1
|
Li C, Li D, Xu Y, Chen P, Zhang J, Zhou Y, Li Z, Zhou Z, Chen M, Li M. A calcium sulfate hemihydrate self-setting interface reinforced polycaprolactone porous composite scaffold. RSC Adv 2025; 15:8430-8442. [PMID: 40103987 PMCID: PMC11917470 DOI: 10.1039/d5ra00010f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/09/2025] [Indexed: 03/20/2025] Open
Abstract
The mechanical insufficiency and slow degradation of polycaprolactone (PCL) implants have attracted widespread attention among researchers. Herein, a PCL scaffold with self-setting properties containing calcium sulfate hemihydrate (CSH) was prepared using a triply periodic minimal surfaces (TPMS) design and selective laser sintering (SLS) technology. The results showed that the strength of the scaffold containing 10 wt% CSH was increased by 45.5% compared to the PCL one. More importantly, its strength can be further increased to 1.7 times that of the PCL scaffold after self-setting in water. Mechanism analysis suggests that mechanical strengthening can be attributed to the pinning effect through the newly grown columnar crystals embedded with PCL molecular chains. In addition, the degradation rate of the composite scaffold was approximately 6.8 times higher than that of the PCL one. The study believes that the increase in degradation rate is due to a dual effect, specifically the increase in permeability and the catalytic degradation of PCL in the acidic environment. Encouragingly, the composite scaffold showed a good ability to induce hydroxyapatite formation. Therefore, the self-setting mechanically enhanced composite scaffold is expected to have potential application prospects in bone defect repair.
Collapse
Affiliation(s)
- Changfeng Li
- College of Mechanical and Energy Engineering, Shaoyang University Shaoyang 422000 China
| | - Dongying Li
- College of Mechanical and Energy Engineering, Shaoyang University Shaoyang 422000 China
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, Shaoyang University Shaoyang 422000 China
| | - Yong Xu
- College of Mechanical and Energy Engineering, Shaoyang University Shaoyang 422000 China
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, Shaoyang University Shaoyang 422000 China
| | - Peng Chen
- College of Mechanical and Energy Engineering, Shaoyang University Shaoyang 422000 China
| | - Jianfei Zhang
- College of Mechanical and Energy Engineering, Shaoyang University Shaoyang 422000 China
| | - Yanrong Zhou
- College of Mechanical and Energy Engineering, Shaoyang University Shaoyang 422000 China
| | - Zonghan Li
- College of Mechanical and Energy Engineering, Shaoyang University Shaoyang 422000 China
| | - Zixiong Zhou
- College of Mechanical and Energy Engineering, Shaoyang University Shaoyang 422000 China
| | - Meigui Chen
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, Shaoyang University Shaoyang 422000 China
| | - Mengqi Li
- Shaoyang Industry Polytechnic College Shaoyang 422000 China
| |
Collapse
|
2
|
Tian Z, Zhao Z, Rausch MA, Behm C, Tur D, Shokoohi-Tabrizi HA, Andrukhov O, Rausch-Fan X. Potential of Trilayered Gelatin/Polycaprolactone Nanofibers for Periodontal Regeneration: An In Vitro Study. Int J Mol Sci 2025; 26:672. [PMID: 39859386 PMCID: PMC11766300 DOI: 10.3390/ijms26020672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/30/2025] Open
Abstract
Over the past few years, biomaterial-based periodontal tissue engineering has gained popularity. An ideal biomaterial for treating periodontal defects is expected to stimulate periodontal-derived cells, allowing them to contribute most efficiently to tissue reconstruction. The present study focuses on evaluating the in vitro behavior of human periodontal ligament-derived stromal cells (hPDL-MSCs) when cultured on gelatin/Polycaprolactone prototype (GPP) and volume-stable collagen matrix (VSCM). Cells were cultured onto the GPP, VSCM, or tissue culture plate (TCP) for 3, 7, and 14 days. Cell morphology, adhesion, proliferation/viability, the gene expression of Collagen type I, alpha1 (COL1A1), Vascular endothelial growth factor A (VEGF-A), Periostin (POSTN), Cementum protein 1 (CEMP1), Cementum attachment protein (CAP), Interleukin 8 (IL-8) and Osteocalcin (OCN), and the levels of VEGF-A and IL-8 proteins were investigated. hPDL-MSCs attached to both biomaterials exhibited a different morphology compared to TCP. GPP exhibited stronger capabilities in enhancing cell viability and metabolic activity compared to VSCM. In most cases, the expression of all investigated genes, except POSTN, was stimulated by both materials, with GPP having a superior effect on COL1A1 and VEGF-A, and VSCM on OCN. The IL-8 protein production was slightly higher in cells grown on VSCM. GPP also exhibited the ability to absorb VEGF-A protein. The gene expression of POSTN was promoted by GPP and slightly suppressed by VSCM. In summary, our findings indicate that GPP electrospun nanofibers effectively promote the functional performance of PDLSCs in periodontal regeneration, particularly in the periodontal ligament and cementum compartment.
Collapse
Affiliation(s)
- Zhiwei Tian
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (Z.T.); (M.A.R.); (C.B.)
| | - Zhongqi Zhao
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (Z.T.); (M.A.R.); (C.B.)
| | - Marco Aoqi Rausch
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (Z.T.); (M.A.R.); (C.B.)
- Clinical Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian Behm
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (Z.T.); (M.A.R.); (C.B.)
| | - Dino Tur
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (D.T.); (X.R.-F.)
| | - Hassan Ali Shokoohi-Tabrizi
- Core Facility Applied Physics, Laser and CAD/CAM Technology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (Z.T.); (M.A.R.); (C.B.)
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (D.T.); (X.R.-F.)
- Center for Clinical Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
3
|
Tavakoli Z, Ansari M, Poursamar SA, Rafienia M, Eslami H, Zare F, Shirani S, Alizadeh MH. Synergetic effect of bioglass and nano montmorillonite on 3D printed nanocomposite of polycaprolactone/gelatin in the fabrication of bone scaffolds. Int J Biol Macromol 2024; 281:136384. [PMID: 39383920 DOI: 10.1016/j.ijbiomac.2024.136384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/23/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Nowadays, bone injuries and disorders have increased all over the world and can reduce the quality of human life. Bone tissue engineering repair approaches require new biomaterials and methods to construct scaffolds with the required structural properties as well as improved performance. As potential therapeutic strategies in bone tissue engineering, 3D printed scaffolds have been developed. Polycaprolactone/Ceramic composites have attracted considerable attention due to their cytocompatibility, biodegradability, and physical properties. In this study, a 3D printing process was used to create polycaprolactone (PCL)-Gelatin (GEL) scaffolds containing varying concentrations of Bioglass (BG) and Nano Montmorillonite (MMT). This mixture was then loaded into a 3D printer, and the scaffolds were printed layer by layer. After constructing the scaffolds, they were then examined for their physical, chemical, and biological characteristics. Surface appearance was analyzed with a scanning electron microscope (SEM), which revealed that NC increased the diameter of pores from 465 to 480 μm. The elements in the scaffolds were evaluated by EDX analysis, and a uniform dispersion of nano montmorillonite particles was observed. The compressive strength reached 76.43 MPa for PCL/G/35 %MMT/15 %BG scaffold. Also, the rate of water absorption, biodegradability and bioactivity of PCL-GEL scaffolds increased significantly in the presence of NC. According to the MTT cell test results, adding BG and NC increased cell proliferation, adhesion and cell viability to 127.7 %. These findings indicated that the 3D printed PCL/G/35 %MMT/15 %BG scaffold has promising strategies for bone repair applications. Also, polynomial curve fitting shows that scaffold degradability after soaking in PBS can be predicted using the initial weight and soaking time. Adding more variables and data could improve prediction accuracy, reducing the need for experiments and conserving resources.
