1
|
Vieira de Sousa T, da Silva Reis F, Gomes de Melo WG, Rai AM, Rai M, Lobo AO, Martins Argôlo Neto N, de
Matos JME. In Situ Preparation of Composite Scaffolds Based on Polyurethane and Hydroxyapatite Particles for Bone Tissue Engineering. ACS OMEGA 2025; 10:5478-5488. [PMID: 39989807 PMCID: PMC11840783 DOI: 10.1021/acsomega.4c07673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 02/25/2025]
Abstract
This article details the in situ preparation of composite scaffolds using polyurethane (PU) and HAp (hydroxyapatite), focusing on the unique properties of buriti oil (Mauritia flexuosa L.) applicable to tissue engineering. PU derived from vegetable oils, particularly buriti oil, has shown promise in bone tissue repair due to its rich bioactive compounds. Buriti oil is an excellent candidate for manufacturing these materials as it is an oil rich in bioactive compounds such as carotenoids, tocopherols, and fatty acids, which have antioxidant and anti-inflammatory properties. Furthermore, buriti oil has oleic acid as its principal fatty acid, which has been investigated as an excellent HAp dispersant. This research aimed to synthesize PU scaffolds from a polyol derived from buriti oil and incorporate HAp in different concentrations into the polymeric matrix through in situ polymerization. The chemical composition of the materials obtained, the distribution of hydroxyapatite particles in the polyurethane matrix, and the thermal stability were evaluated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDS), and thermogravimetry (TGA). In addition, to investigate biocompatibility, MTT tests (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium) were conducted using rat bone-marrow-derived mesenchymal stem cells (BMMSC). Characterizations confirm the formation of PU and the presence of HAp in the polymeric matrix, and the materials did not show cytotoxicity.
Collapse
Affiliation(s)
| | | | - Wanderson Gabriel Gomes de Melo
- Integrated
Nucleus of Morphology and Stem Cell Research (NUPCelt), Postgraduate
Program in Technologies Applied to Animals of Regional Interest, Federal University of Piauí, Teresina-Pi 64049-550, Brazil
| | - Aditya M. Rai
- School
of Management Studies, G H Raisoni University, Anjangaon Bari Rd, Badnera, Amravati,
Nimbhora, Amravati 444701, India
| | - Mahendra Rai
- Department
of Biotechnology, Sant Gadge Baba Amravati
University, Amravati 444602, India
| | | | - Napoleão Martins Argôlo Neto
- Integrated
Nucleus of Morphology and Stem Cell Research (NUPCelt), Postgraduate
Program in Technologies Applied to Animals of Regional Interest, Federal University of Piauí, Teresina-Pi 64049-550, Brazil
| | - José Milton E. de
Matos
- Federal
University of Piaui-UFPI, Teresina 64049-550, Brazil
- Laboratory
of Nanostructured Oxides and Polymeric Materials - NanOPol, Chemistry
Department − Nature Science Center (CCN), Federal University of Piauí, Teresina-Pi 64049-550, Brazil
| |
Collapse
|
2
|
Alves Côrtes J, Dornelas J, Duarte F, Messora MR, Mourão CF, Alves G. The Effects of the Addition of Strontium on the Biological Response to Calcium Phosphate Biomaterials: A Systematic Review. APPLIED SCIENCES 2024; 14:7566. [DOI: 10.3390/app14177566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Strontium is known for enhancing bone metabolism, osteoblast proliferation, and tissue regeneration. This systematic review aimed to investigate the biological effects of strontium-doped calcium phosphate biomaterials for bone therapy. A literature search up to May 2024 across Web of Science, PubMed, and Scopus retrieved 759 entries, with 42 articles meeting the selection criteria. The studies provided data on material types, strontium incorporation and release, and in vivo and in vitro evidence. Strontium-doped calcium phosphate biomaterials were produced via chemical synthesis and deposited on various substrates, with characterization techniques confirming successful strontium incorporation. Appropriate concentrations of strontium were non-cytotoxic, stimulating cell proliferation, adhesion, and osteogenic factor production through key signaling pathways like Wnt/β-catenin, BMP-2, Runx2, and ERK. In vivo studies identified novel bone formation, angiogenesis, and inhibition of bone resorption. These findings support the safety and efficacy of strontium-doped calcium phosphates, although the optimal strontium concentration for desired effects is still undetermined. Future research should focus on optimizing strontium release kinetics and elucidating molecular mechanisms to enhance clinical applications of these biomaterials in bone tissue engineering.
