1
|
Rosa MEP, Rebouças LM, Marques SPD, Silva LMR, Cunha FET, Costa PMS, de Assis DA, Silveira KB, Muniz CR, Trevisan MTS, Pessoa C, Ricardo NMPS. Sodium hyaluronate microcapsules to promote antitumor selectivity of anacardic acid. Int J Biol Macromol 2025; 296:139616. [PMID: 39800027 DOI: 10.1016/j.ijbiomac.2025.139616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/13/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Anacardic acid (AA) is a phenolic lipid extracted from cashew nutshell liquid that has antitumor activity. Given the high hydrophobicity of this compound and aiming to create efficient vehicle for its administration in aqueous systems, the objective of the present work was to develop a microcapsule (MCAA) by spray dryer technique, based on the polysaccharide sodium hyaluronate (SH), containing AA as its core, encapsulated from nanoemulsion. The Encapsulation Efficiency of MCAA presented a value equal to 95.06 ± 1.22 %. In vitro release kinetic study showed a pH-responsive release, with greater release of AA from MCAA at pH 6.8 and 7.4 and almost none at pH 4.5, which prevents its delivery to the cellular lysosome. Tests on zebrafish did not show acute toxicity within 96 h or change in locomotor activity. The IC50 determined in the MTT assay for the formulation presented values of 30.1 and 29.8 μg mL-1 in HCT-116 and HL-60 cells, respectively, and did not present a detectable IC50 in the concentration range tested for non-tumoral L-929 cells. Thus, encapsulation with sodium hyaluronate polysaccharide allowed a reduced toxicity in these cells compared to non-encapsulated AA (IC50 = 0.70 μg mL-1, in L-929), maintaining the inhibition of cancer cell growth. These results suggest adverse effects reduction, making MCAA promising for future applications in antineoplastic therapies.
Collapse
Affiliation(s)
- Marlon E P Rosa
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Campus of Pici, 60440-900 Fortaleza, CE, Brazil.
| | - Louhana M Rebouças
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Campus of Pici, 60440-900 Fortaleza, CE, Brazil; Federal Institute of Education, Science and Technology of Ceará, 60410-426 Fortaleza, CE, Brazil
| | - Samuel P D Marques
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Campus of Pici, 60440-900 Fortaleza, CE, Brazil.
| | - Larissa M R Silva
- Department of Food Engineering, Federal University of Ceará, 60356-000 Fortaleza, CE, Brazil.
| | - Fernando E T Cunha
- Department of Food Engineering, Federal University of Ceará, 60356-000 Fortaleza, CE, Brazil.
| | - Pedro M S Costa
- Laboratory of Experimental Oncology, Center for Research and Drug Development, Federal University of Ceará, 60430-275 Fortaleza, CE, Brazil.
| | - David A de Assis
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Campus of Pici, 60440-900 Fortaleza, CE, Brazil.
| | - Kamilla B Silveira
- Federal Institute of Education, Science and Technology of Sertão Pernambucano, 56316-686 Petrolina, PE, Brazil
| | - Celli R Muniz
- Tropical Agroindustry Embrapa, 60511-110 Fortaleza, CE, Brazil.
| | - Maria T S Trevisan
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Campus of Pici, 60440-900 Fortaleza, CE, Brazil.
| | - Cláudia Pessoa
- Laboratory of Experimental Oncology, Center for Research and Drug Development, Federal University of Ceará, 60430-275 Fortaleza, CE, Brazil.
| | - Nágila M P S Ricardo
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Campus of Pici, 60440-900 Fortaleza, CE, Brazil.
