years, revolutionizing numerous industries through their exceptional combination of strength, weight reduction and versatility. This review paper provides a comprehensive and in-depth analysis of these ground breaking materials. It elucidates fundamental concepts of lightweight composite structures, exploring their composition, classification, physical and mechanical properties as well as recent strides in their engineering applications. Crucially, this review highlights the recent progress and developments of lightweight composite materials. From aerospace to automotive, from construction to sporting goods, these advanced materials are transforming various industries by combining strength with reduced weight. Emphasizing the role of lightweight composites in energy-efficient systems, the paper underscores their significance in resource optimization and sustainable engineering practices. A detailed examination of various types of composites, such as polymer matrix composites, ceramic matrix composites and metal matrix composites, will be presented, highlighting their specific advantages and applications. Moving forward, the review delves into the diverse fabrication methods employed to create these advanced materials. This comprehensive paper serves as a valuable resource for researchers, engineers, and industry professionals seeking to capitalize on the benefits of lightweight composite materials. By presenting a holistic view of composites' classification, properties, and recent advancements, this study fosters innovation and propels the integration of lightweight composite materials into diverse engineering applications, ultimately driving progress towards a more efficient, sustainable, and technologically advanced future.
Collapse
Affiliation(s)
- Resego Phiri
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Thailand
| | - Sanjay Mavinkere Rangappa
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Thailand
| | - Suchart Siengchin
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Thailand
| | - Oluseyi Philip Oladijo
- Department of Chemical, Materials and Metallurgical Engineering, Botswana International University of Science and Technology, Palapye, Botswana
| | - Togay Ozbakkaloglu
- Department of Civil Engineering, Ingram School of Engineering, Texas State University, USA
| |
Collapse
|
16
|
Najafloo R, Milan PB, Karimi A, Bagher Z, Kalmer RR, Ghasemian M, Faridi-Majidi R. Crosslinking gelatin with robust inherent antibacterial natural polymer for wound healing. Int J Biol Macromol 2024; 280:136144. [PMID: 39353527 DOI: 10.1016/j.ijbiomac.2024.136144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/14/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Gelatin-based biomaterials are widely acknowledged as a promising choice for wound dressings, given their similarity to the extracellular matrix and biocompatibility. However, the challenge of cross-linking gelatin while preserving its biocompatibility and cost-effectiveness persists. This study aimed to enhance the properties of gelatin by incorporating the oxidized lignosulfonate (OLS) biopolymer as an inexpensive and biocompatible natural material. The polyphenolic structure of OLS acts as both a cross-linking agent and an antibacterial component. The OLS/gelatin films were prepared using a casting method with varying weight ratios (0.1, 0.2, 0.3, 0.4, and 0.5 w/w). FTIR analysis confirmed the formation of Schiff-base and hydrogen bonds between gelatin and OLS. The resulting films exhibited enhanced mechanical properties (Young's modulus ∼40 MPa), no cytotoxicity, and excellent cell adhesion and morphology. Antimicrobial tests showed significant activity against Escherichia coli and Staphylococcus aureus, with higher activity against S. aureus (17 mm inhibition zone and 99 % bactericidal rate). In vivo studies in a mouse model demonstrated that the gelatin/0.2OLS dressing significantly improved wound healing, including re-epithelialization, collagen formation, inflammation reduction, and blood vessel density, compared to untreated wounds. These findings suggest that the synthesized novel gelatin/OLS wound dressing has promising healing and antibacterial properties.
Collapse
Affiliation(s)
- Raziyeh Najafloo
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran
| | - Peiman Brouki Milan
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran.
| | - Afzal Karimi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran.
| | - Zohreh Bagher
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran; ENT and Head and Neck Research Center and Department, Hazrat Rasoul Akram Hospital, The Five Senses Health Institute, Iran University of Medical Sciences (IUMS), Tehran 1445613131, Iran
| | | | - Melina Ghasemian
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran
| | - Raheleh Faridi-Majidi
- Biomaterials Laboratory, Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, 1417935840 Tehran, Iran
| |
Collapse
|
17
|
Lan X, Du T, Zhuo J, Wang T, Shu R, Li Y, Zhang W, Ji Y, Wang Y, Yue X, Wang J. Advances of biomacromolecule-based antibacterial hydrogels and their performance evaluation for wound healing: A review. Int J Biol Macromol 2024; 279:135577. [PMID: 39270907 DOI: 10.1016/j.ijbiomac.2024.135577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Biomacromolecule hydrogels possess excellent mechanical properties and biocompatibility, but their inability to combat bacteria restricts their application in the biomedical field. With the increasing requirements and demands for hydrogel dressings, wound dressings with antibacterial properties of biomacromolecule hydrogels reinforced by adding antibacterial agents have attracted much attention, and related reviews are emerging. In this paper, the advances of biomacromolecule antibacterial hydrogels (including chitosan, sodium alginate, Hyaluronic acid, cellulose and gelatin) were first overviewed, and the antibacterial agents incorporated into hydrogels were classified (including metals and their derivatives, carbon-based materials, and native compounds). A series of performance evaluations of antibacterial hydrogels in the process of promoting wound healing were then reviewed, including basic properties (mechanical, rheological, injectable and self-healing, etc.), in vitro experiments (hemostasis, antibacterial, anti-inflammatory, anti-oxidation, biocompatibility) and in vivo experiments (in vivo model, histomorphology analysis, cytokines). Finally, the future development of biomacromolecule-based antibacterial hydrogels for wound healing is prospected. This work can provide a useful reference for researchers to prepare practical new wound hydrogel dressings.
Collapse
Affiliation(s)
- Xi Lan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Junchen Zhuo
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Tianyu Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Xiaoyue Yue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China.
| |
Collapse
|
18
|
Wang Y, Tang S, Jiang L, Yuan Z, Zhang Y. A review of lignin application in hydrogel dressing. Int J Biol Macromol 2024; 281:135786. [PMID: 39366610 DOI: 10.1016/j.ijbiomac.2024.135786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024]
Abstract
Lignin is the most abundant natural aromatic polymer in the world. Currently, researchers have developed a number of lignin-based composite materials that are widely used in various fields, including industry, agriculture and medicine. Especially in recent years, lignin has attracted great interest as a high-value product for biomedical applications. Due to its antioxidant, antibacterial, adhesive and other properties, lignin is a promising candidate for the development of hydrogel dressings. However, there is no comprehensive overview of the application of lignin-based hydrogel dressings. In this review, lignin-based hydrogel skin dressings were first presented, and the preparation methods of physical and chemical crosslinking in lignin-based hydrogel dressings were discussed. In addition, various functional and environmentally responsive lignin-based hydrogel dressings were primarily reviewed. Finally, the prospects for the development of novel multifunctional lignin-based hydrogel dressings in the future were presented. In conclusion, this review provided a timely and comprehensive summary of the latest advances in the use of lignin as a biomaterial for hydrogel dressings, which would provide valuable guidance for the further development of lignin-based hydrogels.
Collapse
Affiliation(s)
- Yuqing Wang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, PR China
| | - Shuo Tang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, PR China
| | - Liuyun Jiang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, PR China.
| | - Zhu Yuan
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, PR China
| | - Yan Zhang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
19
|
Ji M, Li F, Li J, Li J, Wang X, Zhang C, Peng S, Man J. Physical, antibacterial, blood coagulation, and healing promotion evaluations of chitosan derivative-based composite films. Int J Biol Macromol 2024; 278:134714. [PMID: 39142487 DOI: 10.1016/j.ijbiomac.2024.134714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/30/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Chitosan is a potentially suitable material for wound dressing, but is undesirably water-insoluble. Although chitosan can be modified to produce water-soluble derivatives, the best chitosan derivative for wound dressings remains unclear. The present study introduced three water-soluble chitosan derivatives, namely, carboxymethyl chitosan, quaternized chitosan (QCS), and carboxymethyl quaternized chitosan, and explored the physical properties, biochemical properties, and wound care effectiveness of films of these derivatives. The QCS-based film exhibited higher absorption ability, mechanical properties, water-vapor permeability, electroconductivity, and antioxidant capacity than the other films. Most importantly, the cationic quaternary ammonium groups facilitated the antibacterial activity (>95 %) and blood coagulant capacity of the QCS-based film. As this film also promoted wound healing, it presented as an ideal candidate for wound dressings.
Collapse
Affiliation(s)
- Maocheng Ji
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Fangyi Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Xiaojie Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China.
| | - Chuanwei Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Sixian Peng
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| |
Collapse
|
20
|
Zhao W, Li R, Xiao Z, Yang F, Chen S, Miao J, Ma G, Wang Y, Chen Y, Fan S. Rhein-chitosan in situ hydrogel promotes wound healing in diabetic mice. Int J Biol Macromol 2024; 277:134472. [PMID: 39102924 DOI: 10.1016/j.ijbiomac.2024.134472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Chronic inflammation and infection often lead to delayed healing in skin wounds of patients with diabetes, presenting a significant challenge in clinical wound repair. In an effort to tackle this issue, we explored the utilization of the natural compounds Rhein and chitosan in the creation of a crosslinked in situ gel. Developed as Rhein-chitosan in situ hydrogel (CS-Rh gel), this formulation has the ability to gel at body temperature, making it suitable for irregular wounds of varying shapes. Our experimental investigations have demonstrated its excellent biocompatibility, controlled release of Rhein, biodegradability, anti-inflammatory properties, antibacterial effect, as well as its ability to enhance keratinocyte proliferation and migration. Furthermore, in vivo studies have confirmed that CS-Rh gel can effectively mitigate tissue inflammation, promote collagen deposition, and significantly accelerate wound healing in diabetic mice within a short timeframe of two weeks. Consequently, this innovative approach holds promise as a viable therapeutic strategy for supporting the healing of diabetic wounds in a clinical setting.
