1
|
Bakhshandeh B, Sorboni SG, Ranjbar N, Deyhimfar R, Abtahi MS, Izady M, Kazemi N, Noori A, Pennisi CP. Mechanotransduction in tissue engineering: Insights into the interaction of stem cells with biomechanical cues. Exp Cell Res 2023; 431:113766. [PMID: 37678504 DOI: 10.1016/j.yexcr.2023.113766] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Stem cells in their natural microenvironment are exposed to biochemical and biophysical cues emerging from the extracellular matrix (ECM) and neighboring cells. In particular, biomechanical forces modulate stem cell behavior, biological fate, and early developmental processes by sensing, interpreting, and responding through a series of biological processes known as mechanotransduction. Local structural changes in the ECM and mechanics are driven by reciprocal activation of the cell and the ECM itself, as the initial deposition of matrix proteins sequentially affects neighboring cells. Recent studies on stem cell mechanoregulation have provided insight into the importance of biomechanical signals on proper tissue regeneration and function and have shown that precise spatiotemporal control of these signals exists in stem cell niches. Against this background, the aim of this work is to review the current understanding of the molecular basis of mechanotransduction by analyzing how biomechanical forces are converted into biological responses via cellular signaling pathways. In addition, this work provides an overview of advanced strategies using stem cells and biomaterial scaffolds that enable precise spatial and temporal control of mechanical signals and offer great potential for the fields of tissue engineering and regenerative medicine will be presented.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | | | - Nika Ranjbar
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Roham Deyhimfar
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Sadat Abtahi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrnaz Izady
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Navid Kazemi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Atefeh Noori
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Denmark.
| |
Collapse
|
2
|
Liu CT, Yu J, Lin MH, Chang KH, Lin CY, Cheng NC, Wu PI, Huang CW, Zhang PY, Hung MT, Hsiao YS. Biophysical Electrical and Mechanical Stimulations for Promoting Chondrogenesis of Stem Cells on PEDOT:PSS Conductive Polymer Scaffolds. Biomacromolecules 2023; 24:3858-3871. [PMID: 37523499 DOI: 10.1021/acs.biomac.3c00506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The investigation of the effects of electrical and mechanical stimulations on chondrogenesis in tissue engineering scaffolds is essential for realizing successful cartilage repair and regeneration. The aim of articular cartilage tissue engineering is to enhance the function of damaged or diseased articular cartilage, which has limited regenerative capacity. Studies have shown that electrical stimulation (ES) promotes mesenchymal stem cell (MSC) chondrogenesis, while mechanical stimulation (MS) enhances the chondrogenic differentiation capacity of MSCs. Therefore, understanding the impact of these stimuli on chondrogenesis is crucial for researchers to develop more effective tissue engineering strategies for cartilage repair and regeneration. This study focuses on the preparation of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) conductive polymer (CP) scaffolds using the freeze-drying method. The scaffolds were fabricated with varying concentrations (0, 1, 3, and 10 wt %) of (3-glycidyloxypropyl) trimethoxysilane (GOPS) as a crosslinker and an additive to tailor the scaffold properties. To gain a comprehensive understanding of the material characteristics and the phase aggregation phenomenon of PEDOT:PSS scaffolds, the researchers performed theoretical calculations of solubility parameters and surface energies of PSS, PSS-GOPS, and PEDOT polymers, as well as conducted material analyses. Additionally, the study investigated the potential of promoting chondrogenic differentiation of human adipose stem cells by applying external ES or MS on a PEDOT:PSS CP scaffold. Compared to the group without stimulation, the group that underwent stimulation exhibited significantly up-regulated expression levels of chondrogenic characteristic genes, such as SOX9 and COL2A1. Moreover, the immunofluorescence staining images exhibited a more vigorous fluorescence intensity of SOX9 and COL II proteins that was consistent with the trend of the gene expression results. In the MS experiment, the strain excitation exerted on the scaffold was simulated and transformed into stress. The simulated stress response showed that the peak gradually decreased with time and approached a constant value, with the negative value of stress representing the generation of tensile stress. This stress response quantification could aid researchers in determining specific MS conditions for various materials in tissue engineering, and the applied stress conditions could be further optimized. Overall, these findings are significant contributions to future research on cartilage repair and biophysical ES/MS in tissue engineering.
