1
|
Liu H, Tian H, Sun C, Wang Q, Zhu H, Yang X, Wang H, Zhang Y. Near-infrared downshifting luminescence of Ca 2LaTaO 6:Nd 3+/Yb 3+/K + phosphors and their applications: solar cells and anti-counterfeiting. Dalton Trans 2025; 54:2055-2068. [PMID: 39688578 DOI: 10.1039/d4dt02748e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
A series of Nd3+/Yb3+ co-doped Ca2LaTaO6 (CLTO) phosphors are synthesized by a high temperature solid phase method. Structural characterization confirms the successful incorporation of Nd3+ and Yb3+ ions into the CLTO host lattice. The photoluminescence excitation (PLE) spectra and photoluminescence (PL) spectra of CLTO:Nd3+ and CLTO:Nd3+/Yb3+ are investigated in detail. Under the excitation of ultraviolet (UV) and visible (VIS) light, the CLTO:Nd3+/Yb3+ phosphor emits broadband near infrared (NIR) luminescence. In particular, the luminescence intensity of the Yb3+ ion is increased through an energy transfer (ET) process from Nd3+ to Yb3+. The luminescence mechanism of the CLTO:Nd3+/Yb3+ sample is analyzed based on the decay lifetime and PL spectra. In addition, the NIR emission intensity of Yb3+ ions is also enhanced by doping K+ ions. The broadband luminescence (850-1050 nm) of the CLTO:Nd3+/Yb3+/K+ phosphor has good application in solar cells and anti-counterfeiting.
Collapse
Affiliation(s)
- Hang Liu
- School of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun 130118, China.
| | - Haozhou Tian
- School of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun 130118, China.
| | - Chunhui Sun
- School of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun 130118, China.
| | - Qiang Wang
- School of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun 130118, China.
| | - Hongqun Zhu
- School of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun 130118, China.
| | - Xuezhong Yang
- School of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun 130118, China.
| | - Haoran Wang
- School of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun 130118, China.
| | - Yuhong Zhang
- School of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun 130118, China.
| |
Collapse
|
2
|
Sun W, Xie S, Liu SF, Hu X, Xing D. Evolving Tumor Characteristics and Smart Nanodrugs for Tumor Immunotherapy. Int J Nanomedicine 2024; 19:3919-3942. [PMID: 38708176 PMCID: PMC11070166 DOI: 10.2147/ijn.s453265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
Typical physiological characteristics of tumors, such as weak acidity, low oxygen content, and upregulation of certain enzymes in the tumor microenvironment (TME), provide survival advantages when exposed to targeted attacks by drugs and responsive nanomedicines. Consequently, cancer treatment has significantly progressed in recent years. However, the evolution and adaptation of tumor characteristics still pose many challenges for current treatment methods. Therefore, efficient and precise cancer treatments require an understanding of the heterogeneity degree of various factors in cancer cells during tumor evolution to exploit the typical TME characteristics and manage the mutation process. The highly heterogeneous tumor and infiltrating stromal cells, immune cells, and extracellular components collectively form a unique TME, which plays a crucial role in tumor malignancy, including proliferation, invasion, metastasis, and immune escape. Therefore, the development of new treatment methods that can adapt to the evolutionary characteristics of tumors has become an intense focus in current cancer treatment research. This paper explores the latest understanding of cancer evolution, focusing on how tumors use new antigens to shape their "new faces"; how immune system cells, such as cytotoxic T cells, regulatory T cells, macrophages, and natural killer cells, help tumors become "invisible", that is, immune escape; whether the diverse cancer-associated fibroblasts provide support and coordination for tumors; and whether it is possible to attack tumors in reverse. This paper discusses the limitations of targeted therapy driven by tumor evolution factors and explores future strategies and the potential of intelligent nanomedicines, including the systematic coordination of tumor evolution factors and adaptive methods, to meet this therapeutic challenge.