Collapse
Affiliation(s)
- Wentong Zhao
- Department of Orthopaedic Trauma, Center for Orthopaedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China; Academy of Orthopedics · Guangdong Province, Guangzhou, China
| | - Ruanbing Li
- Department of Orthopaedic Trauma, Center for Orthopaedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China; Academy of Orthopedics · Guangdong Province, Guangzhou, China
| | - Zhipeng Xiao
- Department of Orthopaedic Trauma, Center for Orthopaedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China; Academy of Orthopedics · Guangdong Province, Guangzhou, China
| | - Fang Yang
- Department of Infection, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sheqiang Chen
- Department of Orthopaedic Trauma, Center for Orthopaedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China; Academy of Orthopedics · Guangdong Province, Guangzhou, China
| | - Jiafu Miao
- Department of Orthopaedic Trauma, Center for Orthopaedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China; Academy of Orthopedics · Guangdong Province, Guangzhou, China
| | - Gang Ma
- Department of Orthopaedic Trauma, Center for Orthopaedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China; Academy of Orthopedics · Guangdong Province, Guangzhou, China
| | - Yuqing Wang
- Department of Orthopaedic Trauma, Center for Orthopaedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China; Academy of Orthopedics · Guangdong Province, Guangzhou, China
| | - Yuhui Chen
- Department of Orthopedics and Traumatology, The affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China.
| | - Shicai Fan
- Department of Orthopaedic Trauma, Center for Orthopaedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China; Academy of Orthopedics · Guangdong Province, Guangzhou, China.
| |
Collapse
|
21
|
Wang M, Deng Y, Huang C, Javeed A, Wang Y, Han B, Jiang G. A chitosan-based hydrogel loaded with fenofibrate for diabetic wound healing. Biomater Sci 2024; 12:4682-4694. [PMID: 39077924 DOI: 10.1039/d4bm00499j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Diabetic wounds represent a common chronic condition, posing significant challenges in the treatment process due to bacterial infections, increased generation of reactive oxygen species (ROS) and exacerbated inflammation. Fenofibrate (FEN) is a clinical medication used for lipid regulation. In this study, it was utilized for the first time as an effective component of wound dressings for treating diabetic ulcers, exploring its novel applications further. Therefore, we prepared a polyvinyl alcohol/chitosan/FEN (PCF) hydrogel using a freeze-thaw method and conducted physicochemical characterization of the PCF hydrogel to further elucidate its biological functions. In vitro studies demonstrated that the PCF hydrogel exhibits excellent biocompatibility along with significant antimicrobial, pro-angiogenic, ROS-scavenging, and anti-inflammatory properties. Subsequent animal experiments indicated that the PCF hydrogel has the ability to promote blood vessel formation and collagen deposition. Additionally, the PCF hydrogel showed a significant inhibitory effect on the inflammatory response, as evidenced by the reductions in the levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). These compelling findings accentuate the promising application of the PCF hydrogel in the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Miaofeng Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China.
| | - Yaping Deng
- Department of Clinical Pharmacology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 311202, China
| | - Cancan Huang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China.
| | - Ansar Javeed
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China.
| | - Yifan Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China.
| | - Bingnan Han
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China.
| | - Guojun Jiang
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou 311200, Zhejiang, China.
| |
Collapse
|
22
|
Sun J, Luo T, Zhao M, Zhang L, Zhao Z, Yu T, Yan Y. Hydrogels and Aerogels for Versatile Photo-/Electro-Chemical and Energy-Related Applications. Molecules 2024; 29:3883. [PMID: 39202962 PMCID: PMC11357016 DOI: 10.3390/molecules29163883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
The development of photo-/electro-chemical and flexible electronics has stimulated research in catalysis, informatics, biomedicine, energy conversion, and storage applications. Gels (e.g., aerogel, hydrogel) comprise a range of polymers with three-dimensional (3D) network structures, where hydrophilic polyacrylamide, polyvinyl alcohol, copolymers, and hydroxides are the most widely studied for hydrogels, whereas 3D graphene, carbon, organic, and inorganic networks are widely studied for aerogels. Encapsulation of functional species with hydrogel building blocks can modify the optoelectronic, physicochemical, and mechanical properties. In addition, aerogels are a set of nanoporous or microporous 3D networks that bridge the macro- and nano-world. Different architectures modulate properties and have been adopted as a backbone substrate, enriching active sites and surface areas for photo-/electro-chemical energy conversion and storage applications. Fabrication via sol-gel processes, module assembly, and template routes have responded to professionalized features and enhanced performance. This review presents the most studied hydrogel materials, the classification of aerogel materials, and their applications in flexible sensors, batteries, supercapacitors, catalysis, biomedical, thermal insulation, etc.
Collapse
Affiliation(s)
- Jiana Sun
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE), Xi’an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China (T.Y.)
| | - Taigang Luo
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE), Xi’an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China (T.Y.)
| | - Mengmeng Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE), Xi’an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China (T.Y.)
| | - Lin Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE), Xi’an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China (T.Y.)
| | - Zhengping Zhao
- Zhijiang College, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tao Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE), Xi’an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China (T.Y.)
| | - Yibo Yan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE), Xi’an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China (T.Y.)
| |
Collapse
|
23
|
Jeffri NI, Mohammad Rawi NF, Mohamad Kassim MH, Abdullah CK. Unlocking the potential: Evolving role of technical lignin in diverse applications and overcoming challenges. Int J Biol Macromol 2024; 274:133506. [PMID: 38944064 DOI: 10.1016/j.ijbiomac.2024.133506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Recent advancements have transformed lignin from a byproduct into a valuable raw material for polymers, dyes, adhesives, and fertilizers. However, its structural heterogeneity, variable reactive group content, impurities, and high extraction costs pose challenges to industrial-scale adoption. Efficient separation technologies and selective bond cleavage are crucial. Advanced pretreatment methods have enhanced lignin purity and reduced contamination, while novel catalytic techniques have improved depolymerization efficiency and selectivity. This review compares catalytic depolymerization methodologies, highlighting their advantages and disadvantages, and noting challenges in comparing yield values due to variations in isolation methods and lignin sources. Recognizing "technical lignin" from pulping processes, the review emphasizes its diverse applications and the necessity of understanding its structural characteristics. Emerging trends focus on bio-based functional additives and nanostructured lignin materials, promising enhanced properties and functionalities. Innovations open possibilities in sustainable agriculture, high-performance foams and composites, and advanced medical applications like drug delivery and wound healing. Leveraging lignin's biocompatibility, abundance, and potential for high-value applications, it can significantly contribute to sustainable material development across various industries. Continuous research in bio-based additives and nanostructured materials underscores lignin's potential to revolutionize material science and promote environmentally friendly industrial applications.
Collapse
Affiliation(s)
- Noorfarisya Izma Jeffri
- Division of Bioresource Technology, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Nurul Fazita Mohammad Rawi
- Division of Bioresource Technology, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia; Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Minden, 11800, Malaysia.
| | - Mohamad Haafiz Mohamad Kassim
- Division of Bioresource Technology, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia; Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Minden, 11800, Malaysia
| | - Che Ku Abdullah
- Division of Bioresource Technology, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| |
Collapse
|
24
|
Wang J, Ma Y, Meng Q, Yang Y, Zhang R, Zhong S, Gao Y, He W, Cui X. Photocrosslinked carboxymethylcellulose-based hydrogels: Synthesis, characterization for curcumin delivery and wound healing. Int J Biol Macromol 2024; 275:133558. [PMID: 38955296 DOI: 10.1016/j.ijbiomac.2024.133558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/06/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Skin could protect our body and regenerate itself to against dysfunctional and disfiguring scars when faced with external injury. As wound dressings, hydrogels are biocompatible, hydrophilic and have a 3D structure similar to the extracellular matrix (ECM). In particular, hydrogels with drug-releasing capabilities are in acute wound healing. In this paper, photocrosslinked hydrogels served as wound dressing based on sodium carboxymethylcellulose (CMC) were prepared to promote wound healing. Photocrosslinked hydrogels were prepared by grafting lysine and allyl glycidyl ether (AGE) onto CMC and encapsulating curcumin (Cur). The synthesized hydrogels had the unique 3D porous structure with a swelling ratio up to 1300 % in aqueous solution. The drug release ratios of the hydrogels were 20.8 % in acid environment, and 14.4 % in alkaline environment. Notably, the hydrogels showed good biocompatibility and antibacterial properties and also exhibited the ability to accelerate the process of skin wound healing while prevent inflammation and scar formation when applied to a mouse skin wound model. As a result, the prepared hydrogels Gel-CLA@Cur showed great potential in wound healing.