Collapse
Affiliation(s)
- Juliana Alves Côrtes
- Post-Graduation Program in Science and Biotechnology, Institute of Biology, Fluminense Federal University, Niterói 24033-900, Brazil
| | - Jessica Dornelas
- Post-Graduation Program in Science and Biotechnology, Institute of Biology, Fluminense Federal University, Niterói 24033-900, Brazil
| | - Fabiola Duarte
- Post-Graduation Program in Science and Biotechnology, Institute of Biology, Fluminense Federal University, Niterói 24033-900, Brazil
| | - Michel Reis Messora
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-904, Brazil
| | - Carlos Fernando Mourão
- Post-Graduation Program in Science and Biotechnology, Institute of Biology, Fluminense Federal University, Niterói 24033-900, Brazil
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-904, Brazil
- Department of Clinical and Translational Research, Tufts University Scholl of Dental Medicine, Boston, MA 02111, USA
- Clinical Research Unit, Antônio Pedro Hospital, Fluminense Federal University, Niterói 24033-900, Brazil
| | - Gutemberg Alves
- Post-Graduation Program in Science and Biotechnology, Institute of Biology, Fluminense Federal University, Niterói 24033-900, Brazil
- Clinical Research Unit, Antônio Pedro Hospital, Fluminense Federal University, Niterói 24033-900, Brazil
| |
Collapse
|
3
|
Narayanan R, Panigrahi M, Rautray TR, Kwon TY. Cathodic Synthesis of Strontium-Substituted Hydroxyapatite Coatings. JOM 2024; 76:4068-4074. [DOI: 10.1007/s11837-024-06663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 05/13/2024] [Indexed: 01/06/2025]
|
4
|
Nunes FC, Santos SIP, Colnago LA, Hammer P, Ferreira JA, Ambrósio CE, Pallone EMJA. Impact of ZrO 2 Content on the Formation of Sr-Enriched Phosphates in Al 2O 3/ZrO 2 Nanocomposites for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1893. [PMID: 38673250 PMCID: PMC11052522 DOI: 10.3390/ma17081893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
This study investigates the profound impact of the ZrO2 inclusion volume on the characteristics of Al2O3/ZrO2 nanocomposites, particularly influencing the formation of calcium phosphates on the surface. This research, aimed at advancing tissue engineering, prepared nanocomposites with 5, 10, and 15 vol% ZrO2, subjecting them to chemical surface treatment for enhanced calcium phosphate deposition sites. Biomimetic coating with Sr-enriched simulated body fluid (SBF) further enhanced the bioactivity of nanocomposites. While the ZrO2 concentration heightened the oxygen availability on nanocomposite surfaces, the quantity of Sr-containing phosphate was comparatively less influenced than the formation of calcium phosphate phases. Notably, the coated nanocomposites exhibited a high cell viability and no toxicity, signifying their potential in bone tissue engineering. Overall, these findings contribute to the development of regenerative biomaterials, holding promise for enhancing bone regeneration therapies.