Collapse
Affiliation(s)
- Chun-Ting Liu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Min-Hsuan Lin
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Kai-Hsiang Chang
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Che-Yu Lin
- Institute of Applied Mechanics, College of Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 10002, Taiwan
| | - Po-I Wu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chun-Wei Huang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Pin-Yu Zhang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Min-Tzu Hung
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Yu-Sheng Hsiao
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
3
|
Meng Z, Liu J, Feng Z, Guo S, Wang M, Wang Z, Li Z, Li H, Sui L. N-acetylcysteine regulates dental follicle stem cell osteogenesis and alveolar bone repair via ROS scavenging. Stem Cell Res Ther 2022; 13:466. [PMID: 36076278 PMCID: PMC9461171 DOI: 10.1186/s13287-022-03161-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/28/2022] [Indexed: 12/02/2022] Open
Abstract
Background Dental follicle stem cells (DFSCs) show mesenchymal stem cell properties with the potential for alveolar bone regeneration. Stem cell properties can be impaired by reactive oxygen species (ROS), prompting us to examine the importance of scavenging ROS for stem cell-based tissue regeneration. This study aimed to investigate the effect and mechanism of N-acetylcysteine (NAC), a promising antioxidant, on the properties of DFSCs and DFSC-based alveolar bone regeneration. Methods DFSCs were cultured in media supplemented with different concentrations of NAC (0–10 mM). Cytologic experiments, RNA-sequencing and antioxidant assays were performed in vitro in human DFSCs (hDFSCs). Rat maxillary first molar extraction models were constructed, histological and radiological examinations were performed at day 7 post-surgery to investigate alveolar bone regeneration in tooth extraction sockets after local transplantation of NAC, rat DFSCs (rDFSCs) or NAC-treated rDFSCs. Results 5 mM NAC-treated hDFSCs exhibited better proliferation, less senescent rate, higher stem cell-specific marker and immune-related factor expression with the strongest osteogenic differentiation; other concentrations were also beneficial for maintaining stem cell properties. RNA-sequencing identified 803 differentially expressed genes between hDFSCs with and without 5 mM NAC. “Developmental process (GO:0032502)” was prominent, bioinformatic analysis of 394 involved genes revealed functional and pathway enrichment of ossification and PI3K/AKT pathway, respectively. Furthermore, after NAC treatment, the reduction of ROS levels (ROS, superoxide, hydrogen peroxide), the induction of antioxidant levels (glutathione, catalase, superoxide dismutase), the upregulation of PI3K/AKT signaling (PI3K-p110, PI3K-p85, AKT, phosphorylated-PI3K-p85, phosphorylated-AKT) and the rebound of ROS level upon PI3K/AKT inhibition were showed. Local transplantation of NAC, rDFSCs or NAC-treated rDFSCs was safe and promoted oral socket bone formation after tooth extraction, with application of NAC-treated rDFSCs possessing the best effect. Conclusions The proper concentration of NAC enhances DFSC properties, especially osteogenesis, via PI3K/AKT/ROS signaling, and offers clinical potential for stem cell-based alveolar bone regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03161-y.
Collapse
Affiliation(s)
- Zhaosong Meng
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Jiacheng Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Zhipeng Feng
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Shuling Guo
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Mingzhe Wang
- School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Zheng Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Zhe Li
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Hongjie Li
- School of Stomatology, Tianjin Medical University, Tianjin, China.
| | - Lei Sui
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, 12 Qixiangtai Road, Tianjin, 300070, China.