| |
Collapse
|
2
|
Rosiak N, Tykarska E, Miklaszewski A, Pietrzak R, Cielecka-Piontek J. Enhancing the Solubility and Dissolution of Apigenin: Solid Dispersions Approach. Int J Mol Sci 2025; 26:566. [PMID: 39859284 PMCID: PMC11766082 DOI: 10.3390/ijms26020566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Apigenin (APG), a bioactive flavonoid with promising therapeutic potential, suffers from poor water solubility, which limits its bioavailability. To address this, solid dispersions of APG were prepared using ball milling with sodium alginate (SA), Pluronic® F-68 (PLU68), Pluronic® F-127 (PLU127), PVP K30, and PVP VA64 as polymeric excipients. These dispersions were screened for apparent solubility in water and buffers with pH 1.2, 5.5, and 6.8. Based on improved solubility after 60 min, APG-PLU68 and APG-PLU127 dispersions were selected for further study. DSC and FT-IR analysis confirmed molecular interactions between APG and the polymer matrices, contributing to enhanced solubility and dissolution rates. Dissolution rate studies showed that APG-PLU127 achieved 100% solubility at pH 6.8, suggesting its potential use in environments such as the small intestine. Additionally, APG-PLU127 exhibited 84.3% solubility at pH 1.2, indicating potential for solid oral dosage forms, where APG could be absorbed in the acidic conditions of the stomach. The stability study confirmed that storage for one year under ambient conditions does not cause chemical degradation but affects the physical state and solubility of the dispersion. Antioxidant activity was assessed using the ABTS assay. Freshly obtained APG-PLU127 showed 68.1% ± 1.94% activity, whereas APG-PLU127 stored for one year under ambient conditions exhibited 66.2% ± 1.62% (significant difference, p < 0.05). The difference was related to a slight decrease in the solubility of APG in the solid dispersion (T0 = 252 ± 1 μg∙mL-1, T1 = 246 ± 1 μg∙mL-1). The findings demonstrate the superior performance of PLU127 as a carrier for enhancing the solubility, release, and antioxidant activity of APG.
Collapse
Affiliation(s)
- Natalia Rosiak
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| | - Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| | - Andrzej Miklaszewski
- Faculty of Materials Engineering and Technical Physics, Institute of Materials Science and Engineering, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Robert Pietrzak
- Faculty of Chemistry, Adam Mickiewicz University, 8 Uniwersytetu Poznańskiego St., 61-614 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| |
Collapse
|
3
|
Li Y, Zhang Q, Yu N, Peng L, Gao Q, Li L, Zhao J, Yang J. Characterization and Dissolution Mechanism of Low-Molecular-Weight Organic Acids or Inorganic Mesoporous Particle-Based Piperine Amorphous Solid Dispersions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14941-14952. [PMID: 38980061 DOI: 10.1021/acs.langmuir.4c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The objective of the current study is to prepare amorphous solid dispersions (ASDs) containing piperine (PIP) by utilizing organic acid glycyrrhizic acid (GA) and inorganic disordered mesoporous silica 244FP (MSN/244FP) as carriers and to investigate their dissolution mechanism. The physicochemical properties of ASDs were characterized with scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), and differential scanning calorimetry (DSC). Fourier transform infrared spectroscopy (FTIR) and one-dimensional proton nuclear magnetic resonance (1H NMR) studies collectively proved that strong hydrogen-bonding interactions formed between PIP and the carriers in ASDs. Additionally, molecular dynamic (MD) simulation was conducted to simulate and predict the physical stability and dissolution mechanisms of the ASDs. Interestingly, it revealed a significant increase in the dissolution of amorphous PIP in ASDs in in vitro dissolution studies. Rapid dissolution of GA in pH 6.8 medium resulted in the immediate release of PIP drugs into a supersaturated state, acting as a dissolution-control mechanism. This exhibited a high degree of fitting with the pseudo-second-order dynamic model, with an R2 value of 0.9996. Conversely, the silanol groups on the outer surface of the MSN and its porous nanostructures enabled PIP to display a unique two-step drug release curve, indicating a diffusion-controlled mechanism. This curve conformed to the Ritger-Peppas model, with an R2 > 0.9. The results obtained provide a clear evidence of the proposed transition of dissolution mechanism within the same ASD system, induced by changes in the properties of carriers in a solution medium of varying pH levels.