Collapse
Affiliation(s)
- Fabio Caixeta Nunes
- Postgraduate Programme in Materials Science and Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil;
| | - Sarah Ingrid Pinto Santos
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil; (S.I.P.S.); (C.E.A.)
| | - Luiz Alberto Colnago
- Brazilian Agricultural Research Corporation, EMBRAPA Instrumentation, Rua Quinze de Novembro, 1500/1501, São Carlos 13561-206, SP, Brazil;
| | - Peter Hammer
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-900, SP, Brazil;
| | - Julieta Adriana Ferreira
- Fundação Hermínio Ometto, Fundação Hermínio Ometto (FHO), Av. Dr. Maximiliano Baruto, 500, Araras 13607-339, SP, Brazil;
| | - Carlos Eduardo Ambrósio
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil; (S.I.P.S.); (C.E.A.)
| | - Eliria Maria Jesus Agnolon Pallone
- Postgraduate Programme in Materials Science and Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil;
- Department of Biosystem Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil
| |
Collapse
|
5
|
Olivier F, Drouet C, Marsan O, Sarou-Kanian V, Rekima S, Gautier N, Fayon F, Bonnamy S, Rochet N. Long-Term Fate and Efficacy of a Biomimetic (Sr)-Apatite-Coated Carbon Patch Used for Bone Reconstruction. J Funct Biomater 2023; 14:246. [PMID: 37233356 PMCID: PMC10218964 DOI: 10.3390/jfb14050246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Critical bone defect repair remains a major medical challenge. Developing biocompatible materials with bone-healing ability is a key field of research, and calcium-deficient apatites (CDA) are appealing bioactive candidates. We previously described a method to cover activated carbon cloths (ACC) with CDA or strontium-doped CDA coatings to generate bone patches. Our previous study in rats revealed that apposition of ACC or ACC/CDA patches on cortical bone defects accelerated bone repair in the short term. This study aimed to analyze in the medium term the reconstruction of cortical bone in the presence of ACC/CDA or ACC/10Sr-CDA patches corresponding to 6 at.% of strontium substitution. It also aimed to examine the behavior of these cloths in the medium and long term, in situ and at distance. Our results at day 26 confirm the particular efficacy of strontium-doped patches on bone reconstruction, leading to new thick bone with high bone quality as quantified by Raman microspectroscopy. At 6 months the biocompatibility and complete osteointegration of these carbon cloths and the absence of micrometric carbon debris, either out of the implantation site or within peripheral organs, was confirmed. These results demonstrate that these composite carbon patches are promising biomaterials to accelerate bone reconstruction.
Collapse
Affiliation(s)
- Florian Olivier
- CNRS, Université d’Orléans, ICMN UMR 7374, 45071 Orléans, France;
| | - Christophe Drouet
- CIRIMAT, Université de Toulouse, CNRS/UT3/INP, 31062 Toulouse, France; (C.D.); (O.M.)
| | - Olivier Marsan
- CIRIMAT, Université de Toulouse, CNRS/UT3/INP, 31062 Toulouse, France; (C.D.); (O.M.)
| | - Vincent Sarou-Kanian
- CNRS, Université d’Orléans, CEMHTI UPR 3079, 45071 Orléans, France; (V.S.-K.); (F.F.)
| | - Samah Rekima
- Université Côte d’Azur, INSERM, CNRS, iBV, 06107 Nice, France; (S.R.); (N.G.); (N.R.)
| | - Nadine Gautier
- Université Côte d’Azur, INSERM, CNRS, iBV, 06107 Nice, France; (S.R.); (N.G.); (N.R.)
| | - Franck Fayon
- CNRS, Université d’Orléans, CEMHTI UPR 3079, 45071 Orléans, France; (V.S.-K.); (F.F.)
| | - Sylvie Bonnamy
- CNRS, Université d’Orléans, ICMN UMR 7374, 45071 Orléans, France;
| | - Nathalie Rochet
- Université Côte d’Azur, INSERM, CNRS, iBV, 06107 Nice, France; (S.R.); (N.G.); (N.R.)