Collapse
Affiliation(s)
- Jingfei Wang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ying Ma
- College of Veterinary Medicine, Jilin University, Changchun 130012, PR China
| | - Qingye Meng
- College of Chemistry, Jilin University, Changchun 130012, PR China; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, PR China
| | - Yongyan Yang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ruiting Zhang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, PR China
| | - Yan Gao
- College of Chemistry, Jilin University, Changchun 130012, PR China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China; Weihai Institute for Bionics-Jilin University, Weihai 264400, PR China
| | - Wenqi He
- College of Veterinary Medicine, Jilin University, Changchun 130012, PR China.
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, PR China; Weihai Institute for Bionics-Jilin University, Weihai 264400, PR China.
| |
Collapse
|
25
|
Chen X, Zhang A, Zhao K, Gao H, Shi P, Chen Y, Cheng Z, Zhou W, Zhang Y. The role of oxidative stress in intervertebral disc degeneration: Mechanisms and therapeutic implications. Ageing Res Rev 2024; 98:102323. [PMID: 38734147 DOI: 10.1016/j.arr.2024.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Oxidative stress is one of the main driving mechanisms of intervertebral disc degeneration(IDD). Oxidative stress has been associated with inflammation in the intervertebral disc, cellular senescence, autophagy, and epigenetics of intervertebral disc cells. It and the above pathological mechanisms are closely linked through the common hub reactive oxygen species(ROS), and promote each other in the process of disc degeneration and promote the development of the disease. This reveals the important role of oxidative stress in the process of IDD, and the importance and great potential of IDD therapy targeting oxidative stress. The efficacy of traditional therapy is unstable or cannot be maintained. In recent years, due to the rise of materials science, many bioactive functional materials have been applied in the treatment of IDD, and through the combination with traditional drugs, satisfactory efficacy has been achieved. At present, the research review of antioxidant bioactive materials in the treatment of IDD is not complete. Based on the existing studies, the mechanism of oxidative stress in IDD and the common antioxidant therapy were summarized in this paper, and the strategies based on emerging bioactive materials were reviewed.
Collapse
Affiliation(s)
- Xianglong Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anran Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kangcheng Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haiyang Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengzhi Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhangrong Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenjuan Zhou
- Department of Operating Room, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yukun Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
26
|
Ren D, Zhang Y, Du B, Wang L, Gong M, Zhu W. An Antibacterial, Conductive Nanocomposite Hydrogel Coupled with Electrical Stimulation for Accelerated Wound Healing. Int J Nanomedicine 2024; 19:4495-4513. [PMID: 38799696 PMCID: PMC11123069 DOI: 10.2147/ijn.s460700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Background Electrical stimulation (ES) can effectively promote skin wound healing; however, single-electrode-based ES strategies are difficult to cover the entire wound area, and the effectiveness of ES is often limited by the inconsistent mechanical properties of the electrode and wound tissue. The above factors may lead to ES treatment is not ideal. Methods A multifunctional conductive hydrogel dressing containing methacrylated gelatin (GelMA), Ti3C2 and collagen binding antimicrobial peptides (V-Os) was developed to improve wound management. Ti3C2 was selected as the electrode component due to its excellent electrical conductivity, the modified antimicrobial peptide V-Os could replace traditional antibiotics to suppress bacterial infections, and GelMA hydrogel was used due to its clinical applicability in wound healing. Results The results showed that this new hydrogel dressing (GelMA@Ti3C2/V-Os) not only has excellent electrical conductivity and biocompatibility but also has a durable and efficient bactericidal effect. The modified antimicrobial peptides V-Os used were able to bind more closely to GelMA hydrogel to exert long-lasting antibacterial effects. The results of cell experiment showed that the GelMA@Ti3C2/V-Os hydrogel dressing could enhance the effect of current stimulation and significantly improve the migration, proliferation and tissue repair related genes expression of fibroblasts. In vitro experiments results showed that under ES, GelMA@Ti3C2/V-Os hydrogel dressing could promote re-epithelialization, enhance angiogenesis, mediate immune response and prevent wound infection. Conclusion This multifunctional nanocomposite hydrogel could provide new strategies for promoting infectious wound healing.
Collapse
Affiliation(s)
- Dawei Ren
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yan Zhang
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Bo Du
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Lina Wang
- Department of Pediatric Respiration, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Meiheng Gong
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Wei Zhu
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
27
|
Delgado MZ, Aranda FL, Hernandez-Tenorio F, Garrido-Miranda KA, Meléndrez MF, Palacio DA. Polyelectrolytes for Environmental, Agricultural, and Medical Applications. Polymers (Basel) 2024; 16:1434. [PMID: 38794627 PMCID: PMC11124962 DOI: 10.3390/polym16101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
In recent decades, polyelectrolytes (PELs) have attracted significant interest owing to a surge in research dedicated to the development of new technologies and applications at the biological level. Polyelectrolytes are macromolecules of which a substantial portion of the constituent units contains ionizable or ionic groups. These macromolecules demonstrate varied behaviors across different pH ranges, ionic strengths, and concentrations, making them fascinating subjects within the scientific community. The aim of this review is to present a comprehensive survey of the progress in the application studies of polyelectrolytes and their derivatives in various fields that are vital for the advancement, conservation, and technological progress of the planet, including agriculture, environmental science, and medicine. Through this bibliographic review, we seek to highlight the significance of these materials and their extensive range of applications in modern times.
Collapse
Affiliation(s)
- Martina Zuñiga Delgado
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070409, Chile (F.L.A.)
| | - Francisca L. Aranda
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070409, Chile (F.L.A.)
- Department of Materials Engineering (DIMAT), Faculty of Engineering, University of Concepcion, 270 Edmundo Larenas, Box 160-C, Concepcion 4070409, Chile
| | - Fabian Hernandez-Tenorio
- Environmental Processes Research Group, School of Applied Sciences and Engineering, Universidad EAFIT, Medellin 050022, Colombia;
| | - Karla A. Garrido-Miranda
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile;
| | - Manuel F. Meléndrez
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Campus Las Tres Pascuales, Lientur 1457, Concepción 4060000, Chile
| | - Daniel A. Palacio
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070409, Chile (F.L.A.)
| |
Collapse
|
28
|
Cui J, Liu L, Chen B, Hu J, Song M, Dai H, Wang X, Geng H. A comprehensive review on the inherent and enhanced antifouling mechanisms of hydrogels and their applications. Int J Biol Macromol 2024; 265:130994. [PMID: 38518950 DOI: 10.1016/j.ijbiomac.2024.130994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/02/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
Biofouling remains a persistent challenge within the domains of biomedicine, tissue engineering, marine industry, and membrane separation processes. Multifunctional hydrogels have garnered substantial attention due to their complex three-dimensional architecture, hydrophilicity, biocompatibility, and flexibility. These hydrogels have shown notable advances across various engineering disciplines. The antifouling efficacy of hydrogels typically covers a range of strategies to mitigate or inhibit the adhesion of particulate matter, biological entities, or extraneous pollutants onto their external or internal surfaces. This review provides a comprehensive review of the antifouling properties and applications of hydrogels. We first focus on elucidating the fundamental principles for the inherent resistance of hydrogels to fouling. This is followed by a comprehensive investigation of the methods employed to enhance the antifouling properties enabled by the hydrogels' composition, network structure, conductivity, photothermal properties, release of reactive oxygen species (ROS), and incorporation of silicon and fluorine compounds. Additionally, we explore the emerging prospects of antifouling hydrogels to alleviate the severe challenges posed by surface contamination, membrane separation and wound dressings. The inclusion of detailed mechanistic insights and the judicious selection of antifouling hydrogels are geared toward identifying extant gaps that must be bridged to meet practical requisites while concurrently addressing long-term antifouling applications.
Collapse
Affiliation(s)
- Junting Cui
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
| | - Lan Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
| | - Beiyue Chen
- Nanjing Xiaozhuang University, College of Electronics Engineering, Nanjing 211171, China
| | - Jiayi Hu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Mengyao Song
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China.
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China.
| | - Hongya Geng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| |
Collapse
|
29
|
Hu B, Ouyang Y, Zhao T, Wang Z, Yan Q, Qian Q, Wang W, Wang S. Antioxidant Hydrogels: Antioxidant Mechanisms, Design Strategies, and Applications in the Treatment of Oxidative Stress-Related Diseases. Adv Healthc Mater 2024; 13:e2303817. [PMID: 38166174 DOI: 10.1002/adhm.202303817] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/23/2023] [Indexed: 01/04/2024]
Abstract
Oxidative stress is a biochemical process that disrupts the redox balance due to an excess of oxidized substances within the cell. Oxidative stress is closely associated with a multitude of diseases and health issues, including cancer, diabetes, cardiovascular diseases, neurodegenerative disorders, inflammatory conditions, and aging. Therefore, the developing of antioxidant treatment strategies has emerged as a pivotal area of medical research. Hydrogels have garnered considerable attention due to their exceptional biocompatibility, adjustable physicochemical properties, and capabilities for drug delivery. Numerous antioxidant hydrogels have been developed and proven effective in alleviating oxidative stress. In the pursuit of more effective treatments for oxidative stress-related diseases, there is an urgent need for advanced strategies for the fabrication of multifunctional antioxidant hydrogels. Consequently, the authors' focus will be on hydrogels that possess exceptional reactive oxygen species and reactive nitrogen species scavenging capabilities, and their role in oxidative stress therapy will be evaluated. Herein, the antioxidant mechanisms and the design strategies of antioxidant hydrogels and their applications in oxidative stress-related diseases are discussed systematically in order to provide critical insights for further advancements in the field.