Collapse
Affiliation(s)
- Ye Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan 750004, P. R. China
- Shaanxi Chinese Medicine Institute (Shaanxi Pharmaceutical Information Center), No.16 Biyuan West Road, Xianyang 712000, P. R. China
| | - Qian Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan 750004, P. R. China
| | - Na Yu
- Department of Preparation Center, General Hospital of Ningxia Medical University, No.804 Shengli South Street ,Yinchuan 750004, P. R. China
| | - Liting Peng
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan 750004, P. R. China
| | - Qi Gao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan 750004, P. R. China
| | - Li Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan 750004, P. R. China
| | - Jianjun Zhao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan 750004, P. R. China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan 750004, P. R. China
| |
Collapse
|
4
|
Ergin AD, Üner B, Balcı Ş, Demirbağ Ç, Benetti C, Oltulu Ç. Improving the Bioavailability and Efficacy of Coenzyme Q10 on Alzheimer's Disease Through the Arginine Based Proniosomes. J Pharm Sci 2023; 112:2921-2932. [PMID: 37506768 DOI: 10.1016/j.xphs.2023.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Coenzyme Q10 (CoQ10) is a fat-soluble vitamin-with a benzoquinone-like structure. CoQ10 plays a role in membrane stability, energy conversion, and ATP production. It is also one of the important antioxidants in the body. The bioavailability of exogenous CoQ10 is extremely low due to its poor aqueous solubility and large molecular mass. In this study, mixed proniosomal drug delivery systems have been used to increase solubility and bioavailability of CoQ10. Arginine (semi-essential amino acid) was incorporated in the formulation composition to achieve higher efficacy by boosting nitric oxide presence, endothelial dysfunction, and cellular uptake. Proniosomes were investigated in terms of particle size, polydispersity index, zeta potential, encapsulation efficiency, and process yield, and optimization studies were carried on by utilizing STATISTICA 8.0 software considering dependent factors (carrier amount, drug amount, and surfactant ratio). Optimum proniosome formulation (particle size 187.5 ± 16.35 nm, zeta potential: -44.7 ± 12.8 mV, encapsulation efficiency 99.05±0.30%, and product yield: 90.55%) was evaluated for thermal analysis, in-vitro drug release using microcentrifuge method. In-vitro cytotoxicity studies of proniosomes were performed on intestinal Epithelial Cells (Cellartis®, ChiPSC18) and no cytotoxic effects was seen during the 72 h. Besides, anti Alzheimer effect was investigated on APPSL-GFP lentivirus-infected human neural cells (APPSL-GFP-l-HNC) and Alzheimer biomarkers (p-tau181 and p-tau217). While CoQ10's relative bioavailability was statistically increased by proniosome compared to CoQ10 suspension (p<0.01, Grubb test). PK parameters of proniosome formulation, obtained with non-compartmental modeling, were fitting to the data (R2=0.956±0.026). The study results proved that proniosomal formulation has a high potential drug delivery system for both increasing bioavailability and anti-Alzheimer effect of CoQ10.
Collapse
Affiliation(s)
- Ahmet Doğan Ergin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Trakya University, Edirne, Turkey; Department of Pharmaceutical Nanotechnology, Institute of Health Sciences, Trakya University, Edirne, Turkey; Department of Neuroscience, University of Turin, Turin, Italy.
| | - Burcu Üner
- Department of Pharmaceutical Technology, Faculty of Pharmacy, St. Louis College of Pharmacy, USA
| | - Şencan Balcı
- Department of Pharmaceutical Nanotechnology, Institute of Health Sciences, Trakya University, Edirne, Turkey
| | - Çağlar Demirbağ
- Department of Analytical Chemistry, Faculty of Pharmacy, Trakya University, Edirne, Turkey
| | - Camillo Benetti
- Faculty of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Çağatay Oltulu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Trakya University, Edirne, Turkey
| |
Collapse
|
5
|
Ergin AD, Üner B, Balcı Ş, Demirbağ Ç, Benetti C, Oltulu Ç. Improving the Bioavailability and Efficacy of Coenzyme Q10 on Alzheimer's Disease Through the Arginine Based Proniosomes. J Pharm Sci 2023; 112:2921-2932. [DOI: 10.1016/j.xphs.2023.07.020 doi:10.1016/j.ijpharm.2023.123021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
|
6
|
Ergin AD, Üner B, Balcı Ş, Demirbağ Ç, Benetti C, Oltulu Ç. Improving the Bioavailability and Efficacy of Coenzyme Q10 on Alzheimer's Disease Through the Arginine Based Proniosomes. J Pharm Sci 2023; 112:2921-2932. [DOI: 17.https:/doi.org/10.1016/j.xphs.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
|
7
|
