1
|
Ravula V, Muripiti V, Kumar A, Wang LF, Kumar Vemula P, Patri SV. DOTAP Modified Formulations of Aminoacid Based Cationic Liposomes for Improved Gene Delivery and Cell Viability. ChemMedChem 2024; 19:e202400324. [PMID: 39108039 DOI: 10.1002/cmdc.202400324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/29/2024] [Indexed: 10/22/2024]
Abstract
The liposomal systems proved remarkably useful for the delivery of genetic materials but enhancing their efficacy remains a significant challenge. While structural alterations could result in the discovery of more effective transfecting lipids, improving the efficacy of widely used lipid carriers is also crucial in order to compete with viral vectors for gene delivery. Herein, we developed formulations of commercially available lipid, 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) with synthetic amino acid based cationic lipids. Two cationic lipids were synthesized using amino acids, with either cystine (CTT) or arginine (AT) in the head group. These lipids were used to formulate co-liposomal structures with different lipid compositions. The liposomal formulations were broadly categorised into two types: amino acid-based liposomes without DOTAP (CTTD and ATD) and those with DOTAP (DtATD and DtCTTD). Optimized lipid-DNA complexes of DOTAP-incorporated formulations (DtATD and DtCTTD) exhibited enhanced efficacy in transfection compared to formulations lacking DOTAP as well as commercial formulations such as DOTAP:DOPE. Notably, DtCTTD displayed superior transfection capabilities in prostate cancer (PC3) and lung cancer (A549) cell lines when compared to the widely used commercial transfection reagent, Lipofectamine. Collectively, the findings from this study suggest that DOTAP-incorporated formulations derived from amino acid-based liposomes, hold promise as effective tools for improving transfection efficacy with reduced toxicity, offering potential advancements in gene delivery applications.
Collapse
Affiliation(s)
- Venkatesh Ravula
- Department of Chemistry, National Institute of Technology Warangal, Telangana State, 506004, India
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Venkanna Muripiti
- Department of Chemistry, National Institute of Technology Warangal, Telangana State, 506004, India
- Department of Education, Central University of Kerala, Kasarasod, 671320, Kerala, India
| | - Akash Kumar
- Department of Chemistry, National Institute of Technology Warangal, Telangana State, 506004, India
| | - Li-Fang Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, No.100 Tzyou 1st Road, Kaohsiung, 80708, Taiwan
| | - Praveen Kumar Vemula
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK Post, Bellary Road, Bangalore, 560065, Karnataka, India
| | - Srilakshmi V Patri
- Department of Chemistry, National Institute of Technology Warangal, Telangana State, 506004, India
| |
Collapse
|
2
|
Shahzad A, Teng Z, Yameen M, Liu W, Cui K, Liu X, Sun Y, Duan Q, Xia J, Dong Y, Bai Z, Peng D, Zhang J, Xu Z, Pi J, Yang Z, Zhang Q. Innovative lipid nanoparticles: A cutting-edge approach for potential renal cell carcinoma therapeutics. Biomed Pharmacother 2024; 180:117465. [PMID: 39321512 DOI: 10.1016/j.biopha.2024.117465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024] Open
Abstract
The kidney plays a crucial role in regulating homeostasis within the human body. Renal cell carcinoma (RCC) is the most common form of kidney cancer, accounting for nearly 90 % of all renal malignancies. Despite the availability of various therapeutic strategies, RCC remains a challenging disease due to its resistance to conventional treatments. Nanotechnology has emerged as a promising field, offering new opportunities in cancer therapeutics. It presents several advantages over traditional methods, enabling diverse biomedical applications, including drug delivery, prevention, diagnosis, and treatment. Lipid nanoparticles (LNPs), approximately 100 nm in size, are derived from a range of lipids and other biochemical compounds. these particulates are designed to overcome biological barriers, allowing them to selectively accumulate at diseased target sites for effective therapeutic action. Many pharmaceutically important compounds face challenges such as poor solubility in aqueous solutions, chemical and physiological instability, or toxicity. LNP technology stands out as a promising drug delivery system for bioactive organic compounds. This article reviews the applications of LNPs in RCC treatment and explores their potential clinical translation, identifying the most viable LNPs for medical use. With ongoing advancement in LNP-based anticancer strategies, there is a growing potential to improve the management and treatment of renal cancer.