Collapse
Affiliation(s)
- Wenshe Sun
- The Affiliated Hospital of Qingdao University, Qingdao, 266071, People’s Republic of China
- Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People’s Republic of China
| | - Shaowei Xie
- Department of Ultrasound, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People’s Republic of China
| | - Shi Feng Liu
- The Affiliated Hospital of Qingdao University, Qingdao, 266071, People’s Republic of China
| | - Xiaokun Hu
- The Affiliated Hospital of Qingdao University, Qingdao, 266071, People’s Republic of China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao, 266071, People’s Republic of China
- Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, People’s Republic of China
| |
Collapse
|
3
|
Abstract
Light-mediated therapeutics, including photodynamic therapy, photothermal therapy and light-triggered drug delivery, have been widely studied due to their high specificity and effective therapy. However, conventional light-mediated therapies usually depend on the activation of light-sensitive molecules with UV or visible light, which have poor penetration in biological tissues. Over the past decade, efforts have been made to engineer nanosystems that can generate luminescence through excitation with near-infrared (NIR) light, ultrasound or X-ray. Certain nanosystems can even carry out light-mediated therapy through chemiluminescence, eliminating the need for external activation. Compared to UV or visible light, these 4 excitation modes penetrate more deeply into biological tissues, triggering light-mediated therapy in deeper tissues. In this review, we systematically report the design and mechanisms of different luminescent nanosystems excited by the 4 excitation sources, methods to enhance the generated luminescence, and recent applications of such nanosystems in deep tissue light-mediated therapeutics.
Collapse
Affiliation(s)
- Chung Yin Tsang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore.
| | - Yong Zhang
- Department of Biomedical Engineering, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
4
|
Heng C, Zheng X, Hui J, Ma X, Fan D. Neodymium and manganese ions co-doped whitlockite for temperature monitoring, photothermal therapy, and bone tissue repair in osteosarcoma. J Colloid Interface Sci 2024; 653:1488-1503. [PMID: 37804617 DOI: 10.1016/j.jcis.2023.09.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Osteosarcoma is one of the most dangerous forms of tumors, leading to death in >90% of patients. The surgical treatment of osteosarcoma results in significant bone defects and risks of tumor recurrence. Using neodymium (Nd) and manganese (Mn) ions co-doped with whitlockite nanoparticle (Nd10%Mn10%WH NPs) and sodium alginate (SA), we designed and synthesized an organic-inorganic composite hydrogel (Nd10%Mn10%WH-SA) that displayed the excellent fluorescence and photothermal properties. Furthermore, the maximum fluorescence emission intensity of Nd10%Mn10%WH-SA at 1062 nm was linear with temperature. The optimal temperature for the treatment of tumors was determined by considering the changes in fluorescence intensity that led to a reduction in tissue damage around the tumors. Nd10%Mn10%WH NPs demonstrated a significant function in promoting human bone marrow mesenchymal stem cells (hBMSCs) proliferation. Furthermore, Nd10%Mn10%WH-SA could almost kill tumors when the photothermal temperature was raised to 50 °C, with a minimal leftover scar after photothermal therapy (PTT). Nd10%Mn10%WH-SA had a better promotion effect on the growth of the new bone. These results suggested that Nd10%Mn10%WH-SA offers a new PTT method for the "integrated treatment and repair" of osteosarcoma.
Collapse
Affiliation(s)
- Chunning Heng
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Xiaoyan Zheng
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China.