Ning J, Zheng G, Cai Y, Hu Y, Liu Y, Lai E, Chen B, Liu Y, Liang Z, Fu J, Wei M. The Self-Assembly Soluplus Nanomicelles of Nobiletin in Aqueous Medium Based on Solid Dispersion and Their Increased Hepatoprotective Effect on APAP-Induced Acute Liver Injury. Int J Nanomedicine 2023; 18:5119-5140. [PMID: 37705866 PMCID: PMC10496926 DOI: 10.2147/ijn.s426703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
Purpose APAP-induced liver injury (AILI) is a common cause of acute liver failure (ALF). Nobiletin (NOB) is a potential hepatoprotective agent for the treatment of APAP-induced liver injury. However, the poor solubility and low bioavailability of NOB hinders its application. In this study, a novel self-assembly nano-drug delivery system of nobiletin (solid dispersion of NOB, termed as NOB/SD) was developed based on solid dispersion technology to improve the bioavailability and hepatoprotective ability of NOB for APAP-induced liver injury therapy. Methods The optimized NOB/SD system was constructed using the amphiphilic copolymers of Soluplus and PVP/VA 64 via hot melt extrusion technology (HME). NOB/SD was characterized by solubility, physical interaction, drug release behavior, and stability. The bioavailability and hepatoprotective effects of NOB/SD were evaluated in vitro and in vivo. Results NOB/SD maintained NOB in matrix carriers in a stable amorphous state, and self-assembled NOB-loaded nanomicelles in water. Nanostructures based on solid dispersion technology exhibited enhanced solubility, improved release behavior, and promoted cellular uptake and anti-apoptosis in vitro. NOB/SD displayed significantly improved bioavailability in healthy Sprague Dawley (SD) rats in vivo. Furthermore, NOB/SD alleviated the APAP-induced liver injury by improving anti-oxidative stress with reactive oxygen species (ROS) scavenging and nuclear factor erythroid 2-related factor 2 (Nrf2) activation. Conclusion These results suggested that NOB/SD could be considered as a promising hepatoprotective nano-drug delivery system for attenuating APAP-induced acute liver injury with superior bioavailability and efficient hepatoprotection, which might provide an effective strategy for APAP-induced acute liver injury prevention and treatment.
Collapse
Affiliation(s)
- Jinrong Ning
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| | - Guodong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| | - Yunguang Hu
- Medical Department, Guangdong Yifang Pharmaceutical Co., Ltd, Foshan, Guangdong, 528200, People’s Republic of China
| | - Yiqi Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| | - Enping Lai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| | - Baizhong Chen
- Guangdong Xinbaotang Biological Technology Co., Ltd, Jiangmen, Guangdong, 529000, People’s Republic of China
| | - Yujie Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| | - Ziqi Liang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| | - Jijun Fu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| | - Minyan Wei
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| |
Collapse
|
8
|
Vasilev NA, Voronin AP, Surov AO, Perlovich GL. Influence of Co-amorphization on the Physical Stability and Dissolution Performance of an Anthelmintic Drug Flubendazole. Mol Pharm 2023; 20:1657-1669. [PMID: 36732935 DOI: 10.1021/acs.molpharmaceut.2c00873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this work, the co-amorphization approach was applied to flubendazole (FluBZ), resulting in the formation of two novel solid forms of FluBZ with l-phenylalanine (Phe) and l-tryptophan (Trp). A variety of physicochemical techniques have been used to describe new systems, including powder X-ray diffraction, thermal methods, infrared spectroscopy, and scanning electron microscopy. Co-amorphization has been shown to suppress crystallization tendency and considerably increase the shelf-life storage of amorphous flubendazole solid across a wide range of relative humidities. The dissolution behavior of the amorphous forms in biorelevant media at pH = 1.6, pH = 6.5, and 37 °C has been studied in terms of Cmax (maximum FluBZ concentration), Tmax (time to attain peak drug concentration), and AUC (concentration area under the curve during dissolution). At pH = 6.5, a continuous supersaturation and the highest AUC value of all examined systems were observed for the FluBZ-Phe (1:1) system. The phase solubility diagrams revealed that the reason for the better dissolution performance of FluBZ-Phe (1:1) at pH = 6.5 is a complexation between the components in a solution. This work highlights the applicability of co-amorphous systems in improving the physical stability and dissolution performance of drug compounds with poor biopharmaceutical characteristics.
