1
|
Kiran NS, Yashaswini C, Singh S, Prajapati BG. Revisiting microbial exopolysaccharides: a biocompatible and sustainable polymeric material for multifaceted biomedical applications. 3 Biotech 2024; 14:95. [PMID: 38449708 PMCID: PMC10912413 DOI: 10.1007/s13205-024-03946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/28/2024] [Indexed: 03/08/2024] Open
Abstract
Microbial exopolysaccharides (EPS) have gained significant attention as versatile biomolecules with multifarious applications across various sectors. This review explores the valorisation of EPS and its potential impact on diverse sectors, including food, pharmaceuticals, cosmetics, and biotechnology. EPS, secreted by microorganisms, possess unique physicochemical properties, such as high molecular weight, water solubility, and biocompatibility, making them attractive for numerous functional roles. Additionally, EPS exhibit significant bioactivity, contributing to their potential use in pharmaceuticals for drug delivery and tissue engineering applications. Moreover, the eco-friendly and sustainable nature of microbial EPS production aligns with the growing demand for environmentally conscious processes. However, challenges still exist in large-scale production, purification, and regulatory approval for commercial use. Advances in bioprocessing and microbial engineering offer promising solutions to overcome these hurdles. Stringent investigations have concluded EPS as novel sources for sustainable applications that are likely to emerge and develop, further reinforcing the significance of these biopolymers in addressing contemporary societal needs and driving innovation in various industrial sectors. Overall, the microbial EPS represents a thriving field with immense potential for meeting diverse industrial demands and advancing sustainable technologies.
Collapse
Affiliation(s)
| | - Chandrashekar Yashaswini
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka India
| | - Sudarshan Singh
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | | |
Collapse
|
2
|
Zanotti A, Baldino L, Reverchon E. Production of Exopolysaccharide-Based Porous Structures for Biomedical Applications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2920. [PMID: 37999274 PMCID: PMC10675614 DOI: 10.3390/nano13222920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
Exopolysaccharides, obtained from microorganisms as fermentation products, are interesting candidates for biomedical applications as scaffolds: they are biocompatible, nontoxic, antimicrobial, antitumor materials. To produce exopolysaccharide-based scaffolds, sol-gel technology could be used, which ends with the removal of the liquid phase from the polymeric network (i.e., the drying step). The aim of this review is to point out the most relevant strengths and weaknesses of the different drying techniques, focusing attention on the production of exopolysaccharide-based porous structures. Among these drying processes, supercritical carbon dioxide-assisted drying is the most promising strategy to obtain dried gels to use in the biomedical field: it produces highly porous and lightweight devices with outstanding surface areas and regular microstructure and nanostructure (i.e., aerogels). As a result of the analysis carried out in the present work, it emerged that supercritical technologies should be further explored and applied to the production of exopolysaccharide-based nanostructured scaffolds. Moving research towards this direction, exopolysaccharide utilization could be intensified and extended to the production of high added-value devices.
Collapse
Affiliation(s)
| | - Lucia Baldino
- Departement of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.Z.); (E.R.)
| | | |
Collapse
|
3
|
Salimon A, Statnik E, Kan Y, Yanushevich O, Tsarev V, Podporin M, Arutyunov S, Skripnichenko P, Galstyan M, Korsunsky A. Comparative study of biomaterial surface modification due to subcritical CO2 and autoclave disinfection treatments. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
|
5
|
Erginkaya Z, Konuray-Altun G. Potential biotherapeutic properties of lactic acid bacteria in foods. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Effect of the Carrier on the Coprecipitation of Curcumin through Supercritical-Assisted Atomization. CHEMENGINEERING 2021. [DOI: 10.3390/chemengineering5030059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this paper, composite systems containing curcumin (CUR) were prepared through supercritical-assisted atomization (SAA), using different carriers. Curcumin is particularly interesting in the pharmaceutical and nutraceutical fields for its antioxidant, antitumoral, and anti-inflammatory properties. However, its therapeutic effect on human health is restricted by its poor water solubility and low dissolution rate, limiting its absorption after its oral administration. To increase the dissolution rate and then the bioavailability of the active compound, CUR was coprecipitated with polymeric, i.e., polyvinylpyrrolidone (PVP) and dextran (DXT), and not polymeric, i.e., hydroxypropyl-β-cyclodextrin (HP-β-CD), carriers. The effects of some operating parameters, namely the concentration of solutes in solution and the active compound/carrier ratio, on the morphology and the particle size distribution of the powders were investigated. Submicrometric particles were produced with all the carriers. Under the best operating conditions, the mean diameters ± standard deviation were equal to 0.69 ± 0.20 μm, 0.40 ± 0.13 μm, and 0.81 ± 0.25 μm for PVP/CUR, DXT/CUR, and HP-β-CD/CUR, respectively. CUR dissolution rates from coprecipitated particles were significantly increased in the case of all the carriers. Therefore, the results are exciting from a pharmaceutical and nutraceutical point of view, to produce supplements containing curcumin, but assuring a high dissolution rate and bioavailability and, consequently, a more effective therapeutic effect.