Collapse
Affiliation(s)
- Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhuoran Teng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Muhammad Yameen
- Department of Biochemistry, Government College University Faisalabad, Punjab 38000, Pakistan
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yijian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Qiuxin Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - JiaoJiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yurong Dong
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Ziyuan Bai
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Dongmei Peng
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Jinshan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhe Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China.
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China.
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China.
| |
Collapse
|
3
|
Habibizadeh M, Lotfollahzadeh S, Mahdavi P, Mohammadi S, Tavallaei O. Nanoparticle-mediated gene delivery of TRAIL to resistant cancer cells: A review. Heliyon 2024; 10:e36057. [PMID: 39247341 PMCID: PMC11379606 DOI: 10.1016/j.heliyon.2024.e36057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), also known as APO2L, has emerged as a highly potential anticancer agent because of its capacity to effectively trigger apoptosis in tumor cells by specifically binding to either of its death receptors (DR4 or DR5) while having no adverse effects on normal cells. Nevertheless, its practical use has been hindered by its inefficient pharmacokinetics characteristics, the challenges involved in its administration and delivery to targeted cells, and the resistance exhibited by most cancer cells towards TRAIL. Gene therapy, as a promising approach would be able to potentially circumvent TRAIL-based cancer therapy challenges mainly through localized TRAIL expression and generating a bystander impact. Among different strategies, using nanoparticles in TRAIL gene delivery allows for precise targeting, and overcoming TRAIL resistance by combination therapy. In this review, we go over potential mechanisms by which cancer cells achieve resistance to TRAIL and provide an overview of different carriers for delivering of the TRAIL gene to resistant cancer cells, focusing on different types of nanoparticles utilized in this context. We will also explore the challenges, and investigate future perspectives of this nanomedicine approach for cancer therapy.
Collapse
Affiliation(s)
- Mina Habibizadeh
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Lotfollahzadeh
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Mahdavi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soheila Mohammadi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Omid Tavallaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Luo C, He S, Shi F, Zhou J, Shang L. The Role of TRAIL Signaling in Cancer: Searching for New Therapeutic Strategies. BIOLOGY 2024; 13:521. [PMID: 39056714 PMCID: PMC11274015 DOI: 10.3390/biology13070521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Cancer continues to pose a significant threat to global health, with its status as a leading cause of death remaining unchallenged. Within the realm of cancer research, the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) stands out as a critical player, having been identified in the 1990s as the tenth member of the TNF family. This review examines the pivotal role of TRAIL in cancer biology, focusing on its ability to induce apoptosis in malignant cells through both endogenous and exogenous pathways. We provide an in-depth analysis of TRAIL's intracellular signaling and intercellular communication, underscoring its potential as a selective anticancer agent. Additionally, the review explores TRAIL's capacity to reshape the tumor microenvironment, thereby influencing cancer progression and response to therapy. With an eye towards future developments, we discuss the prospects of harnessing TRAIL's capabilities for the creation of tailored, precision-based cancer treatments, aiming to enhance efficacy and improve patient survival rates.
Collapse
Affiliation(s)
- Cheng Luo
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/Xiangya Hospital, Central South University, Changsha 410078, China; (C.L.); (J.Z.)
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Shan He
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Jianhua Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/Xiangya Hospital, Central South University, Changsha 410078, China; (C.L.); (J.Z.)
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
| | - Li Shang
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/Xiangya Hospital, Central South University, Changsha 410078, China; (C.L.); (J.Z.)