| |
Collapse
|
6
|
Budiatin AS, Khotib J, Samirah S, Ardianto C, Gani MA, Putri BRKH, Arofik H, Sadiwa RN, Lestari I, Pratama YA, Rahadiansyah E, Susilo I. Acceleration of Bone Fracture Healing through the Use of Bovine Hydroxyapatite or Calcium Lactate Oral and Implant Bovine Hydroxyapatite-Gelatin on Bone Defect Animal Model. Polymers (Basel) 2022; 14:polym14224812. [PMID: 36432941 PMCID: PMC9698469 DOI: 10.3390/polym14224812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
Bone grafts a commonly used therapeutic technique for the reconstruction and facilitation of bone regeneration due to fractures. BHA-GEL (bovine hydroxyapatite-gelatin) pellet implants have been shown to be able accelerate the process of bone repair by looking at the percentage of new bone, and the contact between the composite and bone. Based on these results, a study was conducted by placing BHA-GEL (9:1) pellet implants in rabbit femoral bone defects, accompanied by 500 mg oral supplement of BHA or calcium lactate to determine the effectiveness of addition supplements. The research model used was a burr hole defect model with a diameter of 4.2 mm in the cortical part of the rabbit femur. On the 7th, 14th and 28th days after treatment, a total of 48 New Zealand rabbits were divided into four groups, namely defect (control), implant, implant + oral BHA, and implant + oral calcium lactate. Animal tests were terminated and evaluated based on X-ray radiology results, Hematoxylin-Eosin staining, vascular endothelial growth Factor (VEGF), osteocalcin, and enzyme-linked immunosorbent assay (ELISA) for bone alkaline phosphatase (BALP) and calcium levels. From this research can be concluded that Oral BHA supplementation with BHA-GEL pellet implants showed faster healing of bone defects compared to oral calcium lactate with BHA-GEL pellet implants.
Collapse
Affiliation(s)
- Aniek Setiya Budiatin
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- Correspondence:
| | - Junaidi Khotib
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Samirah Samirah
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Maria Apriliani Gani
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | | | - Huzaifah Arofik
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Rizka Nanda Sadiwa
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Indri Lestari
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Yusuf Alif Pratama
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Erreza Rahadiansyah
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Airlangga, Surabaya 60131, Indonesia
| | - Imam Susilo
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya 60131, Indonesia
| |
Collapse
|
7
|
Firdaus Hussin MS, Abdullah HZ, Idris MI, Abdul Wahap MA. Extraction of natural hydroxyapatite for biomedical applications—A review. Heliyon 2022; 8:e10356. [PMID: 36082327 PMCID: PMC9445296 DOI: 10.1016/j.heliyon.2022.e10356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/18/2022] [Accepted: 08/15/2022] [Indexed: 01/04/2023] Open
Abstract
Hydroxyapatite has recently played a crucial role in the sustainable development of biomedical applications. Publications related to hydroxyapatite as filler for biopolymers have exhibited an increasing trend due to the expanding research output. Based on the latest publications, the authors reviewed the research trends regarding hydroxyapatite use in biomedical applications. Analysis of the Scopus database using the keywords ‘hydroxyapatite” and “biomedical applications” determined that 1,714 papers were produced between 2012 and 2021. The number of publications related to these keywords more than doubled between 2012 (99) and 2021 (247). The hydrothermal method, solid-state reactions, the sol-gel process, emulsion, micro-emulsion, and mostly chemical precipitation were used to produce synthetic hydroxyapatite. Meanwhile, calcination, alkaline hydrolysis, precipitation, hydrothermal, and a combination of these techniques were used in producing natural hydroxyapatite. Studies in the current literature reveal that shell-based animal sources have been frequently used as hydroxyapatite resources during investigations concerning biomedical applications, while calcination was the extraction method most often applied. Essential trace elements of fish bone, oyster shell, and eggshell were also found in hydroxyapatite powder. Abalone mussel shell and eggshell showed Ca/P ratios closer to the stoichiometric ratio due to the use of effective extraction methods such as manipulating aging time or stirring process parameters. This review should greatly assist by offering scientific insights to support all the recommended future research works, not only that associated with biomedical applications.