Collapse
Affiliation(s)
- Bin Hu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| | - Yongliang Ouyang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| | - Tong Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| | - Zhengyue Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, 999077, China
| | - Qiling Yan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| | - Qinyuan Qian
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| | - Wenyi Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, 999077, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| |
Collapse
|
30
|
Kusjuriansah K, Rodhiyah M, Syifa NA, Luthfianti HR, Waresindo WX, Hapidin DA, Suciati T, Edikresnha D, Khairurrijal K. Composite Hydrogel of Poly(vinyl alcohol) Loaded by Citrus hystrix Leaf Extract, Chitosan, and Sodium Alginate with In Vitro Antibacterial and Release Test. ACS OMEGA 2024; 9:13306-13322. [PMID: 38524413 PMCID: PMC10955567 DOI: 10.1021/acsomega.3c10143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 03/26/2024]
Abstract
Citrus hystrix leaves have been used traditionally as a spice, a traditional medicine for respiratory and digestive disorders, and a remedy for bacterial infections. This study reports on the synthesis of composite hydrogels using the freeze-thaw method with poly(vinyl alcohol) (PVA) as the building block loaded by C. hystrix leaf extract (CHLE). Additionally, chitosan (CS) and sodium alginate (SA) were also loaded, respectively, to increase the antibacterial activity and to control the extract release of the composite hydrogels. The combinations of the compositions were PVA, PVA/CHLE, PVA/CHLE/CS, PVA/CHLE/SA, and PVA/CHLE/SA/CS. The internal morphology of the hydrogels shows some changes after the PVA/CHLE hydrogel was loaded by CS, SA, and SA/CS. The analysis of the Fourier transform infrared (FTIR) spectra confirmed the presence of PVA, CHLE, CS, and SA in the composite hydrogels. From the X-ray diffraction (XRD) characterization, it was shown that the composite hydrogels maintained their semicrystalline properties with decreasing crystallinity degree after being loaded by CS, SA, and SA/CS, as also supported by differential scanning calorimetry (DSC) characterization. The compressive strength of the PVA/CHLE hydrogel decreases after the loading of CS, SA, and SA/CS, so that it becomes more elastic. Despite being loaded in the composite hydrogels, the CHLE retained its antibacterial activity, as evidenced in the in vitro antibacterial test. The loading of CS succeeded in increasing the antibacterial activity of the composite hydrogels, while the loading of SA resulted in the decrease of the antibacterial activity. The release of extract from the composite hydrogels was successfully slowed down after the loading of CS, SA, and SA/CS, resulting in a controlled release following the pseudo-Fickian diffusion. The cytotoxic activity test proved that all hydrogel samples can be used safely on normal cells up to concentrations above 1000 μg/mL.
Collapse
Affiliation(s)
- Kusjuriansah Kusjuriansah
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Marathur Rodhiyah
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Nabila Asy Syifa
- Doctoral
Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Halida Rahmi Luthfianti
- Doctoral
Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - William Xaveriano Waresindo
- Doctoral
Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Dian Ahmad Hapidin
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Tri Suciati
- Department
of Pharmaceutics, School of Pharmacy, Institut
Teknologi Bandung, Jalan
Ganesa 10, Bandung 40132, Indonesia
| | - Dhewa Edikresnha
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
- University
Center of Excellence—Nutraceutical, Bioscience and Biotechnology
Research Center, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Khairurrijal Khairurrijal
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
- University
Center of Excellence—Nutraceutical, Bioscience and Biotechnology
Research Center, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
- Department
of Physics, Faculty of Sciences, Institut
Teknologi Sumatera, Jl.
Terusan Ryacudu, Lampung 35365, Indonesia
| |
Collapse
|
31
|
Das AK, Mitra K, Conte AJ, Sarker A, Chowdhury A, Ragauskas AJ. Lignin - A green material for antibacterial application - A review. Int J Biol Macromol 2024; 261:129753. [PMID: 38286369 DOI: 10.1016/j.ijbiomac.2024.129753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
Lignin's antibacterial properties have become increasingly relevant due to the rise of microbial infectious diseases and antibiotic resistance. Lignin is capable of interacting electrostatically with bacteria and contains polyphenols that cause damage to their cell walls. These features make lignin a desirable material to exhibit antibacterial behavior. Therefore, lignin in antibacterial applications offers a novel approach to address the growing need for sustainable and effective antibacterial materials. Recent research has explored the incorporation of lignin in various biomedical applications, such as wound dressings, implants, and drug delivery systems, highlighting their potential as a sustainable alternative to synthetic antibacterial agents. Furthermore, the development of lignin-based nanomaterials with enhanced antimicrobial activity is an active area of research that holds great promise for the future. In this review, we have provided a summary of how lignin can be incorporated into different forms, such as composite and non-composite synthesis of antibacterial agents and their performances. The challenges and future considerations are also discussed in this review article.
Collapse
Affiliation(s)
- Atanu Kumar Das
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, SE- 90183 Umeå, Sweden.
| | - Kangkana Mitra
- Faculty of Pharmacy, University Grenoble Alpes, Grenoble 38400, France.
| | - Austin J Conte
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, 1512 Middle Dr, Knoxville, TN 37996, USA
| | - Asim Sarker
- Dhaka Medical College Hospital, Dhaka 1000, Bangladesh
| | - Aysha Chowdhury
- Laboratory of Biophysics and Evolution, CBI, ESPCI, University PSL, CNRS, Paris, France
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, 1512 Middle Dr, Knoxville, TN 37996, USA; Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, The University of Tennessee Institution of Agriculture, 2506 Jacob Dr, Knoxville, TN 37996, USA; Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| |
Collapse
|
32
|
de Albuquerque TL, Cavalcante VGC, da Silva Rocha W, de Macedo AC, Rocha MVP. Hydrogels based on lignin extracted from cashew apple bagasse and its application in antimicrobial wound dressings. Int J Biol Macromol 2024; 262:130169. [PMID: 38365138 DOI: 10.1016/j.ijbiomac.2024.130169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/24/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Hydrogels are versatile materials with a three-dimensional network structure that can retain water and release bioactive compounds. They have found applications in various fields, including agriculture, biomaterial synthesis, and pharmaceuticals. Incorporating natural antimicrobial compounds into hydrogels is a promising approach to developing non-toxic biomedical materials, particularly for wound healing dressings. It was evaluated the extraction and use of cashew apple bagasse lignin (CAB-Lig) due to its healing, anti-inflammatory, and antimicrobial properties for producing a hydrogel-based bandage. The extraction process involved acid and alkali treatments followed by precipitation. The antimicrobial potential of CAB-Lig was evaluated at different concentrations for formulating hydrogels. Hydrogels containing 0.1 % and 3 % lignin showed high swelling and liquid retention abilities. The 3 % lignin hydrogel exhibited effectiveness against Escherichia coli and Staphylococcus aureus. Incorporating CAB-Lig into the hydrogel structure improved its mechanical properties, making it more suitable for application as a bandage. Moreover, the extracted lignin showed low toxicity, indicating its safe use. A bandage was formulated by combining the CAB-Lig-based hydrogel with polyester, which possessed antimicrobial properties and demonstrated biocompatibility (L929 and HaCat cells). The results confirmed the potential of CAB-Lig for synthesizing hydrogels and dressings with antimicrobial properties, offering a sustainable solution for utilizing lignocellulosic biomass.
Collapse
Affiliation(s)
- Tiago Lima de Albuquerque
- Federal University of Ceará, Department of Food Engineering, Center for Agricultural Sciences, Fortaleza, CE 60020-181, Brazil; Federal University of Ceará, Department of Chemical Engineering, Technology Center, Fortaleza, CE 60455-760, Brazil.
| | | | - Weslley da Silva Rocha
- Federal University of Ceará, Department of Transportation Engineering, Center of Technology, Fortaleza, CE 60020-181, Brazil
| | - André Casimiro de Macedo
- Federal University of Ceará, Department of Chemical Engineering, Technology Center, Fortaleza, CE 60455-760, Brazil
| | - Maria Valderez Ponte Rocha
- Federal University of Ceará, Department of Chemical Engineering, Technology Center, Fortaleza, CE 60455-760, Brazil
| |
Collapse
|
33
|
Khadem E, Ghafarzadeh M, Kharaziha M, Sun F, Zhang X. Lignin derivatives-based hydrogels for biomedical applications. Int J Biol Macromol 2024; 261:129877. [PMID: 38307436 DOI: 10.1016/j.ijbiomac.2024.129877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Recently, numerous studies have been conducted on renewable polymers derived from different natural sources, exploring their suitability for diverse biomedical applications. Lignin as one of the main components of lignocellulosic has garnered significant attention as a promising alternative to petroleum-based polymers. This interest is primarily due to its cost-effectiveness, biocompatibility, eco-friendly nature, as well as its antioxidant and antimicrobial properties. These characteristics could be more beneficial when incorporating lignin into the formulation of value-added products. Although lignin has a chemical structure that is suitable for various applications, these characteristics require modifications to guarantee that the resultant materials display the desired biological, chemical, and physical properties when applied in the creation of biodegradable hydrogels, particularly for biomedical purposes. This study delineates the recent modification approaches that have been employed in the creation of lignin-based hydrogels. These strategies encompass both chemical and physical interactions with other polymers. Additionally, this review encompasses an examination of the current applications of lignin hydrogels, spanning their use as scaffolds for tissue engineering, carriers for pharmaceuticals, materials for wound dressings and biosensors, and elements in flexible and wearable electronics. Finally, we delve into the challenges and constraints associated with these materials, discuss the necessary steps required to attain the appropriate properties for the development of innovative lignin-based hydrogels, and derive conclusions based on the presented findings.