| |
Collapse
|
4
|
Recent Developments and Current Applications of Organic Nanomaterials in Cartilage Repair. Bioengineering (Basel) 2022; 9:bioengineering9080390. [PMID: 36004915 PMCID: PMC9405275 DOI: 10.3390/bioengineering9080390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Regeneration of cartilage is difficult due to the unique microstructure, unique multizone organization, and avascular nature of cartilage tissue. The development of nanomaterials and nanofabrication technologies holds great promise for the repair and regeneration of injured or degenerated cartilage tissue. Nanomaterials have structural components smaller than 100 nm in at least one dimension and exhibit unique properties due to their nanoscale structure and high specific surface area. The unique properties of nanomaterials include, but are not limited to, increased chemical reactivity, mechanical strength, degradability, and biocompatibility. As an emerging nanomaterial, organic nanocomposites can mimic natural cartilage in terms of microstructure, physicochemical, mechanical, and biological properties. The integration of organic nanomaterials is expected to develop scaffolds that better mimic the extracellular matrix (ECM) environment of cartilage to enhance scaffold-cell interactions and improve the functionality of engineered tissue constructs. Next-generation hydrogel technology and bioprinting can be used not only for healing cartilage injury areas but also for extensive osteoarthritic degenerative changes within the joint. Although more challenges need to be solved before they can be translated into full-fledged commercial products, nano-organic composites remain very promising candidates for the future development of cartilage tissue engineering.
Collapse
|
5
|
Application of Alginate Hydrogels for Next-Generation Articular Cartilage Regeneration. Int J Mol Sci 2022; 23:ijms23031147. [PMID: 35163071 PMCID: PMC8835677 DOI: 10.3390/ijms23031147] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/28/2022] Open
Abstract
The articular cartilage has insufficient intrinsic healing abilities, and articular cartilage injuries often progress to osteoarthritis. Alginate-based scaffolds are attractive biomaterials for cartilage repair and regeneration, allowing for the delivery of cells and therapeutic drugs and gene sequences. In light of the heterogeneity of findings reporting the benefits of using alginate for cartilage regeneration, a better understanding of alginate-based systems is needed in order to improve the approaches aiming to enhance cartilage regeneration with this compound. This review provides an in-depth evaluation of the literature, focusing on the manipulation of alginate as a tool to support the processes involved in cartilage healing in order to demonstrate how such a material, used as a direct compound or combined with cell and gene therapy and with scaffold-guided gene transfer procedures, may assist cartilage regeneration in an optimal manner for future applications in patients.
Collapse
|
6
|
Gu C, Feng J, Waqas A, Deng Y, Zhang Y, Chen W, Long J, Huang S, Chen L. Technological Advances of 3D Scaffold-Based Stem Cell/Exosome Therapy in Tissues and Organs. Front Cell Dev Biol 2021; 9:709204. [PMID: 34568322 PMCID: PMC8458970 DOI: 10.3389/fcell.2021.709204] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, biomaterial scaffolds have been widely applied in the field of tissue engineering and regenerative medicine. Due to different production methods, unique types of three-dimensional (3D) scaffolds can be fabricated to meet the structural characteristics of tissues and organs, and provide suitable 3D microenvironments. The therapeutic effects of stem cell (SC) therapy in tissues and organs are considerable and have attracted the attention of academic researchers worldwide. However, due to the limitations and challenges of SC therapy, exosome therapy can be used for basic research and clinical translation. The review briefly introduces the materials (nature or polymer), shapes (hydrogels, particles and porous solids) and fabrication methods (crosslinking or bioprinting) of 3D scaffolds, and describes the recent progress in SC/exosome therapy with 3D scaffolds over the past 5 years (2016-2020). Normal SC/exosome therapy can improve the structure and function of diseased and damaged tissues and organs. In addition, 3D scaffold-based SC/exosome therapy can significantly improve the structure and function cardiac and neural tissues for the treatment of various refractory diseases. Besides, exosome therapy has the same therapeutic effects as SC therapy but without the disadvantages. Hence, 3D scaffold therapy provides an alternative strategy for treatment of refractory and incurable diseases and has entered a transformation period from basic research into clinical translation as a viable therapeutic option in the future.