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
| |
Collapse
|
5
|
Kabil MF, Badary OA, Bier F, Mousa SA, El-Sherbiny IM. A comprehensive review on lipid nanocarrier systems for cancer treatment: fabrication, future prospects and clinical trials. J Liposome Res 2024; 34:135-177. [PMID: 37144339 DOI: 10.1080/08982104.2023.2204372] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 04/02/2023] [Indexed: 05/06/2023]
Abstract
Over the last few decades, cancer has been considered a clinical challenge, being among the leading causes of mortality all over the world. Although many treatment approaches have been developed for cancer, chemotherapy is still the most utilized in the clinical setting. However, the available chemotherapeutics-based treatments have several caveats including their lack of specificity, adverse effects as well as cancer relapse and metastasis which mainly explains the low survival rate of patients. Lipid nanoparticles (LNPs) have been utilized as promising nanocarrier systems for chemotherapeutics to overcome the challenges of the currently applied therapeutic strategies for cancer treatment. Loading chemotherapeutic agent(s) into LNPs improves drug delivery at different aspects including specific targeting of tumours, and enhancing the bioavailability of drugs at the tumour site through selective release of their payload, thus reducing their undesired side effects on healthy cells. This review article delineates an overview of the clinical challenges in many cancer treatments as well as depicts the role of LNPs in achieving optimal therapeutic outcomes. Moreover, the review contains a comprehensive description of the many LNPs categories used as nanocarriers in cancer treatment to date, as well as the potential of LNPs for future applications in other areas of medicine and research.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Osama A Badary
- Clinical Pharmacy Department, Faculty of Pharmacy, The British University in Egypt, El-Shorouk City, Egypt
| | - Frank Bier
- AG Molekulare Bioanalytik und Bioelektronik, Institut für Biochemie und Biologie, Universität Potsdam Karl-Liebknecht-Straße 24/25, Potsdam (OT Golm), Germany
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
6
|
Manturthi S, Bhattacharya D, Sakhare KR, Narayan KP, Patri SV. Cimetidine-Based Cationic Amphiphiles for In Vitro Gene Delivery Targetable to Colon Cancer. ACS OMEGA 2022; 7:31388-31402. [PMID: 36092589 PMCID: PMC9453813 DOI: 10.1021/acsomega.2c03777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Cimetidine, a histamine-2 (H2) receptor antagonist, has been found to have anticancer properties against a number of cancer-type cells. In this report, we have demonstrated that cimetidine can acts as a hydrophilic domain in cationic lipids and targetable to the gastric system by carrying reporter genes and therapeutic genes through in vitro transfection. Two lipids, namely, Toc-Cim and Chol-Cim consisting cimetidine as the main head group and hydrophobic moieties as alpha-tocopherol or cholesterol, respectively, were designed and synthesized. 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) is a well-known co-lipid employed to produce liposomes as uniform vesicles. The liposomes and lipoplexes were structurally and functionally evaluated for global surface charges and hydrodynamic diameters, and results found that both liposome and lipoplex size and surface charges are optimal to screen the transfection potentials. DNA-binding studies were analyzed as complete binding at all formulated N/P ratios. The liposomes and lipoplexes of both the lipids Toc-Cim and Chol-Cim show minimal cytotoxicity even though at higher concentrations. The results of the transfection experiments revealed that tocopherol-based cationic lipids (Toc-Cim) show finer transfection efficacy with optimized N/P ratios (2:1 and 4:1) in the colon cancer cell line. Toc-Cim lipoplexes show higher cellular uptake compare to Chol-Cim in the colon cancer cell line at 2:1 and 4:1 N/P ratios. Toc-Cim and Chol-Cim lipids showed highly compatible serum, examined up to 50% of the serum concentration. To evaluate the apoptotic cell death in CT-26 cells, exposed to Toc-Cim:p53 and Chol-Cim:p53 lipoplexes at 2:1 N/P ratios, superior results showed with Toc-Cim:p53. An effect of TP53 protein expression in CT-26 cell lines assayed by western blot, transfected with Toc-Cim:p53 and Chol-Cim:p53 lipoplexes, demonstrated the superior efficacy of Toc-Cim. All of the findings suggest that Toc-Cim lipid is relatively secure and is an effective transfection agent to colon cancer gene delivery.