Collapse
Affiliation(s)
- Elham Khadem
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohsen Ghafarzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xueming Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
34
|
Zheng W, Yang W, Wei W, Liu Z, Tremblay PL, Zhang T. An Electroconductive and Antibacterial Adhesive Nanocomposite Hydrogel for High-Performance Skin Wound Healing. Adv Healthc Mater 2024; 13:e2303138. [PMID: 37903562 DOI: 10.1002/adhm.202303138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Indexed: 11/01/2023]
Abstract
Multifunctional hydrogel adhesives inhibiting infections and enabling the electrical stimulation (ES) of tissue reparation are highly desirable for the healing of surgical wounds and other skin injuries. Herein, a therapeutic nanocomposite hydrogel is designed by integrating β-cyclodextrin-embedded Ag nanoparticles (CDAgNPs) in a polyvinyl alcohol (PVA) matrix enhanced with free β-cyclodextrin (CD) and an atypical macromolecule made of β-glucan grafted with hyaluronic acid (HAG). The main objective is to develop a biocompatible dressing combining the electroconductivity and antibacterial activity of CDAgNPs with the cohesiveness and porosity of PVA and the anti-inflammatory, moisturizing, and cell proliferation-promoting properties of HAG. The last component, CD, is added to strengthen the network structure of the hydrogel. PVA/CD/HAG/CDAgNP exhibited excellent adhesion strength, biocompatibility, electroconductivity, and antimicrobial activity against a wide range of bacteria. In addition, the nanocomposite hydrogel has a swelling ratio and water retention capacity suitable to serve as a wound dressing. PVA/CD/HAG/CDAgNP promoted the proliferation of fibroblast in vitro, accelerated the healing of skin wounds in an animal model, and is hemostatic. Upon ES, the PVA/CD/HAG/CDAgNP nanocomposite hydrogel became more efficient both in vitro and in vivo further speeding up the skin healing process thus demonstrating its potential as a next-generation electroconductive wound dressing.
Collapse
Affiliation(s)
- Wen Zheng
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wenyue Yang
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wenlong Wei
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Ziru Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Pier-Luc Tremblay
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, P. R. China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, P. R. China
| | - Tian Zhang
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, P. R. China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, P. R. China
| |
Collapse
|
35
|
Habibi S, Mohammadi T, Asadi AA. Tailoring polyethylene oxide-modified cross-linked chitosan/PVA nanofibrous membranes: Burn dressing scaffold developed for mupirocin release. Int J Biol Macromol 2024; 258:128983. [PMID: 38159709 DOI: 10.1016/j.ijbiomac.2023.128983] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
In emergency treatment research, the focus on chitosan-based products for wound healing has been consistent. This study specifically explores a dressing made by mixing chitosan (CS) and poly (vinyl alcohol) PVA. Using electrospinning technology, nanofiber membranes of CS and PVA are created with the assistance of non-toxic and hydrophilic polyethylene oxide (PEO). The outcome is a new nanofibrous membrane loaded with mupirocin, designed for healing burn wounds. The study delves into the influence of PVA, CS, and PEO concentrations on the structural and chemical characteristics of the mats. This comprehensive exploration involves techniques such as Scanning Electron Microscope (SEM), Atomic Force Microscopy (AFM) imaging, Fourier Transform Infrared Spectrometry (FTIR analysis), and Contact angle measurements. Additionally, the research evaluates the antibacterial performance and biomedical behavior of the developed scaffolds. PEO proves beneficial in the electrospinning process, contributing to smoother fibers. Meanwhile, the addition of CS and mupirocin leads to formation of the thinner nanofibers (251 ± 5 μm and 263 ± 4 μm, respectively) and scaffolds with higher swelling (up to ∼3.5 times at 90 min). Notably, the (MTT) assay confirms the non-cytotoxicity of the fabricated nanofibers, with proliferations exceeding ∼85% for all samples. The crosslinked samples released the drug more slowly than the non-crosslinked dressings, with 80% of the scaffolds releasing the drug within 24 h. The in-vivo investigations suggested that the drug-containing scaffolds performed reliably and showed promise as a medical dressing for treating burn wounds.
Collapse
Affiliation(s)
- Soha Habibi
- Center of Excellence for Membrane Science and Technology, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran; Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Toraj Mohammadi
- Center of Excellence for Membrane Science and Technology, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran; Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran.
| | - Amir Atabak Asadi
- Center of Excellence for Membrane Science and Technology, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran; Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran; Petroleum Refining Technology Development Division, Research Institute of Petroleum Industry (RIPI), Tehran, 14857-33111, Iran
| |
Collapse
|
36
|
Jung S, Yun H, Kim J, Kim J, Yeo H, Choi IG, Kwak HW. Lignin/PVA hydrogel with enhanced structural stability for cationic dye removal. Int J Biol Macromol 2024; 257:128810. [PMID: 38101680 DOI: 10.1016/j.ijbiomac.2023.128810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/31/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
In this study, a lignin-based hydrogel for wastewater treatment was prepared by incorporating kraft lignin (KL) into a poly (vinyl alcohol) (PVA) matrix. The underwater structural stability of the KL-PVA hydrogel was guaranteed through physicochemical crosslinking, involving freeze-thaw process and chemical crosslinking reaction. The KL-PVA hydrogel displayed superior compressive characteristics compared to the original PVA hydrogel. This improvement was attributed to the chemical crosslinking and the reinforcing effect of the incorporated KL microparticles. The incorporation of anionic KL microparticles into the PVA three-dimensional network structure enhanced the cationic methylene blue (MB) and crystal violet (CV) adsorption efficiency of the prepared KL-PVA hydrogel. The MB adsorption results were well explained by pseudo-2nd order kinetics model and Langmuir isotherm model. Electrostatic forces, hydrogen bonding and π-π stacking interactions were the main adsorption mechanisms between cationic dyes and KL surfaces, indicating the potential of KL-PVA hydrogel as an effective adsorption material. Moreover, regulating the molecular weight of PVA not only prevented lignin leakage from the KL-PVA hydrogel but also elevated the KL content within the hydrogel, consequently improving its dye removal performance. For KL-PVA hydrogel with high molecular weight PVA, the MB and CV adsorption capacities were 193.8 mg/g and 190.0 mg/g, respectively.
Collapse
Affiliation(s)
- Seungoh Jung
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Heecheol Yun
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jungkyu Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jonghwa Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hwanmyeong Yeo
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - In-Gyu Choi
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyo Won Kwak
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
37
|
Cui H, Cai J, He H, Ding S, Long Y, Lin S. Tailored chitosan/glycerol micropatterned composite dressings by 3D printing for improved wound healing. Int J Biol Macromol 2024; 255:127952. [PMID: 37951437 DOI: 10.1016/j.ijbiomac.2023.127952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/26/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Wound infection control is a primary clinical concern nowadays. Various innovative solutions have been developed to fabricate adaptable wound dressings with better control of infected wound healing. This work presents a facile approach by leveraging 3D printing to fabricate chitosan/glycerol into composite dressings with tailored micropatterns to improve wound healing. The bioinks of chitosan/glycerol were investigated as suitable for 3D printing. Then, three tailored micropatterns (i.e., sheet, strip, and mesh) with precise geometry control were 3D printed onto a commercial dressing to fabricate the micropatterned composite dressings. In vitro and in vivo studies indicate that these micropatterned dressings could speed up wound healing due to their increased water uptake capacity (up to ca. 16-fold@2 min), benign cytotoxicity (76.7 % to 90.4 % of cell viability), minor hemolytic activity (<1 %), faster blood coagulation effects (within 76.3 s), low blood coagulation index (14.5 % to 18.7 % @ 6 min), enhanced antibacterial properties (81.0 % to 86.1 % against S. aureus, 83.7 % to 96.5 % against E. coli), and effective inhibition of wound inflammation factors of IL-1β and TNF-α. Such tailored micropatterned composite dressing is facile to obtain, highly reproducible, and cost-efficient, making it a promising implication for improved and personalized contaminated wound healing.