Collapse
Affiliation(s)
- Zahra Tavakoli
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran.
| | - Seyyed Ali Poursamar
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rafienia
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Eslami
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Fatemeh Zare
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Shahin Shirani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | |
Collapse
|
4
|
Han X, Wang F, Ma Y, Lv X, Zhang K, Wang Y, Yan K, Mei Y, Wang X. TPG-functionalized PLGA/PCL nanofiber membrane facilitates periodontal tissue regeneration by modulating macrophages polarization via suppressing PI3K/AKT and NF-κB signaling pathways. Mater Today Bio 2024; 26:101036. [PMID: 38600919 PMCID: PMC11004206 DOI: 10.1016/j.mtbio.2024.101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
Traditional fibrous membranes employed in guided tissue regeneration (GTR) in the treatment of periodontitis have limitations of bioactive and immunomodulatory properties. We fabricated a novel nTPG/PLGA/PCL fibrous membrane by electrospinning which exhibit excellent hydrophilicity, mechanical properties and biocompatibility. In addition, we investigated its regulatory effect on polarization of macrophages and facilitating the regeneration of periodontal tissue both in vivo and in vitro. These findings showed the 0.5%TPG/PLGA/PCL may inhibit the polarization of RAW 264.7 into M1 phenotype by suppressing the PI3K/AKT and NF-κB signaling pathways. Furthermore, it directly up-regulated the expression of cementoblastic differentiation markers (CEMP-1 and CAP) in periodontal ligament stem cells (hPDLSCs), and indirectly up-regulated the expression of cementoblastic (CEMP-1 and CAP) and osteoblastic (ALP, RUNX2, COL-1, and OCN) differentiation markers by inhibiting the polarization of M1 macrophage. Upon implantation into a periodontal bone defect rats model, histological assessment revealed that the 0.5%TPG/PLGA/PCL membrane could regenerate oriented collagen fibers and structurally intact epithelium. Micro-CT (BV/TV) and the expression of immunohistochemical markers (OCN, RUNX-2, COL-1, and BMP-2) ultimately exhibited satisfactory regeneration of alveolar bone, periodontal ligament. Overall, 0.5%TPG/PLGA/PCL did not only directly promote osteogenic effects on hPDLSCs, but also indirectly facilitated cementoblastic and osteogenic differentiation through its immunomodulatory effects on macrophages. These findings provide a novel perspective for the development of materials for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Xiang Han
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People's Republic of China
| | - Feiyang Wang
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People's Republic of China
| | - Yuzhuo Ma
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People's Republic of China
| | - Xuerong Lv
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People's Republic of China
| | - Kewei Zhang
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People's Republic of China
| | - Yue Wang
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People's Republic of China
| | - Ke Yan
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People's Republic of China
| | - Youmin Mei
- Department of Periodontology, Nantong Stomatological Hospital, Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, 226000, People's Republic of China
| | - Xiaoqian Wang
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People's Republic of China
| |
Collapse
|
5
|
Asl SK, Rahimzadegan M, Asl AK. Progress in cardiac tissue engineering and regeneration: Implications of gelatin-based hybrid scaffolds. Int J Biol Macromol 2024; 261:129924. [PMID: 38311143 DOI: 10.1016/j.ijbiomac.2024.129924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/06/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Cardiovascular diseases, particularly myocardial infarction (MI), remain a leading cause of morbidity and mortality worldwide. Current treatments for MI, more palliative than curative, have limitations in reversing the disease completely. Tissue engineering (TE) has emerged as a promising strategy to address this challenge and may lead to improved therapeutic approaches for MI. Gelatin-based scaffolds, including gelatin and its derivative, gelatin methacrylate (GelMA), have attracted significant attention in cardiac tissue engineering (CTE) due to their optimal physical and biochemical properties and capacity to mimic the native extracellular matrix (ECM). CTE mainly recruits two classes of gelatin/GelMA-based scaffolds: hydrogels and nanofibrous. This article reviews state-of-the-art gelatin/GelMA-based hybrid scaffolds currently applied for CTE and regenerative therapy. Hybrid scaffolds, fabricated by combining gelatin/GelMA hydrogel or nanofibrous scaffolds with other materials such as natural/synthetic polymers, nanoparticles, protein-based biomaterials, etc., are explored for enhanced cardiac tissue regeneration functionality. The engraftment of stem/cardiac cells, bioactive molecules, or drugs into these hybrid systems shows great promise in cardiac tissue repair and regeneration. Finally, the role of gelatin/GelMA scaffolds combined with the 3D bioprinting strategy in CTE will also be briefly highlighted.
Collapse
Affiliation(s)
- Siamak Kazemi Asl
- Deputy of Education, Ministry of Health and Medical Education, Tehran, Iran.
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Kazemi Asl
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Tian Z, Zhao Z, Rausch MA, Behm C, Shokoohi-Tabrizi HA, Andrukhov O, Rausch-Fan X. In Vitro Investigation of Gelatin/Polycaprolactone Nanofibers in Modulating Human Gingival Mesenchymal Stromal Cells. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7508. [PMID: 38138649 PMCID: PMC10744501 DOI: 10.3390/ma16247508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
The aesthetic constancy and functional stability of periodontium largely depend on the presence of healthy mucogingival tissue. Soft tissue management is crucial to the success of periodontal surgery. Recently, synthetic substitute materials have been proposed to be used for soft tissue augmentation, but the tissue compatibility of these materials needs to be further investigated. This study aims to assess the in vitro responses of human gingival mesenchymal stromal cells (hG-MSCs) cultured on a Gelatin/Polycaprolactone prototype (GPP) and volume-stable collagen matrix (VSCM). hG-MSCs were cultured onto the GPP, VSCM, or plastic for 3, 7, and 14 days. The proliferation and/or viability were measured by cell counting kit-8 assay and resazurin-based toxicity assay. Cell morphology and adhesion were evaluated by microscopy. The gene expression of collagen type I, alpha1 (COL1A1), α-smooth muscle actin (α-SMA), fibroblast growth factor (FGF-2), vascular endothelial growth factor A (VEGF-A), transforming growth factor beta-1 (TGF-β1), focal adhesion kinase (FAK), integrin beta-1 (ITG-β1), and interleukin 8 (IL-8) was investigated by RT-qPCR. The levels of VEGF-A, TGF-β1, and IL-8 proteins in conditioned media were tested by ELISA. GPP improved both cell proliferation and viability compared to VSCM. The cells grown on GPP exhibited a distinct morphology and attachment performance. COL1A1, α-SMA, VEGF-A, FGF-2, and FAK were positively modulated in hG-MSCs on GPP at different investigation times. GPP increased the gene expression of TGF-β1 but had no effect on protein production. The level of ITG-β1 had no significant changes in cells seeded on GPP at 7 days. At 3 days, notable differences in VEGF-A, TGF-β1, and α-SMA expression levels were observed between cells seeded on GPP and those on VSCM. Meanwhile, GPP showed higher COL1A1 expression compared to VSCM after 14 days, whereas VSCM demonstrated a more significant upregulation in the production of IL-8. Taken together, our data suggest that GPP electrospun nanofibers have great potential as substitutes for soft tissue regeneration in successful periodontal surgery.