Collapse
|
8
|
Pazarçeviren AE, Akbaba S, Evis Z, Tezcaner A. Versatile-in-All-Trades: Multifunctional Boron-Doped Calcium-Deficient Hydroxyapatite Directs Immunomodulation and Regeneration. ACS Biomater Sci Eng 2022; 8:3038-3053. [PMID: 35708275 PMCID: PMC9277590 DOI: 10.1021/acsbiomaterials.2c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Osseointegration of implants depends on several intertwined factors: osteogenesis, angiogenesis, and immunomodulation. Lately, novel reinforcements allowing faster bonding with osseous tissue have been explored intensively. In this study, we hypothesized the use of boron as a major multifunctional ion to confer versatility to calcium-deficient hydroxyapatite (cHA) synthesized by a wet precipitation/microwave reflux method. By synthesis of boron-doped calcium-deficient hydroxyapatite (BcHA), we expected to obtain an osteoimmunomodulatory and regenerative nanoreinforcement. BcHA was found to possess a pure HA phase, a greater surface area (66.41 m2/g, p = 0.028), and cumulative concentrations of Ca (207.87 ± 6.90 mg/mL, p < 0.001) and B (112.70 ± 11.79 mg/mL, p < 0.001) released in comparison to cHA. Osteogenic potential of BcHA was analyzed using human fetal osteoblasts. BcHA resulted in a drastic increase in the ALP activity (1.11 ± 0.11 mmol/gDNA·min, p < 0.001), biomineralization rate, and osteogenic gene expressions compared to cHA. BcHA angiogenic potential was investigated using human umbilical cord vein endothelial cells. Significantly, the highest VEGF-A release (1111.14 ± 87.82 in 4 h, p = 0.009) and angiogenic gene expressions were obtained for BcHA-treated samples. These samples were also observed to induce a more prominent and highly branched tube network. Finally, inflammatory and inflammasome responses toward BcHA were elucidated using human monocyte-derived macrophages differentiated from THP-1s. BcHA exhibited lower CAS-1 release (50.18 ± 5.52 μg/gDNA μg/gDNA) and higher IL-10 release (126.97 ± 15.05 μg/gDNA) than cHA. In addition, BcHA treatment led to increased expression of regenerative genes such as VEGF-A, RANKL, and BMP-2. In vitro results demonstrated that BcHA has tremendous osteogenic, angiogenic, and immunomodulatory potential to be employed as a "versatile-in-all-trades" modality in various bone tissue engineering applications.
Collapse
Affiliation(s)
| | - Sema Akbaba
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Zafer Evis
- Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Ayşen Tezcaner
- Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey.,Center of Excellence in Biomaterials and Tissue Engineering, Ankara 06800, Turkey
| |
Collapse
|
9
|
Electrodeposition of Calcium Phosphate Coatings on Metallic Substrates for Bone Implant Applications: A Review. COATINGS 2022. [DOI: 10.3390/coatings12040539] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This review summaries more than three decades of scientific knowledge on electrodeposition of calcium phosphate coatings. This low-temperature process aims to make the surface of metallic bone implants bioactive within a physiological environment. The first part of the review describes the reaction mechanisms that lead to the synthesis of a bioactive coating. Electrodeposition occurs in three consecutive steps that involve electrochemical reactions, pH modification, and precipitation of the calcium phosphate coating. However, the process also produces undesired dihydrogen bubbles during the deposition because of the reduction of water, the solvent of the electrolyte solution. To prevent the production of large amounts of dihydrogen bubbles, the current density value is limited during deposition. To circumvent this issue, the use of pulsed current has been proposed in recent years to replace the traditional direct current. Thanks to breaking times, dihydrogen bubbles can regularly escape from the surface of the implant, and the deposition of the calcium phosphate coating is less disturbed by the accumulation of bubbles. In addition, the pulsed current has a positive impact on the chemical composition, morphology, roughness, and mechanical properties of the electrodeposited calcium phosphate coating. Finally, the review describes one of the most interesting properties of electrodeposition, i.e., the possibility of adding ionic substituents to the calcium phosphate crystal lattice to improve the biological performance of the bone implant. Several cations and anions are reviewed from the scientific literature with a description of their biological impact on the physiological environment.