Collapse
Affiliation(s)
- Haoran Cui
- Systems Engineering Institute, Academy of Military Sciences, Tianjin 300161, People's Republic of China
| | - Junjie Cai
- Systems Engineering Institute, Academy of Military Sciences, Tianjin 300161, People's Republic of China; Bethune International Peace Hospital, Shijiazhuang 050051, People's Republic of China
| | - Hanjiao He
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, People's Republic of China
| | - Sheng Ding
- Systems Engineering Institute, Academy of Military Sciences, Tianjin 300161, People's Republic of China
| | - Yi Long
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, People's Republic of China.
| | - Song Lin
- Systems Engineering Institute, Academy of Military Sciences, Tianjin 300161, People's Republic of China.
| |
Collapse
|
38
|
Kenawy ER, Kamoun EA, Elsigeny SM, Heikal S, El-Shehawy AA, Mahmoud YAG. Vanillin loaded-physically crosslinked PVA/chitosan/itaconic membranes for topical wound healing applications. J Appl Biomater Funct Mater 2024; 22:22808000241281273. [PMID: 39295153 DOI: 10.1177/22808000241281273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
Vanillin loaded-physically crosslinked hydrogel membranes made of PVA/chitosan/itaconic acid (PVA-CS-IA) were prepared using freezing-thawing (F-T) cycle method. To ensure the entanglement of PVA-CS-IA chains, three F-T cycles were repeated. The polymeric chains entanglements were confirmed and characterized by different instrumental characterizations. Physicochemical properties for example, swelling ratio, mechanical characteristics, gel fraction percentage (GF%), hydrolytic degradation, and thermal stability of PVA-CS-IA membrane were discussed in detail. The findings showed that the swelling ratio, mechanical characteristics, and hydrolytic degradation of the crosslinked membranes enhanced with increasing CS-IA contents in membranes composition; however, GF% gradually declined with CS-IA content. Additionally, cell viability test using HFB-4 cell line and antimicrobial activity against Staphylococcus aureus and Escherichia coli were evaluated using MTT assay and the bacterium growth inhibition percentage method; respectively. Notably, with varying incubation durations and membrane concentrations, all examined constructed hydrogels showed significant cell survival percentages. The findings supported the notion that produced hydrogel membranes might be used in a professional setting as antibacterial dressings or biomaterials for quick wound healing rate.
Collapse
Affiliation(s)
- El-Refaie Kenawy
- Department of Chemistry, Faculty of Science, Polymer Research Group, University of Tanta, Tanta, Egypt
| | - Elbadawy A Kamoun
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications, New Borg Al-Arab City, Alexandria, Egypt
- Nanotechnology Research Center, The British University in Egypt, El-Sherouk City, Cairo, Egypt
| | - Samia M Elsigeny
- Faculty of Science, Department of Chemistry, Kafrelshiekh University, Kafrelsheikh, Egypt
| | - Samira Heikal
- Department of Chemistry, Faculty of Science, Polymer Research Group, University of Tanta, Tanta, Egypt
| | - Ashraf A El-Shehawy
- Faculty of Science, Department of Chemistry, Kafrelshiekh University, Kafrelsheikh, Egypt
| | - Yehia A-G Mahmoud
- Mycology Research Lab., Faculty of Science, Botany Dep., Tanta University, Tanta, Egypt
| |
Collapse
|
39
|
Almajidi YQ, Gupta J, Sheri FS, Zabibah RS, Faisal A, Ruzibayev A, Adil M, Saadh MJ, Jawad MJ, Alsaikhan F, Narmani A, Farhood B. Advances in chitosan-based hydrogels for pharmaceutical and biomedical applications: A comprehensive review. Int J Biol Macromol 2023; 253:127278. [PMID: 37806412 DOI: 10.1016/j.ijbiomac.2023.127278] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
The treatment of diseases, such as cancer, is one of the most significant issues correlated with human beings health. Hydrogels (HGs) prepared from biocompatible and biodegradable materials, especially biopolymers, have been effectively employed for the sort of pharmaceutical and biomedical applications, including drug delivery systems, biosensors, and tissue engineering. Chitosan (CS), one of the most abundant bio-polysaccharide derived from chitin, is an efficient biomaterial in the prognosis, diagnosis, and treatment of diseases. CS-based HGs possess some potential advantages, like high values of bioactive encapsulation, efficient drug delivery to a target site, sustained drug release, good biocompatibility and biodegradability, high serum stability, non-immunogenicity, etc., which made them practical and useful for pharmaceutical and biomedical applications. In this review, we summarize recent achievements and advances associated with CS-based HGs for drug delivery, regenerative medicine, disease detection and therapy.
Collapse
Affiliation(s)
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura Pin Code 281406, U.P., India
| | - Fatime Satar Sheri
- College of Dentistry, National University of Science and Technology, Dhi Qar, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Akbarali Ruzibayev
- Department of Food Products Technology, Tashkent Institute of Chemical Technology, Navoi street 32, 100011 Tashkent City, Uzbekistan
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
40
|
Li W, Hu J, Chen C, Li X, Zhang H, Xin Y, Tian Q, Wang S. Emerging advances in hydrogel-based therapeutic strategies for tissue regeneration. Regen Ther 2023; 24:459-471. [PMID: 37772128 PMCID: PMC10523184 DOI: 10.1016/j.reth.2023.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/14/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023] Open
Abstract
Significant developments in cell therapy and biomaterial science have broadened the therapeutic landscape of tissue regeneration. Tissue damage is a complex biological process in which different types of cells play a specific role in repairing damaged tissues and growth factors strictly regulate the activity of these cells. Hydrogels have become promising biomaterials for tissue regeneration if appropriate materials are selected and the hydrogel properties are well-regulated. Importantly, they can be used as carriers for living cells and growth factors due to the high water-holding capacity, high permeability, and good biocompatibility of hydrogels. Cell-loaded hydrogels can play an essential role in treating damaged tissues and open new avenues for cell therapy. There is ample evidence substantiating the ability of hydrogels to facilitate the delivery of cells (stem cell, macrophage, chondrocyte, and osteoblast) and growth factors (bone morphogenetic protein, transforming growth factor, vascular endothelial growth factor and fibroblast growth factor). This paper reviewed the latest advances in hydrogels loaded with cells or growth factors to promote the reconstruction of tissues. Furthermore, we discussed the shortcomings of the application of hydrogels in tissue engineering to promote their further development.
Collapse
Affiliation(s)
- Wenqi Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jing Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Cheng Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xinyue Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Honghua Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yanru Xin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Qingchang Tian
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shuling Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
41
|
Albahrawy M, Abass M, Mosbah E, Karrouf G, Awadin W, Zaghloul A. Reinforcement of colon anastomosis healing with leukocyte platelet-rich fibrin in rabbit model. Life Sci 2023; 333:122146. [PMID: 37802197 DOI: 10.1016/j.lfs.2023.122146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
AIM This study investigated the regenerative efficacy of leukocyte platelet-rich fibrin (L-PRF) on colon anastomotic healing in rabbits. MAIN METHODS Thirty-six healthy male white New Zealand rabbits were subjected to complete transactions of the ascending colon. The rabbits were equally divided into two groups: the control group, where the transected colon ends were anastomosed by a simple interrupted suture pattern, and the L-PRF-treated group, in which L-PRF was wrapped entirely around the anastomotic line. The postoperative acute pain scale was assessed using the Bristol Rabbit Pain Scale before surgery and at each four-hour interval post-operatively. After euthanizing the rabbits, the adhesion degree score, anastomotic bursting pressure, and stenosis degree of the anastomotic colon were assessed, and histopathological examination at the 7th, 14th, and 28th days postoperatively. KEY FINDINGS Rabbits in both groups showed a significant increase in pain scores compared to baseline. Postoperatively, the L-PRF group exhibited significantly lower pain scores, adhesion scores, and stenosis degrees than the control group. However, the anastomotic bursting pressure was significantly higher in the L-PRF group. Re-epithelialization, polymorphonuclear neutrophil infiltration, granulation tissue formation, and collagen deposition scores were improved considerably in the L-PRF group compared to the control group. Immunostaining of growth factor expression was significantly lower in the control than in the L-PRF group. SIGNIFICANCE The L-PRF can augment collagen deposition, re-epithelialize the mucosa, promote angiogenesis, reduce adhesions, and diminish the stenosis degree scores. Therefore, it can be considered a promising aid in healing bowel anastomoses.