Collapse
Affiliation(s)
- Zhiwei Tian
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria; (Z.T.); (Z.Z.); (M.A.R.); (C.B.)
| | - Zhongqi Zhao
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria; (Z.T.); (Z.Z.); (M.A.R.); (C.B.)
| | - Marco Aoqi Rausch
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria; (Z.T.); (Z.Z.); (M.A.R.); (C.B.)
- Clinical Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria
| | - Christian Behm
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria; (Z.T.); (Z.Z.); (M.A.R.); (C.B.)
| | - Hassan Ali Shokoohi-Tabrizi
- Core Facility Applied Physics, Laser and CAD/CAM Technology, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria;
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria; (Z.T.); (Z.Z.); (M.A.R.); (C.B.)
| | - Xiaohui Rausch-Fan
- Center for Clinical Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria;
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria
| |
Collapse
|
7
|
Patty DJ, Nugraheni AD, Ana ID, Aminatun, Sari YW, Gunawarman, Yusuf Y. The enhanced properties and bioactivity of poly-ε-caprolactone/poly lactic- co-glycolic acid doped with carbonate hydroxyapatite-egg white. RSC Adv 2023; 13:34427-34438. [PMID: 38024968 PMCID: PMC10667861 DOI: 10.1039/d3ra07486b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Synthetic polymers, such as PCL and PLGA, are among the main material choices in tissue engineering because of their stable structures and strong mechanical properties. In this study, we designed polycaprolactone (PCL)/polylactic-co-glycolate acid (PLGA) nanofibers doped with carbonate hydroxyapatite (CHA) and egg white (EW) with enhanced properties. The addition of CHA and EW significantly influenced the properties and morphology of PCL/PLGA nanofibers; whereby the CHA substitution (PCL/PLGA/CHA) greatly increased the mechanical properties related to the Young's modulus and EW doping (PCL/PLGA/CHA/EW) increased the elongation at break. Bioactivity tests of PCL/PLGA/CHA/EW after immersion in the SBF for 3 to 9 days showed increased fiber diameters and a good swelling capacity that could improve cell adhesion, while biocompatibility tests with NIH-3T3 fibroblast cells showed good cell proliferation (85%) after 48 h and antibacterial properties against S. aureus.
Collapse
Affiliation(s)
- Diana Julaidy Patty
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada Yogyakarta Indonesia
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Pattimura Ambon Indonesia
| | - Ari Dwi Nugraheni
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada Yogyakarta Indonesia
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada Yogyakarta Indonesia
- Research Collaboration Center for Biomedical Scaffolds National Research and Innovation Agency of the Republic of Indonesia (BRIN), Universitas Gadjah Mada (UGM) Bulaksumur Yogyakarta 55281 Indonesia
| | - Aminatun
- Department of Physics, Universitas Airlangga Surabaya 60115 Indonesia
| | - Yessie Widya Sari
- Department of Physics, Institut Pertanian Bogor Bogor 16680 Indonesia
| | - Gunawarman
- Department of Mechanical Engineering, Universitas Andalas Padang 25163 Indonesia
| | - Yusril Yusuf
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada Yogyakarta Indonesia
- Research Collaboration Center for Biomedical Scaffolds National Research and Innovation Agency of the Republic of Indonesia (BRIN), Universitas Gadjah Mada (UGM) Bulaksumur Yogyakarta 55281 Indonesia
| |
Collapse
|
8
|
Jin B, Zhang C, Zhong Z, Liu Z, Zhang Z, Li D, Zhu M, Yu B. A novel degradable PCL/PLLA strapping band for internal fixation of fracture. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:57. [PMID: 37938467 PMCID: PMC10632200 DOI: 10.1007/s10856-023-06759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/05/2023] [Indexed: 11/09/2023]
Abstract
Early fracture fixation is the critical factor in fracture healing. Common internal fracture implants are made of metallic materials, which often affects the imaging quality of CT and MRI. Most patients will choose secondary surgery to remove the internal fixation implants, which causes secondary damage to them. The development of new degradable internal fracture implants has attracted more and more attention from orthopedic surgeons and researchers. Based on these problems, we improved the various properties of medical grade polycaprolactone (PCL) by adding poly(L-lactide) (PLLA). We produced PCL/PLLA strapping bands with different mass ratios by injection molding. We compared the mechanical properties, degradation properties, cell biocompatibility, bone marrow mesenchymal stem cells (BMSCs) adhesion, proliferation, osteogenic differentiation and fracture fixation effect of these strapping bands. The results showed that the tensile strength and yield force of the strapping bands increased with the increase of the content of PLLA. The addition of PLLA could significantly improve the mechanical strength in the early stage and accelerate the degradation rate of the strapping band. PCL/PLLA (80/20) strapping band had no significant cytotoxicity toward rBMSCs and could promote osteogenic differentiation of rBMSCs. The strapping band could ensure femoral fracture healing of beagles in 3 months and didn't cause damage to the surrounding tissues and main organs. This study will provide some new insights into the biodegradable products of PCL/PLLA blends for internal fixation of fracture. We produced novel degradable PCL/PLLA strapping bands with different mass ratios by injection molding. We tested the biological safety of the prepared internal fixation strapping bands for fracture, such as cell experiment in vitro and animal experiment, and studied the degradation behavior in vitro. The strapping bands could ensure femoral fracture healing of beagles. This study will provide some new insights into the biodegradable products of PCL/PLLA blends for internal fixation of fracture. A Immunofluorescence staining of rBMSCs (live cells: green; dead cells: red). B Young's modulus change curve during strapping bands degradation. C The implantation process of strapping bands. D Micro-CT images of the beagle's fracture recovery after the operation.