Collapse
|
10
|
Olivier F, Sarou-Kanian V, Fayon F, Bonnamy S, Rochet N. In vivo effectiveness of carbonated calcium-deficient hydroxyapatite-coated activated carbon fiber cloth on bone regeneration. J Biomed Mater Res B Appl Biomater 2021; 110:1120-1130. [PMID: 34882958 DOI: 10.1002/jbm.b.34986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/31/2022]
Abstract
We have previously shown that activated carbon fiber cloth (ACC) either uncoated or coated with carbonated calcium-deficient hydroxyapatite (CDA), namely ACC and ACC/CDA, were biocompatible in vitro with human osteoblasts. Here we hypothesized that ACC and ACC/CDA could be used as tissue patches in vivo to accelerate wounded bone healing. In a model of rat femoral defect, we have compared spontaneous cortical bone regeneration with regeneration in the presence of ACC and ACC/CDA patches. At Day 7, 14, and 21, bone formation was evaluated using microcomputed tomography, magnetic resonance imaging, and histological analysis. Our results demonstrate first that these ACC tissues are highly biocompatible in vivo, and second that ACC/CDA patches apposition results in the acceleration of bone reconstruction due to a guiding action of the ACC fibers and an osteogenic effect of the CDA phase. We guess that this approach may represent a valuable strategy to accelerate bone regeneration in human.
Collapse
Affiliation(s)
| | | | - Franck Fayon
- CNRS, Université d'Orléans, CEMHTI UPR 3079, Orléans, France
| | - Sylvie Bonnamy
- CNRS, Université d'Orléans, ICMN UMR 7374, Orléans, France
| | | |
Collapse
|
11
|
Extraction of Sr2+ from aqueous solutions using an asymmetric pulsed current-assisted electrochemical method. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Activated Carbon Fiber Cloth/Biomimetic Apatite: A Dual Drug Delivery System. Int J Mol Sci 2021; 22:ijms222212247. [PMID: 34830128 PMCID: PMC8624510 DOI: 10.3390/ijms222212247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023] Open
Abstract
A biomaterial that is both bioactive and capable of controlled drug release is highly attractive for bone regeneration. In previous works, we demonstrated the possibility of combining activated carbon fiber cloth (ACC) and biomimetic apatite (such as calcium-deficient hydroxyapatite (CDA)) to develop an efficient material for bone regeneration. The aim to use the adsorption properties of an activated carbon/biomimetic apatite composite to synthetize a biomaterial to be used as a controlled drug release system after implantation. The adsorption and desorption of tetracycline and aspirin were first investigated in the ACC and CDA components and then on ACC/CDA composite. The results showed that drug adsorption and release are dependent on the adsorbent material and the drug polarity/hydrophilicity, leading to two distinct modes of drug adsorption and release. Consequently, a double adsorption approach was successfully performed, leading to a multifunctional and innovative ACC-aspirin/CDA-tetracycline implantable biomaterial. In a second step, in vitro tests emphasized a better affinity of the drug (tetracycline or aspirin)-loaded ACC/CDA materials towards human primary osteoblast viability and proliferation. Then, in vivo experiments on a large cortical bone defect in rats was carried out to test biocompatibility and bone regeneration ability. Data clearly highlighted a significant acceleration of bone reconstruction in the presence of the ACC/CDA patch. The ability of the aspirin-loaded ACC/CDA material to release the drug in situ for improving bone healing was also underlined, as a proof of concept. This work highlights the possibility of bone patches with controlled (multi)drug release features being used for bone tissue repair.
Collapse
|