1
|
Zhang Z, Jin M, Yang X, Zhu H, Li H, Yang Q. Particulate platform for pulmonary drug delivery: Recent advances of formulation and fabricating strategies. Int J Pharm 2025; 676:125601. [PMID: 40250501 DOI: 10.1016/j.ijpharm.2025.125601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 04/20/2025]
Abstract
Pulmonary drug delivery for managing respiratory diseases has attained a significant maturity level and holds substantial potential for applications in treating systemic diseases. Advancements in pulmonary delivery techniques have driven the innovative development of dry powder inhalers (DPIs), specifically engineered to optimize the efficacy of pulmonary drug delivery. This review examines recent progress in formulation and manufacturing strategies of inhalable dry powder, focusing on prescription design and fabrication approaches for advanced particulate systems. These include the integration of cutting-edge excipients into conventional formulations, nano-based delivery system, composite particles, and a blend of traditional and next-generation processing techniques, all contributing to enhanced drug delivery efficiency and bioavailability. Additionally, this review discusses the latest advancements in DPI devices. This review aims to provide a clear perspective on emerging inhalable dry powder formulation and processing trends for pulmonary delivery, highlighting the critical role of novel particulate platform in advancing pulmonary drug delivery systems.
Collapse
Affiliation(s)
- Zijia Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengya Jin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinyu Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Heng Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huijie Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
2
|
Fan X, Xu X, Xia S, Cheng Y, Guo X. Inhibition of Polyphenol Oxidase Activity by Mesoporous Silica Nanoparticles and Multiwalled Carbon Nanotubes Modified with Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24185-24192. [PMID: 39485261 DOI: 10.1021/acs.langmuir.4c03850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Polyphenol oxidase (PPO) is the culprit behind the browning of fruits and vegetables. Therefore, how to reduce the thermal deactivation temperature of PPO or use as few safe reagents as possible to inhibit enzymatic browning has practical significance. Mesoporous silica nanoparticles (MSNs) and multiwalled carbon nanotubes (MWCNTs) are stable and have high biosafety. In the present study, efficient PPO inhibitors were developed based on MSNs and MWCNTs. It is found that after modification with a very small amount of dodecyl trimethylammonium bromide (DTAB, ≥60 μg/mL), MSNs can significantly inhibit the activity of PPO although single MSNs and single DTAB show very limited effect on PPO activity. After modification with a very small amount of sodium dodecyl sulfate (SDS, 5.7-9.5 μg/mL), MWCNTs almost completely inactivate PPO. However, SDS@MSN and DTAB@MWCNT cannot decrease PPO activity significantly.
Collapse
Affiliation(s)
- Xiaonan Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, People's Republic of China
| | - Xin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Shuhuai Xia
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Yanrong Cheng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Xia Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| |
Collapse
|
3
|
Kumar M, Jaiswal VD, Pangam DS, Bhatia P, Kulkarni A, Dongre PM. Biophysical study of DC electric field induced stable formation of albumin-gold nanoparticles corona and curcumin binding. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123469. [PMID: 37778178 DOI: 10.1016/j.saa.2023.123469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Targeted drug delivery (TDD) is a method of delivering optimum concentrations of pharmaceutical substances in the tissue to achieve the desired therapeutic effect. Hence, TDD systems are considered as an emerging strategy to deliver the drug at the specific site of the tissues/cells. The nanoparticle-protein corona as a drug delivery vehicle has demonstrated immense benefits including potential theragnostic, improved pharmacodynamics and targeted drug delivery. In the present investigation, efforts have been to establish stable and functionalized Bovine serum albumin-gold nanoparticle (BSA-GNP) corona (conjugates) using a Direct Current (DC) electric field. With the application of DC electric field (DEF) across the BSA-GNP solution, the formation of BSA-GNP corona/conjugate takes place which was characterized using various biophysical techniques such a Dynamic Light Scattering (DLS), UV Visible spectroscopy, Fluorescence spectroscopy, electrophoresis, etc. Furthermore, the DEF engineered BSA-GNP corona was loaded/interacted with curcumin (CUR). The size of the BSA-GNP corona was increased with increasing DC voltage (5-30 V) at constant concentration of BSA. The strong and stable binding of curcumin with BSA-GNP corona was revealed by the techniques used in the investigation; however, binding affinity of CUR was decreased for 30 V DEF exposed BSA-GNP conjugate. The biocompatible experimental data confirms the nontoxic nature of BSA-GNP corona. This investigation adds a new and novel physical method for the preparation of protein-nanoparticle corona for various applications including drug delivery.
Collapse
Affiliation(s)
- Manu Kumar
- Department of Biophysics, University of Mumbai, Vidyanagari, Santacruz, Mumbai 400098, India
| | - Vinod D Jaiswal
- Department of Biophysics, University of Mumbai, Vidyanagari, Santacruz, Mumbai 400098, India
| | - Dhanashri S Pangam
- Department of Biophysics, University of Mumbai, Vidyanagari, Santacruz, Mumbai 400098, India
| | - Pushpinder Bhatia
- Department of Physics, Guru Nanak College, Sion, Mumbai 400037, India
| | - Amol Kulkarni
- Vasantdada Patil Dental College & Hospital, Kavalpur Sangli 416 306, India
| | - P M Dongre
- Pravara Gramin Education Society's ACS Senior College, Satral, Ta. Rahuri. Dist, Ahmednagar 431711, India(1).