Collapse
Affiliation(s)
- Baoyan Jin
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
- Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Chongjing Zhang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zeyuan Zhong
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zichen Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhenhua Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
| | - Min Zhu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China.
| | - Baoqing Yu
- Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai, China.
| |
Collapse
|
9
|
Cotrim M, Oréfice R. Tailoring polycaprolactone/silk electrospun nanofiber yarns by varying compositional and processing parameters. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04735-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
10
|
Liu Z, Jiang X, Wang K, Zhou Y, Li T, Gao J, Wang L. Preparation of fish decalcified bone matrix and its bone repair effect in rats. Front Bioeng Biotechnol 2023; 11:1134992. [PMID: 36860886 PMCID: PMC9968849 DOI: 10.3389/fbioe.2023.1134992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Decalcified bone matrix has great potential and application prospects in the repair of bone defects due to its good biocompatibility and osteogenic activity. In order to verify whether fish decalcified bone matrix (FDBM) has similar structure and efficacy, this study used the principle of HCl decalcification to prepare the FDBM by using fresh halibut bone as the raw material, and then degreasing, decalcifying, dehydrating and freeze-drying it. Its physicochemical properties were analyzed by scanning electron microscopy and other methods, and then its biocompatibility was tested by in vitro and in vivo experiments. At the same time, an animal model of femoral defect in rats was established, and commercially available bovine decalcified bone matrix (BDBM) was used as the control group, and the area of femoral defect in rats was filled with the two materials respectively. The changes in the implant material and the repair of the defect area were observed by various aspects such as imaging and histology, and its osteoinductive repair capacity and degradation properties were studied. The experiments showed that the FDBM is a form of biomaterial with high bone repair capacity and lower economic cost than other related materials such as bovine decalcified bone matrix. FDBM is simpler to extract and the raw materials are more abundant, which can greatly improve the utilization of marine resources. Our results show that FDBM not only has a good repair effect on bone defects, but also has good physicochemical properties, biosafety and cell adhesion, and is a promising medical biomaterial for the treatment of bone defects, which can basically meet the clinical requirements for bone tissue repair engineering materials.
Collapse
Affiliation(s)
- Zichao Liu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Xiaorui Jiang
- Department of Hand and foot Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Kai Wang
- Department of Hand and foot Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yongshun Zhou
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Tingting Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Jianfeng Gao
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China,*Correspondence: Jianfeng Gao, ; Lei Wang,
| | - Lei Wang
- The Affiliated Hospital of Weifang Medical University, Yantai, China,*Correspondence: Jianfeng Gao, ; Lei Wang,
| |
Collapse
|
11
|
Amorim LFA, Fangueiro R, Gouveia IC. Novel functional material incorporating flexirubin‐type pigment in polyvinyl alcohol_kefiran/polycaprolactone nanofibers. J Appl Polym Sci 2022. [DOI: 10.1002/app.53208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lúcia F. A. Amorim
- FibEnTech Research Unit Faculty of Engineering University of Beira Interior Covilhã Portugal
| | - Raul Fangueiro
- Centre for Textile Science and Technology (2C2T) University of Minho Guimarães Portugal
| | - Isabel C. Gouveia
- FibEnTech Research Unit Faculty of Engineering University of Beira Interior Covilhã Portugal
| |
Collapse
|
12
|
Research on Polycaprolactone-Gelatin Composite Scaffolds Carrying Nerve Growth Factor for the Repair of Spinal Cord Injury. DISEASE MARKERS 2022; 2022:3880687. [PMID: 36212178 PMCID: PMC9536995 DOI: 10.1155/2022/3880687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
Objective This study was to investigate the mechanism of action of polycaprolactone/gelatin (PCL/GE) composite fiber scaffold with nerve growth factor (NGF) in the recovery of spinal cord injury (SCI). Methods Sixty female Sprague-Dawley (SD) rats were randomly assigned to the negative control group, the positive control group, the PCL/GE scaffold group, and the collagen-binding structural domain nerve growth factor (CBD-NGF)/PCL/GE scaffold group, with 15 rats in each group. Spinal cord transection was used to establish SCI models in rats. The negative control group received sham surgery, while the other three groups were given spinal cord transection at the tenth thoracic vertebra (T10) segment. The rats in the PCL/GE scaffold group were implanted with a 4 mm PCL/GE composite fiber scaffold, and those in the CBD-NGF/PCL/GE scaffold group were implanted with a CBD-NGF/PCL/GE composite fiber scaffold. The Basso–Beattie–Bresnahan (BBB) locomotor rating scale was used to evaluate the locomotor ability of the hind limbs of the rats, and the amplitude and latency of motor evoked potentials (MEP) were recorded by neurophysiological testing at 12 w postoperatively. The levels of growth-associated protein 43 (GAP43) and neurofilament protein 200 (NF200) in the spinal cord tissue of the injury site were determined using Western Blot at 12 w after surgery. Spinal cord tissues of 2 cm within the injury site, the thoracic segment above the injury site, and the lumbar segment below the injury site were collected from the measurement of axonal transport using fluorescent retrograde tracer fluorogold, and the integrated absorbance (IA) values of FC-positive cells were calculated. Results After treatment, the negative control rats showed normal locomotion function of the hind limb with the highest BBB scores, while the positive control rats had the lowest BBB scores and showed paraplegia. The scaffold groups exhibited better locomotion function of the hind limb and higher BBB scores than the positive controls, with greater improvement observed in the CBD-NGF/PCL/GE scaffold group (P < 0.05). Compared with the positive controls, the PCL/GE scaffold group and CBD-NGF/PCL/GE scaffold group exhibited significantly shorter latency and increased amplitude of MEP, with more significant changes observed in the CBD-NGF/PCL/GE scaffold group (P < 0.05). Compared with the positive control group, the GAP43 and NF200 levels of spinal cord tissue were significantly elevated in both the PCL/GE scaffold group and the CBD-NGF/PCL/GE scaffold group, and the changes were more pronounced in the CBD-NGF/PCL/GE scaffold group (P < 0.05). The differences in the IA values of FC-positive cells in the spinal cord tissue of the lumbar segment below the injury site among the four groups did not come up to the statistical standard (P > 0.05). Compared with the positive control group, the FC-positive cell IA values of spinal cord tissue in the thoracic segment above the injury area were markedly increased in the PCL/GE scaffold group and the CBD-NGF/PCL/GE scaffold group, and the alterations were more significant in the CBD-NGF/PCL/GE scaffold group (P < 0.05). Conclusion PCL/GE composite fiber scaffold with NGF significantly improves motor and neurological functions in the hind limbs of SCI rats and promotes the recovery of axonal transport, and the mechanism may be associated with the upregulation of GAP43 and NF200 levels in spinal cord injury site tissues.