| | - Junfeng Hui
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Xiaoxuan Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| |
Collapse
|
5
|
He X, Liu S, Hu X, Huang X, Zhang H, Mao X. Precious metal clusters as fundamental agents in bioimaging usability. Front Chem 2023; 11:1296036. [PMID: 38025077 PMCID: PMC10665568 DOI: 10.3389/fchem.2023.1296036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Fluorescent nanomaterials (NMs) are widely used in imaging techniques in biomedical research. Especially in bioimaging systems, with the rapid development of imaging nanotechnology, precious metal clusters such as Au, Ag, and Cu NMs have emerged with different functional agents for biomedical applications. Compared with traditional fluorescent molecules, precious metal clusters have the advantages of high optical stability, easy regulation of shape and size, and multifunctionalization. In addition, NMs possess strong photoluminescent properties with good photostability, high release rate, and sub-nanometer size. They could be treated as fundamental agents in bioimaging usability. This review summarizes the recent advances in bioimaging utilization, it conveys that metal clusters refer to Au, Ag, and Cu fluorescent clusters and could provide a generalized overview of their full applications. It includes optical property measurement, precious metal clusters in bioimaging systems, and a rare earth element-doped heterogeneous structure illustrated in biomedical imaging with specific examples, that provide new and innovative ideas for fluorescent NMs in the field of bioimaging usability.
Collapse
Affiliation(s)
- Xiaoxiao He
- Department of Medical Engineering, Daping Hospital, Army Medical University, Chongqing, China
| | - Shaojun Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xi Hu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xiongyi Huang
- Department of Medical Engineering, Daping Hospital, Army Medical University, Chongqing, China
| | - Hehua Zhang
- Department of Medical Engineering, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiang Mao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Doan VHM, Vu DD, Mondal S, Vo TMT, Ly CD, Nguyen VT, Park S, Choi J, Nguyen TP, Lee B, Oh J. Yb-Gd Codoped Hydroxyapatite as a Potential Contrast Agent for Tumor-Targeted Biomedical Applications. ACS Biomater Sci Eng 2023; 9:4607-4618. [PMID: 37452737 DOI: 10.1021/acsbiomaterials.3c00383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Recently, various nanomaterials based on hydroxyapatite (HAp) have been developed for bioimaging applications. In particular, HAp doped with rare-earth elements has attracted significant attention, owing to its enhanced bioactivity and imaging properties. In this study, the wet precipitation method was used to synthesize HAp codoped with Yb and Gd. The synthesized Ybx-Gdx-HAp nanoparticles (NPs) were characterized via various techniques to analyze the crystal phase, functional groups, thermal characteristics, and particularly, the larger surface area. The IR783 fluorescence dye and a folic acid (FA) receptor were conjugated with the synthesized Ybx-Gdx-HAp NPs to develop an effective imaging contrast agent. The developed FA/IR783/Yb-Gd-HAp nanomaterial exhibited improved contrast, sensitivity, and tumor-specific properties, as demonstrated by using the customized LUX 4.0 fluorescence imaging system. An in vitro cytotoxicity study was performed to verify the biocompatibility of the synthesized NPs using MTT assay and fluorescence staining. Photodynamic therapy (PDT) was also applied to determine the photosensitizer properties of the synthesized Ybx-Gdx-HAp NPs. Further, reactive oxygen species generation was confirmed by Prussian blue decay and a 2',7'-dichlorofluorescin diacetate study. Moreover, MDA-MB-231 breast cancer cells were used to evaluate the efficiency of Ybx-Gdx-HAp NP-supported PDT.