Collapse
Affiliation(s)
- Shireesha Manturthi
- Department
of Chemistry, National Institute of Technology
Warangal, Hanamkonda, Telangana 506004, India
| | - Dwaipayan Bhattacharya
- Department
of Biological Science, Bits Pilani-Hyderabad, Hyderabad, Telangana 500078, India
| | - Kalyani Rajesh Sakhare
- Department
of Biological Science, Bits Pilani-Hyderabad, Hyderabad, Telangana 500078, India
| | - Kumar Pranav Narayan
- Department
of Biological Science, Bits Pilani-Hyderabad, Hyderabad, Telangana 500078, India
| | - Srilakshmi V. Patri
- Department
of Chemistry, National Institute of Technology
Warangal, Hanamkonda, Telangana 506004, India
| |
Collapse
|
7
|
Zou Y, Zhen Y, Zhao Y, Chen H, Wang R, Wang W, Ma P, Zhi D, Ju B, Zhang S. pH-sensitive, tail-modified, ester-linked ionizable cationic lipids for gene delivery. BIOMATERIALS ADVANCES 2022; 139:212984. [PMID: 35882140 DOI: 10.1016/j.bioadv.2022.212984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Ionizable cationic lipids have great potential for gene delivery, yet the effect of the molecular structure of such lipids on gene delivery efficiency is an ongoing research challenge. To better understand corresponding structure-function activity relationships, we synthesized four ester-linked, pH-responsive, ionizable cationic lipids. The screened DEDM4 lipid, containing 2-ethylenedimethylamine in the headgroup and a branched-chain tail, exhibited a high delivery efficacy of plasmid DNA and siRNA in A549 cells, which was comparable with that of the commercial reagent lipofectamine 3000 (lipo3000). Moreover, because of its pKa value of 6.35 and pH-sensitivity under acidic conditions, DEDM4 could carry sufficient positive charge in the acidic environment of endosomes and interact with the endosome lumen, leading to destruction of the endomembrane and subsequent release of siRNA into the cytoplasm with endosomal escape. Furthermore, we used DEDM4 to deliver IGF-1R siRNA to induce cancer cell apoptosis, thereby leading to great tumor inhibition. More importantly, it also showed very low toxicity in vivo. These structure-activity data for DEDM4 demonstrate potential clinical applications of DEDM4-mediated gene delivery for cancer.
Collapse
Affiliation(s)
- Yu Zou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China
| | - Yuhong Zhen
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China
| | - Huiying Chen
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China
| | - Rui Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China
| | - Wei Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Pengfei Ma
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Defu Zhi
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China.
| | - Benzhi Ju
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China.
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China.
| |
Collapse
|
8
|
Rapaka H, Manturthi S, Gosangi M, Lohchania B, Marepally S, Patri SV. Effect of Methylation of the Hydrophilic Domain of Tocopheryl Ammonium-Based Lipids on their Nucleic Acid Delivery Properties. ACS OMEGA 2022; 7:15396-15403. [PMID: 35571792 PMCID: PMC9096827 DOI: 10.1021/acsomega.1c06889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Lipid-enabled nucleic acid delivery has garnered tremendous attention in recent times. Tocopherol among the cationic lipids, 3b-[N-(N',N'-dimethylamino-ethane)carbamoyl]-cholesterol hydrochloride (DC-Chol) with a headgroup of dimethylammonium, and cholesterol as a hydrophobic moiety are found to be some of the most successful lipids and are being used in clinical trials. However, limited efficacy is a major limitation for their broader therapeutic application. In our prior studies, we demonstrated tocopherol to be a potential alternative hydrophobic moiety having additional antioxidant properties to develop efficient and safer liposomal formulations. Inspired by DC-Chol applications and taking cues from our own prior findings, herein, we report the design and synthesis of four alpha-tocopherol-based cationic derivatives with varying degrees of methylation, AC-Toc (no methylation), MC-Toc (monomethylation derivative), DC-Toc (dimethylation derivative), and TC-Toc (trimethylation derivative) and the evaluation of their gene delivery properties. The transfection studies showed that AC-Toc liposomes exhibited superior transfection compared to MC-Toc, DC-Toc, TC-Toc, and control DC-Chol, indicating that methylation in the hydrophilic moiety of Toc-lipids reduced their transfection properties. Cellular internalization studies in the presence of different endocytosis blockers revealed that all four tocopherol lipids were internalized through clathrin-mediated endocytosis, whereas control DC-Chol was found to be internalized through both macropinocytosis and clathrin-mediated endocytosis. These novel Toc-lipids exhibited higher antioxidant properties than DC-Chol by generating less reactive oxygen species, indicating lower cytotoxicity. Our present findings suggest that AC-Toc may be considered as an alternative to DC-Chol in liposomal transfections.