Collapse
Affiliation(s)
- Nikita A Vasilev
- G.A. Krestov Institute of Solution Chemistry RAS, 153045Ivanovo, Russia
| | | | - Artem O Surov
- G.A. Krestov Institute of Solution Chemistry RAS, 153045Ivanovo, Russia
| | | |
Collapse
|
9
|
Co-carrier-based solid dispersion of celecoxib improves dissolution rate and oral bioavailability in rats. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Shafiq A, Madni A, Khan S, Sultana H, Sumaira, Shah H, Khan S, Rehman S, Nawaz M. Core-shell Pluronic F127/chitosan based nanoparticles for effective delivery of methotrexate in the management of rheumatoid arthritis. Int J Biol Macromol 2022; 213:465-477. [PMID: 35661673 DOI: 10.1016/j.ijbiomac.2022.05.192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 12/15/2022]
Abstract
This study was designed to improve oral bioavailability of the methotrexate (MTX) by sustaining its release profile and integration into core-shell polymeric nanoparticles. The self-micellization and ionotropic gelation technique was employed which resulted into spherical shaped nanoparticles (181-417 nm) with encapsulation efficiency of 80.14% to 85.54%. Furthermore, Fourier Transform Infrared Spectroscopy and Differential Scanning Calorimetry analyses were carried out to investigate physicochemical and thermal stability of the produced engineered core shell nanoparticles of the methotrexate. . Entrapment of drug in polymeric core was confirmed by X-ray diffraction analysis. In-vitro sustained release behavior of nanoparticles was observed at pH 6.8 for 48 h while low drug release was observed at pH 1.2 due to pH-responsive nature of Pluronic F127. Acute toxicity study confirmed safety and biocompatible profile of nanoparticles. MTX loaded polymeric nanoparticles ameliorated the pharmacokinetic profile (8 folds greater half-life, 6.26 folds higher AUC0-t and 3.48 folds higher mean residence time). In vivo study conducted in rat model depicted the improved therapeutic efficacy and healing of arthritis through MTX loaded polymeric nanoparticles, preferentially attributable to high accretion of MTX in the inflamed site. In conclusion, MTX loaded polymeric nanoparticles is an attractive drug delivery strategy for an effective management and treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Afifa Shafiq
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Chakdara 18800, Pakistan
| | - Humaira Sultana
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Sumaira
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Hassan Shah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Safiullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Sadia Rehman
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Mehwish Nawaz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
11
|
Pedreiro LN, Boni FI, Cury BSF, Ferreira NN, Gremião MPD. Solid dispersions based on chitosan/hypromellose phthalate blends to modulate pharmaceutical properties of zidovudine. Pharm Dev Technol 2022; 27:615-624. [PMID: 35786299 DOI: 10.1080/10837450.2022.2097258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Zidovudine (AZT) has been widely used alone or in combination with other antiretroviral drugs for the treatment of human immunodeficiency virus. Its erratic oral bioavailability necessitates frequent administration of high doses, resulting in severe side effects. In this study, the design of mucoadhesive solid dispersions (SDs) based on chitosan (CS) and hypromellose phthalate (HP) was rationalized as a potential approach to modulate AZT physicochemical and pharmaceutical properties. SDs were prepared at different drug:polymer ratios, using an eco-friendly technique, which avoids the use of organic solvents. Particles with diameter from 56 to 73 µm and negative zeta potentials (-27 to -32 mV) were successfully prepared, achieving high drug content. Infrared spectroscopy revealed interactions between polymers but no interactions between the polymers and AZT. Calorimetry and X-ray diffraction analyses showed that AZT was amorphized into the SDs. The mucoadhesive properties of SDs were evidenced, and the control of AZT release rates from the matrix was achieved, mainly in acid media. The simple, low-cost and scalable technology proposed for production of SDs as a carrier platform for AZT is an innovative approach, and it proved to be a feasible strategy for modulation the physico-chemical, mucoadhesive and release properties of the drug.