Collapse
Affiliation(s)
- Vu Hoang Minh Doan
- Smart Gym-based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Dinh Dat Vu
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sudip Mondal
- Smart Gym-based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Thi Mai Thien Vo
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Cao Duong Ly
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Van Tu Nguyen
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sumin Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaeyeop Choi
- Smart Gym-based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Thanh Phuoc Nguyen
- Department of Mechatronics, Cao Thang Technical College, Ho Chi Minh City 700000, Vietnam
| | - Byeongil Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Department of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea
- Ohlabs Corp., Busan 48513, Republic of Korea
| |
Collapse
|
7
|
Wang L, Li L, Yuan M, Yang Z, Han K, Wang H, Xu X. Boltzmann- and Non-Boltzmann-Based Thermometers in the First, Second and Third Biological Windows for the SrF 2:Yb 3+, Ho 3+ Nanocrystals Under 980, 940 and 915 nm Excitations. NANOSCALE RESEARCH LETTERS 2022; 17:80. [PMID: 36040571 PMCID: PMC9428101 DOI: 10.1186/s11671-022-03718-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Spectrally determination of temperature based on the lanthanide-doped nanocrystals (NCs) is a vital strategy to noninvasively measure the temperature in practical applications. Here, we synthesized a series of SrF2:Yb3+/Ho3+ NCs and simultaneously observed the efficient visible upconversion luminescence (UCL) and near-infrared (NIR) downconversion luminescence (DCL) under 980, 940 and 915 nm excitations. Subsequently, these NCs were further utilized for thermometers based on the Boltzmann (thermally coupled levels, TCLs) and non-Boltzmann (non-thermally coupled levels, NTCLs) of Ho3+ ions in the first (~ 650 nm), second (~ 1012 nm) and third (~ 2020 nm) biological windows (BW-I, BW-II and BW-III) under tri-wavelength excitations. The thermometric parameters including the relative sensitivity ([Formula: see text]) and temperature uncertainty ([Formula: see text]) are quantitatively determined on the I648/I541 (BW-I), I1186/I1012 (BW-II), and I1950/I2020 (BW-III) transitions of Ho3+ ions in the temperature range of 303-573 K. Comparative experimental results demonstrated that the thermometer has superior performances.
Collapse
Affiliation(s)
- Linxuan Wang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073 China
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Changsha, 410073 China
| | - Liang Li
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073 China
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Changsha, 410073 China
| | - Maohui Yuan
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073 China
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Changsha, 410073 China
| | - Zining Yang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073 China
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Changsha, 410073 China
- Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha, 410073 China
| | - Kai Han
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073 China
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Changsha, 410073 China
| | - Hongyan Wang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073 China
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Changsha, 410073 China
- Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha, 410073 China
| | - Xiaojun Xu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073 China
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Changsha, 410073 China
- Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha, 410073 China
| |
Collapse
|
8
|
Lantier I, Mallet C, Souci L, Larcher T, Conradie AM, Courvoisier K, Trapp S, Pasdeloup D, Kaufer BB, Denesvre C. In vivo imaging reveals novel replication sites of a highly oncogenic avian herpesvirus in chickens. PLoS Pathog 2022; 18:e1010745. [PMID: 36037230 PMCID: PMC9462805 DOI: 10.1371/journal.ppat.1010745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 09/09/2022] [Accepted: 07/16/2022] [Indexed: 12/04/2022] Open
Abstract
In vivo bioluminescence imaging facilitates the non-invasive visualization of biological processes in living animals. This system has been used to track virus infections mostly in mice and ferrets; however, until now this approach has not been applied to pathogens in avian species. To visualize the infection of an important avian pathogen, we generated Marek’s disease virus (MDV) recombinants expressing firefly luciferase during lytic replication. Upon characterization of the recombinant viruses in vitro, chickens were infected and the infection visualized in live animals over the course of 14 days. The luminescence signal was consistent with the known spatiotemporal kinetics of infection and the life cycle of MDV, and correlated well with the viral load measured by qPCR. Intriguingly, this in vivo bioimaging approach revealed two novel sites of MDV replication, the beak and the skin of the feet covered in scales. Feet skin infection was confirmed using a complementary fluorescence bioimaging approach with MDV recombinants expressing mRFP or GFP. Infection was detected in the intermediate epidermal layers of the feet skin that was also shown to produce infectious virus, regardless of the animals’ age at and the route of infection. Taken together, this study highlights the value of in vivo whole body bioimaging in avian species by identifying previously overlooked sites of replication and shedding of MDV in the chicken host. In vivo bioluminescence imaging is a powerful tool to track virus infection in the whole body of living animals. This system has been successfully used in mice, ferrets, rats and even fishes, but until now never in birds. In this study, we performed the first in vivo imaging assessing the spread of an important avian pathogen, the highly oncogenic Marek’s disease virus (MDV). Using a recombinant virus expressing firefly luciferase, we visualized the course of MDV infection in chicks for 14 days. The bioluminescent signal was consistent with the known kinetics and sites of dissemination of MDV, notably in feathers. With this new approach, we also discovered two novels sites of early infection and replication that may contribute to persistent virus shedding. Both novel sites represent hard skin appendages like the feathers: the beak and the skin of the feet that are covered in scales. These results were confirmed with two recombinant viruses expressing fluorescent proteins. Fifty-five years after the discovery of MDV and thanks to in vivo imaging, we provide new insights in MDV life cycle in vivo, highlighting the importance of bioluminescence imaging of the entire body in living animals.