Collapse
|
13
|
Schmitt PR, Dwyer KD, Coulombe KLK. Current Applications of Polycaprolactone as a Scaffold Material for Heart Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:2461-2480. [PMID: 35623101 DOI: 10.1021/acsabm.2c00174] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite numerous advances in treatments for cardiovascular disease, heart failure (HF) remains the leading cause of death worldwide. A significant factor contributing to the progression of cardiovascular diseases into HF is the loss of functioning cardiomyocytes. The recent growth in the field of cardiac tissue engineering has the potential to not only reduce the downstream effects of injured tissues on heart function and longevity but also re-engineer cardiac function through regeneration of contractile tissue. One leading strategy to accomplish this is via a cellularized patch that can be surgically implanted onto a diseased heart. A key area of this field is the use of tissue scaffolds to recapitulate the mechanical and structural environment of the native heart and thus promote engineered myocardium contractility and function. While the strong mechanical properties and anisotropic structural organization of the native heart can be largely attributed to a robust extracellular matrix, similar strength and organization has proven to be difficult to achieve in cultured tissues. Polycaprolactone (PCL) is an emerging contender to fill these gaps in fabricating scaffolds that mimic the mechanics and structure of the native heart. In the field of cardiovascular engineering, PCL has recently begun to be studied as a scaffold for regenerating the myocardium due to its facile fabrication, desirable mechanical, chemical, and biocompatible properties, and perhaps most importantly, biodegradability, which make it suitable for regenerating and re-engineering function to the heart after disease or injury. This review focuses on the application of PCL as a scaffold specifically in myocardium repair and regeneration and outlines current fabrication approaches, properties, and possibilities of PCL incorporation into engineered myocardium, as well as provides suggestions for future directions and a roadmap toward clinical translation of this technology.
Collapse
Affiliation(s)
- Phillip R Schmitt
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Kiera D Dwyer
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
14
|
Chen T, Jiang H, Li X, Zhang D, Zhu Y, Chen X, Yang H, Shen F, Xia H, Zheng J, Xie K. Proliferation and differentiation study of melatonin functionalized polycaprolactone/gelatin electrospun fibrous scaffolds for nerve tissue engineering. Int J Biol Macromol 2022; 197:103-110. [PMID: 34968534 DOI: 10.1016/j.ijbiomac.2021.12.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/03/2021] [Accepted: 12/12/2021] [Indexed: 12/30/2022]
Abstract
Melatonin (MLT), a pineal neurohormone with multiple neuroprotective, is often used for peripheral nerve recovery and regenerated nerve proliferation. In this study, Polycaprolactone/Gelatin (PG) fibrous electrospun scaffolds with various percentages of MLT (0, 1, 2, and 4%wt) were fabricated for nerve cell growth, the effects of different concentrations of MLT within PG fibers (PG, PGMLT1, PGMLT2, and PGMLT4) on the proliferation and differentiation for PC12 cells were quantitatively evaluated. The microstructures and morphologies of these scaffolds were analyzed by FE-SEM and digital camera. Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS), and Water Contact Angle (WCA) were used to study the composition, ratio and properties of MLT functionalized PG scaffolds. MTT and CLSM analysis showed that appropriate amount of MLT was beneficial to the proliferation of PC12 cell. MLT can also promote cell differentiation, neurite germination, the expression levels of MAP2 mRNA and protein were dramatically increased on the composite scaffolds with the increase of MLT content, moderate addition of MLT (PGMLT2, 2%) had a prominent enhancement for neurite length. This work would provide a more comprehensive reference for further researches on MLT functionalized composite scaffolds and suggest that high-performance PGMLT fibrous scaffolds could be a promising alternative for nerve repair.
Collapse
Affiliation(s)
- Tingkuo Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Haiming Jiang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiang Li
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Dao Zhang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Yibin Zhu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Xueliu Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Han Yang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Fangcheng Shen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Hongyan Xia
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China.
| | - Junxia Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Kang Xie
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
15
|
Conductive polycaprolactone/gelatin/polyaniline nanofibres as functional scaffolds for cardiac tissue regeneration. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Liu M, Wang R, Liu J, Zhang W, Liu Z, Lou X, Nie H, Wang H, Mo X, Abd-Elhamid AI, Zheng R, Wu J. Incorporation of magnesium oxide nanoparticles into electrospun membranes improves pro-angiogenic activity and promotes diabetic wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112609. [DOI: 10.1016/j.msec.2021.112609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 01/09/2023]
|
17
|
Soares GODN, Lima FA, Goulart GAC, Oréfice RL. Physicochemical characterization of the gelatin/polycaprolactone nanofibers loaded with diclofenac potassium for topical use aiming potential anti-inflammatory action. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1962875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Flávia Alves Lima
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gisele Assis Castro Goulart
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Lambert Oréfice
- Department of Metallurgical, Materials and Mining Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
18
|
Hemalatha T, Aarthy M, Pandurangan S, Kamini NR, Ayyadurai N. A deep dive into the darning effects of biomaterials in infarct myocardium: current advances and future perspectives. Heart Fail Rev 2021; 27:1443-1467. [PMID: 34342769 DOI: 10.1007/s10741-021-10144-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 12/21/2022]
Abstract
Myocardial infarction (MI) occurs due to the obstruction of coronary arteries, a major crux that restricts blood flow and thereby oxygen to the distal part of the myocardium, leading to loss of cardiomyocytes and eventually, if left untreated, leads to heart failure. MI, a potent cardiovascular disorder, requires intense therapeutic interventions and thereby presents towering challenges. Despite the concerted efforts, the treatment strategies for MI are still demanding, which has paved the way for the genesis of biomaterial applications. Biomaterials exhibit immense potentials for cardiac repair and regeneration, wherein they act as extracellular matrix replacing scaffolds or as delivery vehicles for stem cells, protein, plasmids, etc. This review concentrates on natural, synthetic, and hybrid biomaterials; their function; and interaction with the body, mechanisms of repair by which they are able to improve cardiac function in a MI milieu. We also provide focus on future perspectives that need attention. The cognizance provided by the research results certainly indicates that biomaterials could revolutionize the treatment paradigms for MI with a positive impact on clinical translation.
Collapse
Affiliation(s)
- Thiagarajan Hemalatha
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Mayilvahanan Aarthy
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Suryalakshmi Pandurangan
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Numbi Ramudu Kamini
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India.