Collapse
|
7
|
Biopesticide Encapsulation Using Supercritical CO 2: A Comprehensive Review and Potential Applications. Molecules 2021; 26:molecules26134003. [PMID: 34209179 PMCID: PMC8272144 DOI: 10.3390/molecules26134003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/27/2021] [Accepted: 06/28/2021] [Indexed: 01/06/2023] Open
Abstract
As an alternative to synthetic pesticides, natural chemistries from living organisms, are not harmful to nontarget organisms and the environment, can be used as biopesticides, nontarget. However, to reduce the reactivity of active ingredients, avoid undesired reactions, protect from physical stress, and control or lower the release rate, encapsulation processes can be applied to biopesticides. In this review, the advantages and disadvantages of the most common encapsulation processes for biopesticides are discussed. The use of supercritical fluid technology (SFT), mainly carbon dioxide (CO2), to encapsulate biopesticides is highlighted, as they reduce the use of organic solvents, have simpler separation processes, and achieve high-purity particles. This review also presents challenges to be surpassed and the lack of application of SFT for biopesticides in the published literature is discussed to evaluate its potential and prospects.
Collapse
|
8
|
Franco P, Sacco O, Vaiano V, De Marco I. Supercritical Carbon Dioxide-Based Processes in Photocatalytic Applications. Molecules 2021; 26:molecules26092640. [PMID: 33946498 PMCID: PMC8124787 DOI: 10.3390/molecules26092640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Conventional methods generally used to synthesize heterogeneous photocatalysts have some drawbacks, mainly the difficult control/preservation of catalysts’ morphology, size or structure, which strongly affect the photocatalytic activity. Supercritical carbon dioxide (scCO2)-assisted techniques have recently been shown to be a promising approach to overcome these limitations, which are still a challenge. In addition, compared to traditional methods, these innovative techniques permit the synthesis of high-performance photocatalysts by reducing the use of toxic and polluting solvents and, consequently, the environmental impact of long-term catalyst preparation. Specifically, the versatility of scCO2 allows to prepare catalysts with different structures (e.g., nanoparticles or metal-loaded supports) by several supercritical processes for the photocatalytic degradation of various compounds. This is the first updated review on the use of scCO2-assisted techniques for photocatalytic applications. We hope this review provides useful information on different approaches and future perspectives.
Collapse
Affiliation(s)
- Paola Franco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (P.F.); (V.V.)
| | - Olga Sacco
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Vincenzo Vaiano
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (P.F.); (V.V.)
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (P.F.); (V.V.)
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- Correspondence: ; Tel.: +39-089-964066
| |
Collapse
|
9
|
Green and Efficient Processing of Wood with Supercritical CO2: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11093929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Wood processing is a crucial step of wood utilization, but the adding of environmentally hazardous feedstocks and the use of unreasonable technology allow it to harm the environment and human health. Supercritical CO2 (scCO2) is a non-toxic, odorless, and safe solvent, which is widely used in studies and industrial production, but there is no review summarizing wood processing with scCO2. The unique structure and chemical properties of wood combined with scCO2 technology produce positive results. In this paper, wood processing with scCO2 is summarized, including wood impregnation, wood drying, wood thermochemical conversion, and wood extraction. The green and efficient characteristics of wood processing with scCO2 are explained in detail for researchers, engineers, and investors to provide a clean wood processing method. Further study is needed to reduce its energy consumption and commercialize it eventually.
Collapse
|
10
|
Mohd Nadzir M, Nurhayati RW, Idris FN, Nguyen MH. Biomedical Applications of Bacterial Exopolysaccharides: A Review. Polymers (Basel) 2021; 13:530. [PMID: 33578978 PMCID: PMC7916691 DOI: 10.3390/polym13040530] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
Bacterial exopolysaccharides (EPSs) are an essential group of compounds secreted by bacteria. These versatile EPSs are utilized individually or in combination with different materials for a broad range of biomedical field functions. The various applications can be explained by the vast number of derivatives with useful properties that can be controlled. This review offers insight on the current research trend of nine commonly used EPSs, their biosynthesis pathways, their characteristics, and the biomedical applications of these relevant bioproducts.