Collapse
Affiliation(s)
| | - Corentin Mallet
- INRAE, UMR1282 ISP, Centre INRAE Val de Loire, Nouzilly, France
| | - Laurent Souci
- INRAE, UMR1282 ISP, Centre INRAE Val de Loire, Nouzilly, France
| | | | | | | | - Sascha Trapp
- INRAE, UMR1282 ISP, Centre INRAE Val de Loire, Nouzilly, France
| | - David Pasdeloup
- INRAE, UMR1282 ISP, Centre INRAE Val de Loire, Nouzilly, France
| | - Benedikt B. Kaufer
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
- * E-mail: (BK); (CD)
| | - Caroline Denesvre
- INRAE, UMR1282 ISP, Centre INRAE Val de Loire, Nouzilly, France
- * E-mail: (BK); (CD)
| |
Collapse
|
9
|
Gu M, Li W, Jiang L, Li X. Recent Progress of Rare Earth Doped Hydroxyapatite Nanoparticles: Luminescence Properties, Synthesis and Biomedical Applications. Acta Biomater 2022; 148:22-43. [PMID: 35675891 DOI: 10.1016/j.actbio.2022.06.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 12/12/2022]
Abstract
Hydroxyapatite nanoparticles (HAP NPs) are host materials and can be modified with various substrates and dopants. Among them, rare earth (RE) ions doped HAP NPs have gathered attention due to their unique physicochemical and imaging properties. Compared to other fluorescence probes, RE-doped HAP NPs display advantages in high brightness, high contrast, photostability, nonblinking, and narrow emission bands. Meanwhile, their intrinsic features (composition, morphology, size, crystallinity, and luminescence intensity) can be adjusted by changing the dopant ratio, synthesizing temperature, reaction time, and techniques. And they have been used in various biomedical applications, including imaging probe, drug delivery, bone tissue engineering, and antibacterial studies. This review surveys the luminescent properties, fluorescence enhancement, synthetic methods, and biocompatibility of various RE-doped HAP NPs consolidated from different research works, for their employments in biomedical applications. For this literature review, an electronic search was conducted in the Pubmed, Web of Science, Google Scholar, Scopus and SciFinder databases, using the keywords: hydroxyapatite, rare earth, lanthanide, fluorescence, and imaging. Literature searches of English-language publications from 1979 with updates through April, 2022, and a total of 472 potential papers were identified. In addition, a few references were located by noting their citation in other studies reviewed. STATEMENT OF SIGNIFICANCE: Hydroxyapatite nanoparticles (HAP NPs) have a broad range of promising biological applications. Although prospective biomedical applications are not limited to rare earth-doped hydroxyapatite nanoparticles (RE-doped HAP NPs), some cases do make use of the distinctive features of RE-elements to achieve the expected functions for HAP families. This review surveys the luminescent properties, synthetic methods, and biocompatibility of various RE-doped HAP NPs consolidated from different research works, for their employments in biomedical applications, including imaging probe, drug delivery, bone tissue repair and tracking, and anti-bacteria. Overall, we expect to shed some light on broadening the research and application of RE-doped HAP NPs in biomedical field.
Collapse
|