| |
Collapse
|
19
|
Behtouei E, Zandi M, Askari F, Daemi H, Zamanlui S, Arabsorkhi‐Mishabi A, Pezeshki‐Modaress M. Bead‐free and tough electrospun
PCL
/gelatin/
PGS
ternary nanofibrous scaffolds for tissue engineering application. J Appl Polym Sci 2021. [DOI: 10.1002/app.51471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ebrahim Behtouei
- Department of Biomaterials Iran Polymer and Petrochemical Institute Tehran Iran
| | - Mojgan Zandi
- Department of Biomaterials Iran Polymer and Petrochemical Institute Tehran Iran
| | - Fahimeh Askari
- Department of Polymer Science Iran Polymer and Petrochemical Institute Tehran Iran
| | - Hamed Daemi
- Department of Cell Engineering, Stem Cells and Developmental Biology, Cell Science Research Center ACECR, Royan Institute Tehran Iran
| | - Soheila Zamanlui
- Stem Cell and Cell Therapy Research Center, Tissue Engineering and Regenerative Medicine Institute, Tehran, Central Branch Islamic Azad University Tehran Iran
| | | | | |
Collapse
|
20
|
Pushp P, Bhaskar R, Kelkar S, Sharma N, Pathak D, Gupta MK. Plasticized poly(vinylalcohol) and poly(vinylpyrrolidone) based patches with tunable mechanical properties for cardiac tissue engineering applications. Biotechnol Bioeng 2021; 118:2312-2325. [PMID: 33675237 DOI: 10.1002/bit.27743] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/31/2020] [Accepted: 02/25/2021] [Indexed: 12/20/2022]
Abstract
Polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) are the two most investigated biopolymers for various tissue engineering applications. However, their poor tensile strength renders them unsuitable for cardiac tissue engineering (CTE). In this study, we developed and evaluated PVA-PVP-based patches, plasticized with glycerol or propylene glycol (0.1%-0.4%; v:v), for their application in CTE. The cardiac patches were evaluated for their physico-chemical (weight, thickness, folding endurance, FT-IR, and swelling behavior) and mechanical properties. The optimized patches were characterized for their ability to support in vitro attachment, viability, proliferation, and beating behavior of neonatal mouse cardiomyocytes (CMs). In vivo evaluation of the cardiac patches was done under the subcutaneous skin pouch and heart of rat models. Results showed that the optimized molar ratio of PVA:PVP with plasticizers (0.3%; v-v) resulted in cardiac patches, which were dry at room temperature and had desirable folding endurance of at least 300, a tensile strength of 6-23 MPa and, percentage elongation at break of more than 250%. Upon contact with phosphate-buffered saline, these PVA-PVP patches formed hydrogel patches having the tensile strength of 1.3-3.0 MPa. The patches supported the attachment, viability, and proliferation of primary neonatal mouse CMs and were nonirritant and noncorrosive to cardiac cells. In vivo transplantation of cardiac patches into a subcutaneous pouch and on the heart of rat models revealed them to be biodegradable, biocompatible, and safe for use in CTE applications.
Collapse
Affiliation(s)
- Pallavi Pushp
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
- Department of Biotechnology, Institute of Engineering and Technology, Bundelkhand University, Jhansi, Uttar Pradesh, India
| | - Rakesh Bhaskar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Samruddhi Kelkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Science, Sher-e-Kashmir University of Agriculture Science and Technology of Jammu, Jammu, India
| | - Devendra Pathak
- Department of Veterinary Anatomy, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| |
Collapse
|
21
|
Liu M, Wang X, Li H, Xia C, Liu Z, Liu J, Yin A, Lou X, Wang H, Mo X, Wu J. Magnesium oxide-incorporated electrospun membranes inhibit bacterial infections and promote the healing process of infected wounds. J Mater Chem B 2021; 9:3727-3744. [PMID: 33904568 DOI: 10.1039/d1tb00217a] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacterial infections cause severe secondary damage to wounds and hinder wound healing processes. We prepared magnesium oxide (MgO) nanoparticle-incorporated nanofibrous membranes by electrospinning and investigated their potential for wound dressing and fighting bacterial infection. MgO-Incorporated membranes possessed good elasticity and flexibility similar to native skin tissue and were hydrophilic, ensuring comfortable contact with wound beds. The cytocompatibility of membranes was dependent on the amounts of incorporated MgO nanoparticles: lower amounts promoted while higher amounts suppressed the proliferation of fibroblasts, endothelial cells, and macrophages. The antibacterial capacity of membranes was proportional to the amounts of incorporated MgO nanoparticles and they inhibited more than 98% E. coli, 90% S. aureus, and 94% S. epidermidis. MgO nanoparticle-incorporated membranes effectively suppressed bacterial infection and significantly promoted the healing processes of infected full-thickness wounds in a rat model. Subcutaneous implantation demonstrated that the incorporation of MgO nanoparticles into electrospun membranes elevated their bioactivity as evidenced by considerable cell infiltration into their dense nanofiber configuration and enhanced the remodeling of implanted membranes. This study highlights the potential of MgO-incorporated electrospun membranes in preventing bacterial infections of wounds.
Collapse
Affiliation(s)
- Mingyue Liu
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.
| | - Xiaoyu Wang
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.
| | - Haiyan Li
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.
| | - Changlei Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China
| | - Zhengni Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, P. R. China
| | - Jiajie Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, P. R. China
| | - Anlin Yin
- College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Xiangxin Lou
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.
| | - Hongsheng Wang
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.
| | - Xiumei Mo
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.
| | - Jinglei Wu
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China. and Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| |
Collapse
|
22
|
Otto IA, Capendale PE, Garcia JP, de Ruijter M, van Doremalen RFM, Castilho M, Lawson T, Grinstaff MW, Breugem CC, Kon M, Levato R, Malda J. Biofabrication of a shape-stable auricular structure for the reconstruction of ear deformities. Mater Today Bio 2021; 9:100094. [PMID: 33665603 PMCID: PMC7903133 DOI: 10.1016/j.mtbio.2021.100094] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 11/04/2022] Open
Abstract
Bioengineering of the human auricle remains a significant challenge, where the complex and unique shape, the generation of high-quality neocartilage, and shape preservation are key factors. Future regenerative medicine–based approaches for auricular cartilage reconstruction will benefit from a smart combination of various strategies. Our approach to fabrication of an ear-shaped construct uses hybrid bioprinting techniques, a recently identified progenitor cell population, previously validated biomaterials, and a smart scaffold design. Specifically, we generated a 3D-printed polycaprolactone (PCL) scaffold via fused deposition modeling, photocrosslinked a human auricular cartilage progenitor cell–laden gelatin methacryloyl (gelMA) hydrogel within the scaffold, and cultured the bioengineered structure in vitro in chondrogenic media for 30 days. Our results show that the fabrication process maintains the viability and chondrogenic phenotype of the cells, that the compressive properties of the combined PCL and gelMA hybrid auricular constructs are similar to native auricular cartilage, and that biofabricated hybrid auricular structures exhibit excellent shape fidelity compared with the 3D digital model along with deposition of cartilage-like matrix in both peripheral and central areas of the auricular structure. Our strategy affords an anatomically enhanced auricular structure with appropriate mechanical properties, ensures adequate preservation of the auricular shape during a dynamic in vitro culture period, and enables chondrogenically potent progenitor cells to produce abundant cartilage-like matrix throughout the auricular construct. The combination of smart scaffold design with 3D bioprinting and cartilage progenitor cells holds promise for the development of clinically translatable regenerative medicine strategies for auricular reconstruction. First application of human auricular cartilage progenitor cells for bioprinting. Dual-printing of hybrid ear-shaped constructs with excellent shape fidelity over time. Strategy and design ensured adequate deposition of cartilage-like matrix throughout large auricular constructs.