Collapse
Affiliation(s)
- Mohammed Albahrawy
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Marwa Abass
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Esam Mosbah
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Gamal Karrouf
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Walaa Awadin
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Adel Zaghloul
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
42
|
Zhang N, Zhang X, Zhu Y, Wang D, Li R, Li S, Meng R, Liu Z, Chen D. Bimetal-Organic Framework-Loaded PVA/Chitosan Composite Hydrogel with Interfacial Antibacterial and Adhesive Hemostatic Features for Wound Dressings. Polymers (Basel) 2023; 15:4362. [PMID: 38006086 PMCID: PMC10674882 DOI: 10.3390/polym15224362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
Silver-containing wound dressings have shown attractive advantages in the treatment of wound infection due to their excellent antibacterial activity. However, the introduction of silver ions or AgNPs directly into the wound can cause deposition in the body as particles. Here, with the aim of designing low-silver wound dressings, a bimetallic-MOF antibacterial material called AgCu@MOF was developed using 3, 5-pyridine dicarboxylic acid as the ligand and Ag+ and Cu2+ as metal ion sites. PCbM (PVA/chitosan/AgCu@MOF) hydrogel was successfully constructed in PVA/chitosan wound dressing loaded with AgCu@MOF. The active sites on the surface of AgCu@MOF increased the lipophilicity to bacteria and caused the bacterial membrane to undergo lipid peroxidation, which resulted in the strong bactericidal properties of AgCu@MOF, and the antimicrobial activity of the dressing PCbM was as high as 99.9%. The chelation of silver ions in AgCu@MOF with chitosan occupied the surface functional groups of chitosan and reduced the crosslinking density of chitosan. PCbM changes the hydrogel crosslinking network, thus improving the water retention and water permeability of PCbM hydrogel so that the hydrogel has the function of binding wet tissue. As a wound adhesive, PCbM hydrogel reduces the amount of wound bleeding and has good biocompatibility. PCbM hydrogel-treated mice achieved 96% wound recovery on day 14. The strong antibacterial, tissue adhesion, and hemostatic ability of PCbM make it a potential wound dressing.
Collapse
Affiliation(s)
- Nan Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiuwen Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yueyuan Zhu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dong Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ren Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuangying Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ruizhi Meng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhihui Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dan Chen
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
- Qingdao High-Tech Industry Promotion Centre (Qingdao Technology Market Service Centre), Qingdao 266112, China
| |
Collapse
|
43
|
Pepi S, Paolino M, Saletti M, Venditti J, Talarico L, Andreassi M, Giuliani G, Caselli G, Artusi R, Cappelli A, Leone G, Magnani A, Rovati L. Ferulated Poly(vinyl alcohol) based hydrogels. Heliyon 2023; 9:e22330. [PMID: 38045211 PMCID: PMC10692910 DOI: 10.1016/j.heliyon.2023.e22330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
New graft copolymers were prepared by reaction of poly (vinyl alcohol) (PVA) with mono-imidazolide or bis-imidazolide derivatives of ferulic acid (FA) with the formation of ester bonds. The obtained graft copolymers, thanks to the crosslinking capability of FA, formed in water strong gels as verified by rheological analyses. The resulting hydrogels were characterized to evaluate their applicability as wound dressing. In this perspective, their capability to absorb and retain a large amount of fluid without dissolving was verified by swelling kinetics and Moisture Vapour Transmission Rate measurements. Their stability towards mechanical solicitations was assessed by quantifying elasticity, compliance, stress-relaxation, and adhesivity properties. The analyses pointed out that hydrogel PVA-FA2-3 obtained by feruloylation of PVA with bis-imidazole derivative of ferulic acid using an acylation agent/polymer molar ratio 0.03/1 resulted the best candidate for the foreseen application.
Collapse
Affiliation(s)
- Simone Pepi
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università Degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Marco Paolino
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università Degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Mario Saletti
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università Degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Jacopo Venditti
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università Degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Luigi Talarico
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università Degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Marco Andreassi
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università Degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Germano Giuliani
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università Degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | | | - Roberto Artusi
- Rottapharm Biotech, Via Valosa di Sopra 7, 20052, Monza, Italy
| | - Andrea Cappelli
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università Degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Gemma Leone
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università Degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121, Firenze, Italy
| | - Agnese Magnani
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università Degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121, Firenze, Italy
| | - Lucio Rovati
- Rottapharm Biotech, Via Valosa di Sopra 7, 20052, Monza, Italy
| |
Collapse
|
44
|
Xu J, Zhu X, Zhao J, Ling G, Zhang P. Biomedical applications of supramolecular hydrogels with enhanced mechanical properties. Adv Colloid Interface Sci 2023; 321:103000. [PMID: 37839280 DOI: 10.1016/j.cis.2023.103000] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/02/2023] [Accepted: 09/16/2023] [Indexed: 10/17/2023]
Abstract
Supramolecular hydrogels bound by hydrogen bonding, host-guest, hydrophobic, and other non-covalent interactions are among the most attractive biomaterials available. Supramolecular hydrogels have attracted extensive attention due to their inherent dynamic reversibility, self-healing, stimuli-response, excellent biocompatibility, and near-physiological environment. However, the inherent contradiction between non-covalent interactions and mechanical strength makes the practical application of supramolecular hydrogels a great challenge. This review describes the mechanical strength of hydrogels mediated by supramolecular interactions, and focuses on the potential strategies for enhancing the mechanical strength of supramolecular hydrogels and illustrates their applications in related fields, such as flexible electronic sensors, wound dressings, and three-dimensional (3D) scaffolds. Finally, the current problems and future research prospects of supramolecular hydrogels are discussed. This review is expected to provide insights that will motivate more advanced research on supramolecular hydrogels.
Collapse
Affiliation(s)
- Jiaqi Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China..
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China..
| |
Collapse
|
45
|
Li M, Xia W, Khoong YM, Huang L, Huang X, Liang H, Zhao Y, Mao J, Yu H, Zan T. Smart and versatile biomaterials for cutaneous wound healing. Biomater Res 2023; 27:87. [PMID: 37717028 PMCID: PMC10504797 DOI: 10.1186/s40824-023-00426-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023] Open
Abstract
The global increase of cutaneous wounds imposes huge health and financial burdens on patients and society. Despite improved wound healing outcomes, conventional wound dressings are far from ideal, owing to the complex healing process. Smart wound dressings, which are sensitive to or interact with changes in wound condition or environment, have been proposed as appealing therapeutic platforms to effectively facilitate wound healing. In this review, the wound healing processes and features of existing biomaterials are firstly introduced, followed by summarizing the mechanisms of smart responsive materials. Afterwards, recent advances and designs in smart and versatile materials of extensive applications for cutaneous wound healing were submarined. Finally, clinical progresses, challenges and future perspectives of the smart wound dressing are discussed. Overall, by mapping the composition and intrinsic structure of smart responsive materials to their individual needs of cutaneous wounds, with particular attention to the responsive mechanisms, this review is promising to advance further progress in designing smart responsive materials for wounds and drive clinical translation.
Collapse
Affiliation(s)
- Minxiong Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenzheng Xia
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi Min Khoong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lujia Huang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Hsin Liang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yun Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jiayi Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Haijun Yu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
46
|
Li K, Zhu Z, Zhai Y, Chen S. Recent Advances in Electrospun Nanofiber-Based Strategies for Diabetic Wound Healing Application. Pharmaceutics 2023; 15:2285. [PMID: 37765254 PMCID: PMC10535965 DOI: 10.3390/pharmaceutics15092285] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Diabetic ulcers are the second largest complication caused by diabetes mellitus. A great number of factors, including hyperchromic inflammation, susceptible microbial infection, inferior vascularization, the large accumulation of free radicals, and other poor healing-promoting microenvironments hold back the healing process of chronic diabetic ulcer in clinics. With the increasing clinical cases of diabetic ulcers worldwide, the design and development of advanced wound dressings are urgently required to accelerate the treatment of skin wounds caused by diabetic complications. Electrospinning technology has been recognized as a simple, versatile, and cost-reasonable strategy to fabricate dressing materials composed of nanofibers, which possess excellent extracellular matrix (ECM)-mimicking morphology, structure, and biological functions. The electrospinning-based nanofibrous dressings have been widely demonstrated to promote the adhesion, migration, and proliferation of dermal fibroblasts, and further accelerate the wound healing process compared with some other dressing types like traditional cotton gauze and medical sponges, etc. Moreover, the electrospun nanofibers are commonly harvested in the structure of nonwoven-like mats, which possess small pore sizes but high porosity, resulting in great microbial barrier performance as well as excellent moisture and air permeable properties. They also serve as good carriers to load various bioactive agents and/or even living cells, which further impart the electrospinning-based dressings with predetermined biological functions and even multiple functions to significantly improve the healing outcomes of different chronic skin wounds while dramatically shortening the treatment procedure. All these outstanding characteristics have made electrospun nanofibrous dressings one of the most promising dressing candidates for the treatment of chronic diabetic ulcers. This review starts with a brief introduction to diabetic ulcer and the electrospinning process, and then provides a detailed introduction to recent advances in electrospinning-based strategies for the treatment of diabetic wounds. Importantly, the synergetic application of combining electrospinning with bioactive ingredients and/or cell therapy was highlighted. The review also discussed the advantages of hydrogel dressings by using electrospun nanofibers. At the end of the review, the challenge and prospects of electrospinning-based strategies for the treatment of diabetic wounds are discussed in depth.