Collapse
Affiliation(s)
- Chenyang Gu
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jia Feng
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- School of Medicine, Southeast University, Nanjing, China
| | - Ahmed Waqas
- School of Medicine, Southeast University, Nanjing, China
| | - Yushu Deng
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yifan Zhang
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wanghao Chen
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Long
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shiying Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Li Q, Hou H, Li M, Yu X, Zuo H, Gao J, Zhang M, Li Z, Guo Z. CD73 + Mesenchymal Stem Cells Ameliorate Myocardial Infarction by Promoting Angiogenesis. Front Cell Dev Biol 2021; 9:637239. [PMID: 34055772 PMCID: PMC8152667 DOI: 10.3389/fcell.2021.637239] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/12/2021] [Indexed: 01/16/2023] Open
Abstract
With multipotent differentiation potential and paracrine capacity, mesenchymal stem cells (MSCs) have been widely applied in clinical practice for the treatment of ischemic heart disease. MSCs are a heterogeneous population and the specific population of MSCs may exhibit a selective ability for tissue repair. The aim of our research was to adapt the CD73+ subgroup of adipose derived MSCs (AD-MSCs) for the therapy of myocardial infarction (MI). In this research, AD-MSCs were isolated from adipose tissue surrounding the groin of mice and CD73+ AD-MSCs were sorted using flow cytometry. To investigate the therapeutic effects of CD73+ AD-MSCs, 1.2 × 106 CD73+ AD-MSCs were transplanted into rat model of MI, and CD73– AD-MSCs, normal AD-MSCs transplantation served as control. Our results revealed that CD73+ AD-MSCs played a more effective role in the acceleration function of cardiac recovery by promoting angiogenesis in a rat model of MI compared with mixed AD-MSCs and CD73– AD-MSCs. Moreover, with the expression of CD73 in AD-MSCs, the secretion of VEGF, SDF-1α, and HGF factors could be promoted. It also shows differences between CD73+ and CD73– AD-MSCs when the transcription profiles of these two subgroups were compared, especially in VEGF pathway. These findings raise an attractive outlook on CD73+ AD-MSCs as a dominant subgroup for treating MI-induced myocardial injury. CD73, a surface marker, can be used as a MSCs cell quality control for the recovery of MI by accelerating angiogenesis.
Collapse
Affiliation(s)
- Qiong Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Huifang Hou
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Meng Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Xia Yu
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Hongbo Zuo
- Xinxiang Central Hospital, Xinxiang, China
| | - Jianhui Gao
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Min Zhang
- Department of Hepatobiliary Surgery, Affiliated of Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongjin Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.,Nankai University School of Medicine, Tianjin, China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
8
|
Yu Y, Xu S, Li S, Pan H. Genipin-cross-linked hydrogels based on biomaterials for drug delivery: a review. Biomater Sci 2021; 9:1583-1597. [PMID: 33443245 DOI: 10.1039/d0bm01403f] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Genipin is a naturally occurring nontoxic cross-linker, which has been widely used for drug delivery due to its excellent biocompatibility, admirable biodegradability and stable cross-linked attributes. These advantages led to its extensive application in the fabrication of hydrogels for drug delivery. This review describes the physicochemical characteristics and pharmacological activities of genipin and attempts to elucidate the detailed mechanisms of the cross-linking reaction between genipin and biomaterials. The current article entails a general review of the different biomaterials cross-linked by genipin: chitosan and its derivatives, collagen, gelatin, etc. The genipin-cross-linked hydrogels for various pharmaceutical applications, including ocular drug delivery, buccal drug delivery, oral drug delivery, anti-inflammatory drug delivery, and antibiotic and antifungal drug delivery, are reported. Finally, the future research directions and challenges of genipin-cross-linked hydrogels for pharmaceutical applications are also discussed in this review.
Collapse
Affiliation(s)
- Yibin Yu
- School of Pharmacy, Liaoning University, Shenyang 110036, China. and Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Shuo Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Sanming Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hao Pan
- School of Pharmacy, Liaoning University, Shenyang 110036, China.
| |
Collapse
|