Collapse
Affiliation(s)
- I A Otto
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - P E Capendale
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - J P Garcia
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - M de Ruijter
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - R F M van Doremalen
- Robotics and Mechatronics, Faculty of Electrical Engineering, Mathematics & Computer Science, University of Twente, Enschede, the Netherlands.,Bureau Science & Innovation, Deventer Hospital, Deventer, the Netherlands
| | - M Castilho
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - T Lawson
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, USA
| | - M W Grinstaff
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, USA
| | - C C Breugem
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Center, Emma Children's Hospital, Amsterdam, the Netherlands
| | - M Kon
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - R Levato
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - J Malda
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands.,Department of Clinical Sciences, Faculty of Veterinary Science, Utrecht University, the Netherlands
| |
Collapse
|
23
|
Giuntoli G, Muzio G, Actis C, Ganora A, Calzone S, Bruno M, Ciardelli G, Carmagnola I, Tonda-Turo C. In-vitro Characterization of a Hernia Mesh Featuring a Nanostructured Coating. Front Bioeng Biotechnol 2021; 8:589223. [PMID: 33553112 PMCID: PMC7856147 DOI: 10.3389/fbioe.2020.589223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/16/2020] [Indexed: 11/15/2022] Open
Abstract
Abdominal hernia repair is a frequently performed surgical procedure worldwide. Currently, the use of polypropylene (PP) surgical meshes for the repair of abdominal hernias constitutes the primary surgical approach, being widely accepted as superior to primary suture repair. Surgical meshes act as a reinforcement for the weakened or damaged tissues and support tissue restoration. However, implanted meshes could suffer from poor integration with the surrounding tissues. In this context, the present study describes the preliminary evaluation of a PCL-Gel-based nanofibrous coating as an element to develop a multicomponent hernia mesh device (meshPCL-Gel) that could overcome this limitation thanks to the presence of a nanostructured biomimetic substrate for enhanced cell attachment and new tissue formation. Through the electrospinning technique, a commercial PP hernia mesh was coated with a nanofibrous membrane from a polycaprolactone (PCL) and gelatin (Gel) blend (PCL-Gel). Resulting PCL-Gel nanofibers were homogeneous and defect-free, with an average diameter of 0.15 ± 0.04 μm. The presence of Gel decreased PCL hydrophobicity, so that membranes average water contact angle dropped from 138.9 ± 1.1° (PCL) to 99.9 ± 21.6°, while it slightly influenced mechanical properties, which remained comparable to those of PCL (E = 15.7 ± 2.7 MPa, σ R = 7.7 ± 0.6 ε R = 118.8 ± 13.2%). Hydrolytic and enzymatic degradation was conducted on PCL-Gel up to 28 days, with maximum weight losses around 20 and 40%, respectively. The meshPCL-Gel device was obtained with few simple steps, with no influences on the original mechanical properties of the bare mesh, and good stability under physiological conditions. The biocompatibility of meshPCL-Gel was assessed by culturing BJ human fibroblasts on the device, up to 7 days. After 24 h, cells adhered to the nanofibrous substrate, and after 72 h their metabolic activity was about 70% with respect to control cells. The absence of detectable lactate dehydrogenase in the culture medium indicated that no necrosis induction occurred. Hence, the developed nanostructured coating provided the meshPCL-Gel device with chemical and topographical cues similar to the native extracellular matrix ones, that could be exploited for enhancing the biological response and, consequently, mesh integration, in abdominal wall hernia repair.
Collapse
Affiliation(s)
- Giulia Giuntoli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy
| | - Giuliana Muzio
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Chiara Actis
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | | | | | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy
- Department for Materials and Devices of the National Research Council, Institute for the Chemical and Physical Processes (CNR-IPCF UOS), Pisa, Italy
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy
| | - Chiara Tonda-Turo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy
| |
Collapse
|
24
|
Badia J, Teruel-Juanes R, Echegoyen Y, Torres-Giner S, Lagarón J, Ribes-Greus A. Effect of graphene nanoplatelets on the dielectric permittivity and segmental motions of electrospun poly(ethylene-co-vinyl alcohol) nanofibers. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2020.109404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Farzanfar S, Kouzekonan GS, Mirjani R, Shekarchi B. Vitamin B12-loaded polycaprolacton/gelatin nanofibrous scaffold as potential wound care material. Biomed Eng Lett 2020; 10:547-554. [PMID: 33194247 DOI: 10.1007/s13534-020-00165-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022] Open
Abstract
The current study aimed to develop a potential wound dressing using vitamin B12-loaded polycaprolacton/gelatin nanofibrous scaffold. In order to produce wound dressings, 1000 mcg of vitamin B12 was added to polycaprolacton/gelatin solution and the nanofibrous scaffolds were fabricated through electrospinning method. The obtained scaffolds were studied regarding their hydrophobicity, microstructure, amount of water absorption, water vapor permeability, tensile strength, release test, and cellular proliferation assay. In vitro studies revealed that the incorporation of vitamin b12 into polycaprolacton/gelatin scaffolds could significantly augment L929 cells proliferation at 1 and 3 days post-seeding. However, there was not statistically significant difference between Vitamin B12-containing and polymer-only scaffolds in tensile strength study, surface wettability measurement, water vapor transmission test, the capacity for water absorption, and nanofiber's diameter. Both vitamin containing and free dressings were applied on the full-thickness excisional wound in rat model to compare their healing potential. Our results showed that after 14 days, vitamin B12 containing dressing could significantly enhance wound closure compared to vitamin B12 free scaffolds (92.27 ± 6.84% vs. 64.62 ± 2.96%). Furthermore, histopathological examinations showed significantly greater epithelial thickness in polycaprolacton/gelatin/vitamin B12 group compared to other experimental groups. This preliminary study suggest potential applicability of the proposed dressing to treat skin wounds in clinic.
Collapse
Affiliation(s)
| | | | - Ruhollah Mirjani
- Department of Genetics and Advanced Medical Technology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Babak Shekarchi
- AJA Radiation Sciences Research Center (ARSRC), Tehran, Iran
| |
Collapse
|
26
|
Miele D, Catenacci L, Rossi S, Sandri G, Sorrenti M, Terzi A, Giannini C, Riva F, Ferrari F, Caramella C, Bonferoni MC. Collagen/PCL Nanofibers Electrospun in Green Solvent by DOE Assisted Process. An Insight into Collagen Contribution. MATERIALS 2020; 13:ma13214698. [PMID: 33105584 PMCID: PMC7659940 DOI: 10.3390/ma13214698] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/09/2020] [Accepted: 10/16/2020] [Indexed: 01/15/2023]
Abstract
Collagen, thanks to its biocompatibility, biodegradability and weak antigenicity, is widely used in dressings and scaffolds, also as electrospun fibers. Its mechanical stability can be improved by adding polycaprolactone (PCL), a synthetic and biodegradable aliphatic polyester. While previously collagen/PCL combinations were electrospun in solvents such as hexafluoroisopropanol (HFIP) or trifluoroethanol (TFE), more recently literature describes collagen/PCL nanofibers obtained in acidic aqueous solutions. A good morphology of the fibers represents in this case still a challenge, especially for high collagen/PCL ratios. In this work, thanks to preliminary rheological and physicochemical characterization of the solutions and to a Design of Experiments (DOE) approach on process parameters, regular and dimensionally uniform fibers were obtained with collagen/PCL ratios up to 1:2 and 1:1 w/w. Collagen ratio appeared relevant for mechanical strength of dry and hydrated fibers. WAXS and FTIR analysis showed that collagen denaturation is related both to the medium and to the electrospinning process. After one week in aqueous environment, collagen release was complete and a concentration dependent stimulatory effect on fibroblast growth was observed, suggesting the fiber suitability for wound healing. The positive effect of collagen on mechanical properties and on fibroblast biocompatibility was confirmed by a direct comparison of nanofiber performance after collagen substitution with gelatin.