Collapse
Affiliation(s)
- Hithavani Rapaka
- National
Institute of Technology, Warangal 506004, Telangana, India
| | | | | | - Brijesh Lohchania
- Centre
for Stem Cell Research, Christian Medical
College, Vellore 632004, Tamil Nadu, India
| | - Srujan Marepally
- Centre
for Stem Cell Research, Christian Medical
College, Vellore 632004, Tamil Nadu, India
| | | |
Collapse
|
9
|
Rapaka H, Manturthi S, Arjunan P, Venkatesan V, Thangavel S, Marepally S, Patri SV. Influence of Hydrophobicity in the Hydrophilic Region of Cationic Lipids on Enhancing Nucleic Acid Delivery and Gene Editing. ACS APPLIED BIO MATERIALS 2022; 5:1489-1500. [PMID: 35297601 DOI: 10.1021/acsabm.1c01226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intracellular delivery of biomolecules using non-viral vectors critically depends on the vectors' ability to allow the escape and release of the contents from the endosomes. Prior findings demonstrated that aromatic/hydrophobic group-containing amino acids such as phenylalanine (F) and tryptophan (W) destabilize cellular membranes by forming pores in the lipid bilayer. Taking cues from these findings, we have developed four α-tocopherol-based cationic amphiphiles by varying the aromatic/hydrophobic amino acids such as glycine (G), proline (P), phenylalanine (F), and tryptophan (W) as head groups and triazole in the linker region to study their impact on endosomal escape for the enhanced transfection efficacy. The lipids tocopherol-triazole-phenylalanine (TTF) and tocopherol-triazole-tryptophan (TTW) exhibited similar potential to commercial transfecting reagents, Lipofectamine (LF) 3000 and Lipofectamine Messenger Max (LFMM), respectively, in transfecting plasmid DNA and messenger RNA in multiple cultured cell lines. The TTW liposome was also found to be effective in delivering Cas9 mRNA and demonstrated equal efficiency of gene editing AAVS1 locus compared to LFMM in CHO, Neuro-2a, and EA.HY926 cell lines. In this current investigation, it is shown that the synthesized cationic lipids with aromatic hydrophobic R group-containing amino acids are safe, economic, and actually more efficient in nucleic acid delivery and genome-editing applications. These findings can be further explored in the genome-editing approach for treating genetic disorders.
Collapse
Affiliation(s)
- Hithavani Rapaka
- National Institute of Technology Warangal, Warangal, Telangana 506004, India
| | - Shireesha Manturthi
- National Institute of Technology Warangal, Warangal, Telangana 506004, India
| | - Porkizhi Arjunan
- Christian Medical College, Centre for Stem Cell Research, Vellore, Tamilnadu 632001, India
| | | | | | - Srujan Marepally
- Christian Medical College, Centre for Stem Cell Research, Vellore, Tamilnadu 632001, India
| | - Srilakshmi V Patri
- National Institute of Technology Warangal, Warangal, Telangana 506004, India
| |
Collapse
|
10
|
Paul B, Gaonkar RH, Dutta D, Dasi R, Mukherjee B, Ganguly S, Das SK. Inhibitory potential of iRGD peptide-conjugated garcinol-loaded biodegradable nanoparticles in rat colorectal carcinoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112714. [DOI: 10.1016/j.msec.2022.112714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/18/2022] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
|
11
|
Manturthi S, Narayan KP, Patri SV. Dicationic amphiphiles bearing an amino acid head group with a long-chain hydrophobic tail for in vitro gene delivery applications. RSC Adv 2022; 12:33264-33275. [DOI: 10.1039/d2ra05959b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/28/2022] [Indexed: 11/22/2022] Open
Abstract
C14-P, C14-M, and C14-S lipids formed lipoplexes using pDNA. The lipoplex cellular uptake into the cells resulted in the release of nucleic acids. C14-P lipid showed superior eGFP transfection in non-cancer cell line and more apoptosis cell death in cancer cell line.
Collapse
Affiliation(s)
- Shireesha Manturthi
- Department of Chemistry, National Institute of Technology Warangal, Hanamkonda, Telangana-506004, India
| | - Kumar Pranav Narayan
- Department of Biological Science, Bits Pilani-Hyderabad, Hyderabad, Telangana-500078, India
| | - Srilakshmi V. Patri
- Department of Chemistry, National Institute of Technology Warangal, Hanamkonda, Telangana-506004, India
| |
Collapse
|
12
|
Manturthi S, Bhattacharya D, Sakhare KR, Narayan KP, Patri SV. Nicotinic acid-based cationic vectors for efficient gene delivery to glioblastoma cells. NEW J CHEM 2022. [DOI: 10.1039/d2nj03207d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A tocopherol-conjugated nicotinic acid-based lipid (NGT) was used for liposomal formation with the co-lipid DOPE and exhibited enhanced transfection of glioblastoma cells for eGFP and β-galactosidase protein expression.