Collapse
Affiliation(s)
- Liliane Neves Pedreiro
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Road Araraquara-Jaú, Km 01, 14801-902, Araraquara, São Paulo, Brazil
| | - Fernanda Isadora Boni
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Road Araraquara-Jaú, Km 01, 14801-902, Araraquara, São Paulo, Brazil
| | - Beatriz Stringhetti Ferreira Cury
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Road Araraquara-Jaú, Km 01, 14801-902, Araraquara, São Paulo, Brazil
| | - Natália Noronha Ferreira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Road Araraquara-Jaú, Km 01, 14801-902, Araraquara, São Paulo, Brazil
| | - Maria Palmira Daflon Gremião
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Road Araraquara-Jaú, Km 01, 14801-902, Araraquara, São Paulo, Brazil
| |
Collapse
|
12
|
Menezes TMF, Campelo MDS, Lima ABN, Câmara Neto JF, Saraiva MM, de Sousa JAC, Gonzaga MLDC, Leal LKAM, Ribeiro MENP, Ricardo NMPS, Soares SDA. Effects of polysaccharides isolated from mushrooms (Lentinus edodes Berk or Agaricus blazei Murill) on the gelation of Pluronic® F127. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Wang Y, Xu S, Xiao Z, Jiang Y, Jiang Q, Li J, He W. Stiripentol Enteric Solid Dispersion-Loaded Effervescent Tablets: Enhanced Dissolution, Stability, and Absorption. AAPS PharmSciTech 2022; 23:141. [PMID: 35538376 DOI: 10.1208/s12249-022-02261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/20/2022] [Indexed: 11/30/2022] Open
Abstract
Due to poor solubility and stability in acid conditions, the gastrointestinal administration of stiripentol (STP) is still a significant challenge. This study aimed to explore the applicability of effervescent tablets compressed from STP-loaded enteric solid dispersions to improve the solubility and stability of the insoluble and acid-labile drug. STP-loaded solid dispersions (STP-SDs) and the effervescent tablets (STP-SD-ETs) were prepared using solvent evaporation and dry granulation technology, respectively, and their formulations were optimized. Then, STP-SDs were characterized regarding solid state, in vitro release, stability, etc. Results showed that enteric amorphous STP-SDs were successfully prepared and significantly improved the solubility and stability of STP. Moreover, compared with STP suspensions, the bioavailability of STP-SD-ETs was as high as 138.71%. Concomitantly, STP-SD-ETs significantly increased the intestinal absorption rate of STP. Overall, the oral preparation encompassing enteric solid dispersion combined with effervescent tablet technology possesses excellent performance in enhancing dissolution, anti-acid hydrolysis stability, and absorption of STP. Our work provides a promising method to improve the delivery of drugs with poor solubility and acid-labile stability.
Collapse
|
14
|
Zhang J, Wang S, Cai H, Feng T, Liu Z, Xu Y, Li J. Hydrophobic ion-pairing assembled liposomal Rhein with efficient loading for acute pancreatitis treatment. J Microencapsul 2021; 38:559-571. [PMID: 34637365 DOI: 10.1080/02652048.2021.1993363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM The present study aimed to develop liposomal Rhein by employing a hydrophobic ion-pairing technique (HIP) for improved pancreatitis therapy. METHODS F127 modified liposomal Rhein (F127-RPC-Lip) was prepared using a two-step process consisting of complexation first, followed by a film-ultrasonic dispersion step. The drug-phospholipid interaction was characterised by FT-IR and P-XRD. Particle size and morphology were investigated using DLS and TEM, respectively. Biodistribution and therapeutic efficacy of F127-RPC-Lip were evaluated in a rat model of acute pancreatitis. RESULTS F127-RPC-Lip achieved efficient drug encapsulation after complexation with lipids through non-covalent interactions and had an average hydrodynamic diameter of about 141 nm. F127-RPC-Lip demonstrated slower drug release (55.90 ± 3.60%, w/w) than Rhein solution (90.27 ± 5.11%) within 24 h. Compared with Rhein, F127-RPC-Lip exhibited prolonged systemic circulation time, superior drug distribution, and attenuated injury in the pancreas of rats post-injection. CONCLUSIONS HIP-assembled liposomes are a promising strategy for Rhein in treating pancreatitis.
Collapse
Affiliation(s)
- Jinjie Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China.,Key Laboratory of Targeting Therapy and Diagnosis of Critical Diseases, Zhengzhou, Henan Province, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan Province, China
| | - Shuaishuai Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China.,Key Laboratory of Targeting Therapy and Diagnosis of Critical Diseases, Zhengzhou, Henan Province, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan Province, China
| | - Huijie Cai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China.,Key Laboratory of Targeting Therapy and Diagnosis of Critical Diseases, Zhengzhou, Henan Province, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan Province, China
| | - Tiange Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China.,Key Laboratory of Targeting Therapy and Diagnosis of Critical Diseases, Zhengzhou, Henan Province, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan Province, China
| | - Zhilei Liu
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China.,BGI College, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yaru Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China.,Key Laboratory of Targeting Therapy and Diagnosis of Critical Diseases, Zhengzhou, Henan Province, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan Province, China
| | - Jianbo Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China.,BGI College, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|