Collapse
Affiliation(s)
- Kun Li
- College of Textile & Clothing, Qingdao University, Qingdao 266071, China;
| | - Zhijun Zhu
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China; (Z.Z.); (Y.Z.)
| | - Yanling Zhai
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China; (Z.Z.); (Y.Z.)
| | - Shaojuan Chen
- College of Textile & Clothing, Qingdao University, Qingdao 266071, China;
| |
Collapse
|
47
|
Hachimi Alaoui C, Réthoré G, Weiss P, Fatimi A. Sustainable Biomass Lignin-Based Hydrogels: A Review on Properties, Formulation, and Biomedical Applications. Int J Mol Sci 2023; 24:13493. [PMID: 37686299 PMCID: PMC10487582 DOI: 10.3390/ijms241713493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Different techniques have been developed to overcome the recalcitrant nature of lignocellulosic biomass and extract lignin biopolymer. Lignin has gained considerable interest owing to its attractive properties. These properties may be more beneficial when including lignin in the preparation of highly desired value-added products, including hydrogels. Lignin biopolymer, as one of the three major components of lignocellulosic biomaterials, has attracted significant interest in the biomedical field due to its biocompatibility, biodegradability, and antioxidant and antimicrobial activities. Its valorization by developing new hydrogels has increased in recent years. Furthermore, lignin-based hydrogels have shown great potential for various biomedical applications, and their copolymerization with other polymers and biopolymers further expands their possibilities. In this regard, lignin-based hydrogels can be synthesized by a variety of methods, including but not limited to interpenetrating polymer networks and polymerization, crosslinking copolymerization, crosslinking grafted lignin and monomers, atom transfer radical polymerization, and reversible addition-fragmentation transfer polymerization. As an example, the crosslinking mechanism of lignin-chitosan-poly(vinyl alcohol) (PVA) hydrogel involves active groups of lignin such as hydroxyl, carboxyl, and sulfonic groups that can form hydrogen bonds (with groups in the chemical structures of chitosan and/or PVA) and ionic bonds (with groups in the chemical structures of chitosan and/or PVA). The aim of this review paper is to provide a comprehensive overview of lignin-based hydrogels and their applications, focusing on the preparation and properties of lignin-based hydrogels and the biomedical applications of these hydrogels. In addition, we explore their potential in wound healing, drug delivery systems, and 3D bioprinting, showcasing the unique properties of lignin-based hydrogels that enable their successful utilization in these areas. Finally, we discuss future trends in the field and draw conclusions based on the findings presented.
Collapse
Affiliation(s)
- Chaymaa Hachimi Alaoui
- Chemical Science and Engineering Research Team (ERSIC), FPBM, Sultan Moulay Slimane University, Mghila, P.O. Box 592, Beni Mellal 23000, Morocco;
- Nantes Université, Oniris, Univ Angers, INSERM, Regenerative Medicine and Skeleton, RmeS, UMR 1229, F-44000 Nantes, France
| | - Gildas Réthoré
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RmeS, UMR 1229, F-44000 Nantes, France; (G.R.); (P.W.)
| | - Pierre Weiss
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RmeS, UMR 1229, F-44000 Nantes, France; (G.R.); (P.W.)
| | - Ahmed Fatimi
- Chemical Science and Engineering Research Team (ERSIC), FPBM, Sultan Moulay Slimane University, Mghila, P.O. Box 592, Beni Mellal 23000, Morocco;
| |
Collapse
|
48
|
Kathyayani D, Mahesh B, Channe Gowda D, Sionkowska A, Veeranna S. Investigation of miscibiliy and physicochemical properties of synthetic polypeptide with collagen blends and their wound healing characteristics. Int J Biol Macromol 2023; 246:125704. [PMID: 37414325 DOI: 10.1016/j.ijbiomac.2023.125704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
A suitable condition is needed to foster a rapid recovery of wounds, which is a dynamic and intricate process. The development and characterization of mats of plastic-like peptide polymer (PLP) with collagen for wound healing applications are reported in this work. Viscosity parameters such as the Huggins coefficient [KH], the intrinsic viscosity [η], α by Sun, ∆[η]m by Garcia ∆B and μ suggested by Chee, ∆K, and β advocated by Jiang and Han, recommend the miscibility of the polypeptide in solution phase. Fourier transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and X-ray diffraction (XRD) methods in a solid phase. Thermal characteristics using a differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA) showed higher stability for the blends than the pure polymers. The collagen and PLP blends showed exceptional in vitro cytocompatibility, and the in vivo wound-healing studies on the Sprague-Dawley rats demonstrated faster wound healing within two weeks compared to the cotton gauze-treated injuries. Therefore, these membranes can be a possible alternative for treating skin injuries.
Collapse
Affiliation(s)
- D Kathyayani
- Department of Chemistry, JSS Academy of Technical Education, Dr. Vishnuvardhan Road, Bengaluru 560060, India
| | - B Mahesh
- Department of Chemistry, JSS Academy of Technical Education, Dr. Vishnuvardhan Road, Bengaluru 560060, India.
| | - D Channe Gowda
- Department of Studies in Chemistry, University of Mysore, Manasagangothri, Mysuru 560006, India
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87-100 Torun, Poland
| | - S Veeranna
- Department of Dermatology, JSS Medical College, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570 015, India
| |
Collapse
|
49
|
Vasile C, Baican M. Lignins as Promising Renewable Biopolymers and Bioactive Compounds for High-Performance Materials. Polymers (Basel) 2023; 15:3177. [PMID: 37571069 PMCID: PMC10420922 DOI: 10.3390/polym15153177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
The recycling of biomass into high-value-added materials requires important developments in research and technology to create a sustainable circular economy. Lignin, as a component of biomass, is a multipurpose aromatic polymer with a significant potential to be used as a renewable bioresource in many fields in which it acts both as promising biopolymer and bioactive compound. This comprehensive review gives brief insights into the recent research and technological trends on the potential of lignin development and utilization. It is divided into ten main sections, starting with an outlook on its diversity; main properties and possibilities to be used as a raw material for fuels, aromatic chemicals, plastics, or thermoset substitutes; and new developments in the use of lignin as a bioactive compound and in nanoparticles, hydrogels, 3D-printing-based lignin biomaterials, new sustainable biomaterials, and energy production and storage. In each section are presented recent developments in the preparation of lignin-based biomaterials, especially the green approaches to obtaining nanoparticles, hydrogels, and multifunctional materials as blends and bio(nano)composites; most suitable lignin type for each category of the envisaged products; main properties of the obtained lignin-based materials, etc. Different application categories of lignin within various sectors, which could provide completely sustainable energy conversion, such as in agriculture and environment protection, food packaging, biomedicine, and cosmetics, are also described. The medical and therapeutic potential of lignin-derived materials is evidenced in applications such as antimicrobial, antiviral, and antitumor agents; carriers for drug delivery systems with controlled/targeting drug release; tissue engineering and wound healing; and coatings, natural sunscreen, and surfactants. Lignin is mainly used for fuel, and, recently, studies highlighted more sustainable bioenergy production technologies, such as the supercapacitor electrode, photocatalysts, and photovoltaics.
Collapse
Affiliation(s)
- Cornelia Vasile
- Romanian Academy, “P. Poni” Institute of Macromolecular Chemistry, Physical Chemistry of Polymers Department 41A Grigore Ghica Voda Alley, RO700487 Iaşi, Romania
| | - Mihaela Baican
- “Grigore T. Popa” Medicine and Pharmacy University, Faculty of Pharmacy, Pharmaceutical Sciences I Department, Laboratory of Pharmaceutical Physics, 16 University Street, RO700115 Iaşi, Romania;
| |
Collapse
|
50
|
Mohite P, Rahayu P, Munde S, Ade N, Chidrawar VR, Singh S, Jayeoye TJ, Prajapati BG, Bhattacharya S, Patel RJ. Chitosan-Based Hydrogel in the Management of Dermal Infections: A Review. Gels 2023; 9:594. [PMID: 37504473 PMCID: PMC10379151 DOI: 10.3390/gels9070594] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
The main objective of this review is to provide a comprehensive overview of the current evidence regarding the use of chitosan-based hydrogels to manage skin infections. Chitosan, a naturally occurring polysaccharide derived from chitin, possesses inherent antimicrobial properties, making it a promising candidate for treating various dermal infections. This review follows a systematic approach to analyze relevant studies that have investigated the effectiveness of chitosan-based hydrogels in the context of dermal infections. By examining the available evidence, this review aims to evaluate these hydrogels' overall efficacy, safety, and potential applications for managing dermal infections. This review's primary focus is to gather and analyze data from different recent studies about chitosan-based hydrogels combating dermal infections; this includes assessing their ability to inhibit the growth of microorganisms and reduce infection-related symptoms. Furthermore, this review also considers the safety profile of chitosan-based hydrogels, examining any potential adverse effects associated with their use. This evaluation is crucial to ensure that these hydrogels can be safely utilized in the management of dermal infections without causing harm to patients. The review aims to provide healthcare professionals and researchers with a comprehensive understanding of the current evidence regarding the use of chitosan-based hydrogels for dermal infection management. The findings from this review can contribute to informed decision-making and the development of potential treatment strategies in this field.
Collapse
Affiliation(s)
- Popat Mohite
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Pudji Rahayu
- Department of Pharmacy of Tanjung Karang State Health Polytechnic, Soekarno-Hatta, Bandar Lampung 35145, Lampung, Indonesia
| | - Shubham Munde
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Nitin Ade
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Vijay R Chidrawar
- SVKM's NMIMS School of Pharmacy and Technology Management, Jadcharla 509301, Telangana, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titilope J Jayeoye
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS Deemed-to-be-University, Shirpur 425405, Maharashtra, India
| | - Ravish J Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand 388421, Gujarat, India
| |
Collapse
|