1
|
Kumar P, Shamim, Muztaba M, Ali T, Bala J, Sidhu HS, Bhatia A. Fused Deposition Modeling 3D-Printed Scaffolds for Bone Tissue Engineering Applications: A Review. Ann Biomed Eng 2024; 52:1184-1194. [PMID: 38418691 DOI: 10.1007/s10439-024-03479-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
The emergence of bone tissue engineering as a trend in regenerative medicine is forcing scientists to create highly functional materials and scaffold construction techniques. Bone tissue engineering uses 3D bio-printed scaffolds that allow and stimulate the attachment and proliferation of osteoinductive cells on their surfaces. Bone grafting is necessary to expedite the patient's condition because the natural healing process of bones is slow. Fused deposition modeling (FDM) is therefore suggested as a technique for the production process due to its simplicity, ability to create intricate components and movable forms, and low running costs. 3D-printed scaffolds can repair bone defects in vivo and in vitro. For 3D printing, various materials including metals, polymers, and ceramics are often employed but polymeric biofilaments are promising candidates for replacing non-biodegradable materials due to their adaptability and environment friendliness. This review paper majorly focuses on the fused deposition modeling approach for the fabrication of 3D scaffolds. In addition, it also provides information on biofilaments used in FDM 3D printing, applications, and commercial aspects of scaffolds in bone tissue engineering.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, India.
| | - Shamim
- IIMT College of Medical Sciences, IIMT University, Ganga Nagar, Meerut, Uttar Pradesh, 250001, India
| | - Mohammad Muztaba
- Department of Pharmacology, Praduman Singh Sikshan Prasikshan Sansthan Pharmacy College, Phutahiya Sansarpur, Basti, Uttar Pradesh, 272001, India
| | - Tarmeen Ali
- Department of Pharmacy, Swami Vivekanand Subharti University, Subhartipuram, Meerut, Uttar Pradesh, 250005, India
| | - Jyoti Bala
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, India
| | - Haramritpal Singh Sidhu
- Department of Mechanical Engineering, Giani Zail Singh Campus College of Engineering & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, India
| |
Collapse
|
2
|
Loyo C, Cordoba A, Palza H, Canales D, Melo F, Vivanco JF, Baier RV, Millán C, Corrales T, Zapata PA. Effect of Gelatin Coating and GO Incorporation on the Properties and Degradability of Electrospun PCL Scaffolds for Bone Tissue Regeneration. Polymers (Basel) 2023; 16:129. [PMID: 38201794 PMCID: PMC10780398 DOI: 10.3390/polym16010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Polymer-based nanocomposites such as polycaprolactone/graphene oxide (PCL/GO) have emerged as alternatives for bone tissue engineering (BTE) applications. The objective of this research was to investigate the impact of a gelatin (Gt) coating on the degradability and different properties of PCL nanofibrous scaffolds fabricated by an electrospinning technique with 1 and 2 wt% GO. Uniform PCL/GO fibers were obtained with a beadless structure and rough surface. PCL/GO scaffolds exhibited an increase in their crystallization temperature (Tc), attributed to GO, which acted as a nucleation agent. Young's modulus increased by 32 and 63% for the incorporation of 1 and 2 wt% GO, respectively, in comparison with neat PCL. A homogeneous Gt coating was further applied to these fibers, with incorporations as high as 24.7 wt%. The introduction of the Gt coating improved the hydrophilicity and degradability of the scaffolds. Bioactivity analysis revealed that the hydroxyapatite crystals were deposited on the Gt-coated scaffolds, which made them different from their uncoated counterparts. Our results showed the synergic effect of Gt and GO in enhancing the multifunctionality of the PCL, in particular the degradability rate, bioactivity, and cell adhesion and proliferation of hGMSC cells, making it an interesting biomaterial for BTE.
Collapse
Affiliation(s)
- Carlos Loyo
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Grupo Polímeros, Santiago 9160000, Chile; (C.L.); (A.C.)
- School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador
| | - Alexander Cordoba
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Grupo Polímeros, Santiago 9160000, Chile; (C.L.); (A.C.)
| | - Humberto Palza
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beauchef 851, Casilla 277, Santiago 8370459, Chile;
| | - Daniel Canales
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Santiago 9160000, Chile;
| | - Francisco Melo
- Departamento de Física y Soft Matter Research Center (SMAT-C), Universidad de Santiago de Chile (USACH), Av. Victor Jara 3493, Santiago 9160000, Chile;
| | - Juan F. Vivanco
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar 2580335, Chile;
| | - Raúl Vallejos Baier
- Facultad Artes Liberales, Universidad Adolfo Ibáñez, Santiago 7911328, Chile
| | - Carola Millán
- Facultad Artes Liberales, Universidad Adolfo Ibáñez, Viña del Mar 2580335, Chile;
| | - Teresa Corrales
- Grupo de Fotoquímica, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros, C.S.I.C., Juan de la Cierva 3, 28006 Madrid, Spain;
| | - Paula A. Zapata
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Grupo Polímeros, Santiago 9160000, Chile; (C.L.); (A.C.)
| |
Collapse
|
3
|
Height-to-Diameter Ratio and Porosity Strongly Influence Bulk Compressive Mechanical Properties of 3D-Printed Polymer Scaffolds. Polymers (Basel) 2022; 14:polym14225017. [PMID: 36433144 PMCID: PMC9693008 DOI: 10.3390/polym14225017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Although the architectural design parameters of 3D-printed polymer-based scaffolds-porosity, height-to-diameter (H/D) ratio and pore size-are significant determinants of their mechanical integrity, their impact has not been explicitly discussed when reporting bulk mechanical properties. Controlled architectures were designed by systematically varying porosity (30-75%, H/D ratio (0.5-2.0) and pore size (0.25-1.0 mm) and fabricated using fused filament fabrication technique. The influence of the three parameters on compressive mechanical properties-apparent elastic modulus Eapp, bulk yield stress σy and yield strain εy-were investigated through a multiple linear regression analysis. H/D ratio and porosity exhibited strong influence on the mechanical behavior, resulting in variations in mean Eapp of 60% and 95%, respectively. σy was comparatively less sensitive to H/D ratio over the range investigated in this study, with 15% variation in mean values. In contrast, porosity resulted in almost 100% variation in mean σy values. Pore size was not a significant factor for mechanical behavior, although it is a critical factor in the biological behavior of the scaffolds. Quantifying the influence of porosity, H/D ratio and pore size on bench-top tested bulk mechanical properties can help optimize the development of bone scaffolds from a biomechanical perspective.
Collapse
|