Collapse
Affiliation(s)
- Dalila Miele
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
| | - Laura Catenacci
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
| | - Alberta Terzi
- Institute of Crystallography, CNR-IC, Via Amendola 122/O, 70126 Bari, Italy; (A.T.); (C.G.)
| | - Cinzia Giannini
- Institute of Crystallography, CNR-IC, Via Amendola 122/O, 70126 Bari, Italy; (A.T.); (C.G.)
| | - Federica Riva
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, via Forlanini 2, 27100 Pavia, Italy;
| | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
| | - Carla Caramella
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
| | - Maria Cristina Bonferoni
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
- Correspondence:
| |
Collapse
|
27
|
Electrospun Fibres with Hyaluronic Acid-Chitosan Nanoparticles Produced by a Portable Device. NANOMATERIALS 2020; 10:nano10102016. [PMID: 33066151 PMCID: PMC7601987 DOI: 10.3390/nano10102016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 12/24/2022]
Abstract
Electrospinning is a versatile technique to produce nano/microscale fibrous scaffolds for tissue engineering and drug delivery applications. This research aims to demonstrate that hyaluronic acid-chitosan (HA-CS) nanoparticles can be electrospun together with polycaprolactone (PCL) and gelatine (Ge) fibres using a portable device to create scaffolds for tissue repair. A range of polymer solutions of PCL-gelatine at different weight/volume concentrations and ratios were electrospun and characterised. Fibre–cell interaction (F11 cells) was evaluated based on cell viability and proliferation and, from here, a few polymer blends were electrospun into random or aligned fibre arrangements. HA-CS nanoparticles were synthesised, characterised, and used to functionalise electrospun fibres (8% w/v at 70 PCL:30 Ge), which were chosen based on cell viability. Different concentrations of HA-CS nanoparticles were tested to determine cytotoxicity. A single dosage (1 × 10−2 mg/mL) was associated with higher cell proliferation compared with the cell-only control. This nanoparticle concentration was embedded into the electrospun fibres as either surface modification or blend. Fibres with blended NPs delivered a higher cell viability than unmodified fibres, while NP-coated fibres resulted in a higher cell proliferation (72 h) than the NP-blended ones. These biocompatible scaffolds allow cell attachment, maintain fibre arrangement, promote directional growth and yield higher cell viability.
Collapse
|
28
|
Xu X, Ren S, Li L, Zhou Y, Peng W, Xu Y. Biodegradable engineered fiber scaffolds fabricated by electrospinning for periodontal tissue regeneration. J Biomater Appl 2020; 36:55-75. [PMID: 32842852 DOI: 10.1177/0885328220952250] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Considering the specificity of periodontium and the unique advantages of electrospinning, this technology has been used to fabricate biodegradable tissue engineering materials for functional periodontal regeneration. For better biomedical quality, a continuous technological progress of electrospinning has been performed. Based on property of materials (natural, synthetic or composites) and additive novel methods (drug loading, surface modification, structure adjustment or 3 D technique), various novel membranes and scaffolds that could not only relief inflammation but also influence the biological behaviors of cells have been fabricated to achieve more effective periodontal regeneration. This review provides an overview of the usage of electrospinning materials in treatments of periodontitis, in order to get to know the existing research situation and find treatment breakthroughs of the periodontal diseases.
Collapse
Affiliation(s)
- Xuanwen Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Shuangshuang Ren
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Yi Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Wenzao Peng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| |
Collapse
|
29
|
Polycaprolactone/Gelatin/Hyaluronic Acid Electrospun Scaffolds to Mimic Glioblastoma Extracellular Matrix. MATERIALS 2020; 13:ma13112661. [PMID: 32545241 PMCID: PMC7321639 DOI: 10.3390/ma13112661] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 01/10/2023]
Abstract
Glioblastoma (GBM), one of the most malignant types of human brain tumor, is resistant to conventional treatments and is associated with poor survival. Since the 3D extracellular matrix (ECM) of GBM microenvironment plays a significant role on the tumor behavior, the engineering of the ECM will help us to get more information on the tumor behavior and to define novel therapeutic strategies. In this study, polycaprolactone (PCL)/gelatin(Gel)/hyaluronic acid(HA) composite scaffolds with aligned and randomly oriented nanofibers were successfully fabricated by electrospinning for mimicking the extracellular matrix of GBM tumor. We investigated the effect of nanotopography and components of fibers on the mechanical, morphological, and hydrophilic properties of electrospun nanofiber as well as their biocompatibility properties. Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) have been used to investigate possible interactions between components. The mean fiber diameter in the nanofiber matrix was increased with the presence of HA at low collector rotation speed. Moreover, the rotational velocity of the collector affected the fiber diameters as well as their homogenous distribution. Water contact angle measurements confirmed that hyaluronic acid-incorporated aligned nanofibers were more hydrophilic than that of random nanofibers. In addition, PCL/Gel/HA nanofibrous scaffold (7.9 MPa) exhibited a significant decrease in tensile strength compared to PCL/Gel nanofibrous mat (19.2 MPa). In-vitro biocompatibilities of nanofiber scaffolds were tested with glioblastoma cells (U251), and the PCL/Gel/HA scaffolds with random nanofiber showed improved cell adhesion and proliferation. On the other hand, PCL/Gel/HA scaffolds with aligned nanofiber were found suitable for enhancing axon growth and elongation supporting intracellular communication. Based on these results, PCL/Gel/HA composite scaffolds are excellent candidates as a biomimetic matrix for GBM and the study of the tumor.
Collapse
|
30
|
Klimek K, Ginalska G. Proteins and Peptides as Important Modifiers of the Polymer Scaffolds for Tissue Engineering Applications-A Review. Polymers (Basel) 2020; 12:E844. [PMID: 32268607 PMCID: PMC7240665 DOI: 10.3390/polym12040844] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022] Open
Abstract
Polymer scaffolds constitute a very interesting strategy for tissue engineering. Even though they are generally non-toxic, in some cases, they may not provide suitable support for cell adhesion, proliferation, and differentiation, which decelerates tissue regeneration. To improve biological properties, scaffolds are frequently enriched with bioactive molecules, inter alia extracellular matrix proteins, adhesive peptides, growth factors, hormones, and cytokines. Although there are many papers describing synthesis and properties of polymer scaffolds enriched with proteins or peptides, few reviews comprehensively summarize these bioactive molecules. Thus, this review presents the current knowledge about the most important proteins and peptides used for modification of polymer scaffolds for tissue engineering. This paper also describes the influence of addition of proteins and peptides on physicochemical, mechanical, and biological properties of polymer scaffolds. Moreover, this article sums up the major applications of some biodegradable natural and synthetic polymer scaffolds modified with proteins and peptides, which have been developed within the past five years.
Collapse
Affiliation(s)
- Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland;
| | | |
Collapse
|