Collapse
Affiliation(s)
- Shireesha Manturthi
- Department of Chemistry, National Institute of Technology Warangal, Hanamkonda, Telangana-506004, India
| | - Dwaipayan Bhattacharya
- Department of Biological Science, Bits pilani-hyderabad, Hyderabad, Telangana-500078, India
| | - Kalyani Rajesh Sakhare
- Department of Biological Science, Bits pilani-hyderabad, Hyderabad, Telangana-500078, India
| | - Kumar Pranav Narayan
- Department of Biological Science, Bits pilani-hyderabad, Hyderabad, Telangana-500078, India
| | - Srilakshmi V. Patri
- Department of Chemistry, National Institute of Technology Warangal, Hanamkonda, Telangana-506004, India
| |
Collapse
|
13
|
Ravula V, Muripiti V, Manthurthi S, Patri SV. α‐Tocopherol‐Conjugated, Open Chain Sugar‐Mimicking Cationic Lipids: Design, Synthesis and In–Vitro Gene Transfection Properties. ChemistrySelect 2021. [DOI: 10.1002/slct.202102648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Venkatesh Ravula
- National Institute of Technology Warangal Telangana 506004 India
| | | | | | | |
Collapse
|
14
|
Ravula V, Lo YL, Wang LF, Patri SV. Gemini Lipopeptide Bearing an Ultrashort Peptide for Enhanced Transfection Efficiency and Cancer-Cell-Specific Cytotoxicity. ACS OMEGA 2021; 6:22955-22968. [PMID: 34514266 PMCID: PMC8427783 DOI: 10.1021/acsomega.1c03620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/13/2021] [Indexed: 05/08/2023]
Abstract
Cationic gemini lipopeptides are a relatively new class of amphiphilic compounds to be used for gene delivery. Through the possibility of incorporating short peptides with cell-penetrating functionalities, these lipopeptides may be advantageous over traditional cationic lipids. Herein, we report the design, synthesis, and application of a novel cationic gemini lipopeptide for gene delivery. An ultrashort peptide, containing four amino acids, arginine-cysteine-cysteine-arginine, serves as a cationic head group, and two α-tocopherol moieties act as hydrophobic anchoring groups. The new lipopeptide (ATTA) is incorporated into the conventional liposomes, containing 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dioleoyl-sn-glycerol-3-phosphoethanolamine (DOPE), at different molar ratios. The formulated liposomes are characterized and screened for better transfection efficiency. Transfection activity in multiple human cell lines from cancerous and noncancerous origins indicates that the inclusion of an optimal ratio of ATTA in the liposomes substantially enhances the transfection efficiency, superior to that of a traditional liposome, DOTAP-DOPE. Cytotoxicity of ATTA-containing formulations against multiple cell lines indicates potentially distinct activity between cancer and noncancer cell lines. Furthermore, lipoplexes of the ATTA-containing formulations with anticancer therapeutic gene, plasmid encoding tumor necrosis factor-related apoptosis-inducing ligand (pTRAIL), induce obviously more cytotoxicity than conventional formulations. The results indicate that arginine-rich cationic lipopeptide appears to be a promising ingredient in gene delivery vector formulations to enhance transfection efficiency and cell-selective cytotoxicity.
Collapse
Affiliation(s)
- Venkatesh Ravula
- Department
of Chemistry, National Institute of Technology, Warangal 506004, India
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 80708, Taiwan
| | - Yu-Lun Lo
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 80708, Taiwan
| | - Li-Fang Wang
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 80708, Taiwan
- Department
of Medical Research, Kaohsiung Medical University
Hospital, Kaohsiung 80708, Taiwan
| | - Srilakshmi V. Patri
- Department
of Chemistry, National Institute of Technology, Warangal 506004, India
| |
Collapse
|