Collapse
Affiliation(s)
- Masrina Mohd Nadzir
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia;
| | - Retno Wahyu Nurhayati
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia;
- Stem Cell and Tissue Engineering Research Cluster, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta 10430, Indonesia
| | - Farhana Nazira Idris
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia;
| | - Minh Hong Nguyen
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam;
- Bioresource Research Center, Phenikaa University, Hanoi 12116, Vietnam
| |
Collapse
|
11
|
Xiong ZQ, Fan YZ, Song X, Liu XX, Xia YJ, Ai LZ. The second messenger c-di-AMP mediates bacterial exopolysaccharide biosynthesis: a review. Mol Biol Rep 2020; 47:9149-9157. [PMID: 33128205 DOI: 10.1007/s11033-020-05930-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022]
Abstract
Cyclic dimeric adenosine 3'-5'-monophosphate (c-di-AMP) is a recently discovered nucleotide messenger in bacteria. It plays an important role in signaling, transcription, and cell physiology, such as in bacterial growth, potassium transport, fatty acid synthesis, the metabolic balance of cell wall components, and biofilm formation. Exopolysaccharides (EPSs) have distinct physico-chemical properties and diverse bioactivities including antibacterial, hypolipidemic, and antioxidative activities, and they are widely used in the food, pharmaceutical, and cosmetic industries. Although c-di-AMP has been demonstrated to regulate the biosynthesis of bacterial EPSs, only a single c-di-AMP receptor, CabpA, has been identified in EPS synthesis. With the aim of describing current understanding of the regulation of microbial EPSs, this review summarizes c-di-AMP biosynthesis and degradation as well as the mechanism through which c-di-AMP regulates bacterial EPSs.
Collapse
Affiliation(s)
- Zhi-Qiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yi-Zhou Fan
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xin-Xin Liu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yong-Jun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lian-Zhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
12
|
Tabernero A, Cardea S. Microbial Exopolysaccharides as Drug Carriers. Polymers (Basel) 2020; 12:E2142. [PMID: 32961830 PMCID: PMC7570138 DOI: 10.3390/polym12092142] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022] Open
Abstract
Microbial exopolysaccharides are peculiar polymers that are produced by living organisms and protect them against environmental factors. These polymers are industrially recovered from the medium culture after performing a fermentative process. These materials are biocompatible and biodegradable, possessing specific and beneficial properties for biomedical drug delivery systems. They can have antitumor activity, they can produce hydrogels with different characteristics due to their molecular structure and functional groups, and they can even produce nanoparticles via a self-assembly phenomenon. This review studies the potential use of exopolysaccharides as carriers for drug delivery systems, covering their versatility and their vast possibilities to produce particles, fibers, scaffolds, hydrogels, and aerogels with different strategies and methodologies. Moreover, the main properties of exopolysaccharides are explained, providing information to achieve an adequate carrier selection depending on the final application.
Collapse
Affiliation(s)
- Antonio Tabernero
- Department of Chemical Engineering, University of Salamanca, Plaza los Caídos s/n, 37008 Salamanca, Spain;
| | - Stefano Cardea
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
13
|
Zarandona I, Estupiñán M, Pérez C, Alonso-Sáez L, Guerrero P, de la Caba K. Chitosan Films Incorporated with Exopolysaccharides from Deep Seawater Alteromonas Sp. Mar Drugs 2020; 18:md18090447. [PMID: 32867255 PMCID: PMC7551391 DOI: 10.3390/md18090447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 12/26/2022] Open
Abstract
Two Alteromonas sp. strains isolated from deep seawater were grown to promote the production of exopolysaccharides (EPS, E611 and E805), which were incorporated into chitosan solutions to develop films. The combination of the major marine polysaccharides (chitosan and the isolated bacterial EPS) resulted in the formation of homogenous, transparent, colorless films, suggesting good compatibility between the two components of the film-forming formulation. With regards to optical properties, the films showed low values of gloss, in the range of 5-10 GU, indicating the formation of non-glossy and rough surfaces. In addition to the film surface, both showed hydrophobic character, with water contact angles higher than 100 º, regardless of EPS addition. Among the two EPS under analysis, chitosan films with E805 showed better mechanical performance, leading to resistant, flexible, easy to handle films.
Collapse
Affiliation(s)
- Iratxe Zarandona
- BIOMAT research group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain;
| | - Mónica Estupiñán
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, 48395 Sukarrieta, Spain; (M.E.); (C.P.); (L.A.-S.)
| | - Carla Pérez
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, 48395 Sukarrieta, Spain; (M.E.); (C.P.); (L.A.-S.)
| | - Laura Alonso-Sáez
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, 48395 Sukarrieta, Spain; (M.E.); (C.P.); (L.A.-S.)
| | - Pedro Guerrero
- BIOMAT research group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain;
- Correspondence: (P.G.); (K.d.l.C.)
| | - Koro de la Caba
- BIOMAT research group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain;
- Correspondence: (P.G.); (K.d.l.C.)
| |
Collapse
|