| |
Collapse
|
4
|
Rahman ANA, Elkhadrawy BA, Mansour AT, Abdel-Ghany HM, Yassin EMM, Elsayyad A, Alwutayd KM, Ismail SH, Mahboub HH. Alleviating Effect of a Magnetite (Fe 3O 4) Nanogel against Waterborne-Lead-Induced Physiological Disturbances, Histopathological Changes, and Lead Bioaccumulation in African Catfish. Gels 2023; 9:641. [PMID: 37623096 PMCID: PMC10453935 DOI: 10.3390/gels9080641] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Heavy metal toxicity is an important issue owing to its harmful influence on fish. Hence, this study is a pioneer attempt to verify the in vitro and in vivo efficacy of a magnetite (Fe3O4) nanogel (MNG) in mitigating waterborne lead (Pb) toxicity in African catfish. Fish (n = 160) were assigned into four groups for 45 days. The first (control) and second (MNG) groups were exposed to 0 and 1.2 mg L-1 of MNG in water. The third (Pb) and fourth (MNG + Pb) groups were exposed to 0 and 1.2 mg L-1 of MNG in water and 69.30 mg L-1 of Pb. In vitro, the MNG caused a dramatic drop in the Pb level within 120 h. The Pb-exposed group showed the lowest survival (57.5%) among the groups, with substantial elevations in hepato-renal function and lipid peroxide (MDA). Moreover, Pb exposure caused a remarkable decline in the protein-immune parameters and hepatic antioxidants, along with higher Pb residual deposition in muscles and obvious histopathological changes in the liver and kidney. Interestingly, adding aqueous MNG to Pb-exposed fish relieved these alterations and increased survivability. Thus, MNG is a novel antitoxic agent against Pb toxicity to maintain the health of C. gariepinus.
Collapse
Affiliation(s)
- Afaf N. Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Basma Ahmed Elkhadrawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt;
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Hofuf 31982, Saudi Arabia
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Heba M. Abdel-Ghany
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | | | - Asmaa Elsayyad
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Sameh H. Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Giza 12588, Egypt;
| | - Heba H. Mahboub
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
5
|
Muşat V, Crintea (Căpăţână) L, Anghel EM, Stănică N, Atkinson I, Culiţă DC, Baroiu L, Țigău N, Cantaragiu Ceoromila A, Botezatu (Dediu) AV, Carp O. Ag-Decorated Iron Oxides-Silica Magnetic Nanocomposites with Antimicrobial and Photocatalytic Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4452. [PMID: 36558305 PMCID: PMC9783173 DOI: 10.3390/nano12244452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Nanotechnology offers unlimited possibilities for creating effective hybrid materials, which combine functional performance in environment depollution and antimicrobial defense with a lack of toxicity, biocompatibility, biodegradability, and natural availability. This paper presents the silver effect on photocatalytic and antibacterial activities of double-coated iron oxide nanoparticles (NPs), Fe3O4@SiO2/ZnO-Ag. The structural, morphological, and textural information of the, core-shell iron oxides-based superparamagnetic nanoparticles (IOMNPs) decorated with 5% Ag by ultrasound-assisted synthesis were evaluated by scanning electron microscopy with energy dispersive spectroscopy (SEM-EDX), X-ray diffraction, Raman spectroscopy, and Brunauer-Emmett-Teller physisorption measurements. Although two synthesis temperatures of 95 and 80 °C were used for the co-precipitated iron oxide cores, the XRD patterns revealed the formation of a single magnetite, Fe3O4, phase. The sorption-photocatalytic activities under dark and UV irradiation encountered a maximum removal efficiency of the MB (90.47%) for the Fe3O4@SiO2/ZnO-Ag sample with iron oxide core obtained at 80 °C. The rate constant for the second-order kinetics was 0.0711 min-1 for 2 h, and the correlation coefficient R2 closed to unity. Two samples with Ag-decorated hybrid SiO2/ZnO shell and hierarchically interconnected porous structure with large surface area (328.8 and 342.5 m2g-1) exhibited the best disk diffusion antimicrobial activity against four microorganisms, especially gram-positive Staphylococcus aureus.
Collapse
Affiliation(s)
- Viorica Muşat
- Laboratory of Chemical Nanotechnologies-Center of Nanostructures and Functional Materials LNC-CNMF, Dunărea de Jos” University of Galati, 47 Domnească Street, 800008 Galati, Romania
| | - Lenuța Crintea (Căpăţână)
- Laboratory of Chemical Nanotechnologies-Center of Nanostructures and Functional Materials LNC-CNMF, Dunărea de Jos” University of Galati, 47 Domnească Street, 800008 Galati, Romania
| | - Elena-Maria Anghel
- Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independenţei 202, 060021 Bucharest, Romania
| | - Nicolae Stănică
- Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independenţei 202, 060021 Bucharest, Romania
| | - Irina Atkinson
- Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independenţei 202, 060021 Bucharest, Romania
| | - Daniela Cristina Culiţă
- Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independenţei 202, 060021 Bucharest, Romania
| | - Liliana Baroiu
- Faculty of Medicine and Pharmacy, “Dunărea de Jos” University of Galati, 47 Domnească Street, 800008 Galati, Romania
| | - Nicolae Țigău
- Department of Physical-Chemistry and Environment, “Dunărea de Jos” University of Galati, 47 Domnească Street, 800008 Galati, Romania
| | - Alina Cantaragiu Ceoromila
- Department of Applied Sciences, Cross-Border Faculty, “Dunărea de Jos” University of Galati, 47 Domnească Street, 800008 Galati, Romania
| | - Andreea-Veronica Botezatu (Dediu)
- Department of Physical-Chemistry and Environment, “Dunărea de Jos” University of Galati, 47 Domnească Street, 800008 Galati, Romania
| | - Oana Carp
- Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independenţei 202, 060021 Bucharest, Romania
| |
Collapse
|