1
|
Xu Z, Wang Y, Li S, Li Y, Chang L, Yao Y, Peng Q. Advances of functional nanomaterials as either therapeutic agents or delivery systems in the treatment of periodontitis. BIOMATERIALS ADVANCES 2025; 175:214326. [PMID: 40300444 DOI: 10.1016/j.bioadv.2025.214326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/20/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
Periodontitis is a common chronic inflammatory disease primarily caused by pathogenic microorganisms in the oral cavity. Without appropriate treatments, it may lead to the gradual destruction of the supporting tissues of the teeth. While current treatments can alleviate symptoms, they still have limitations, particularly in eliminating pathogenic bacteria, promoting periodontal tissue regeneration, and avoiding antibiotic resistance. In recent years, functional nanomaterials have shown great potential in the treatment of periodontitis due to their unique physicochemical and biological properties. This review summarizes various functionalization strategies of nanomaterials and explores their potential applications in periodontitis treatment, including metal-based nanoparticles, carbon nanomaterials, polymeric nanoparticles, and exosomes. The mechanisms and advances in antibacterial effects, immune regulation, reactive oxygen species (ROS) scavenging, and bone tissue regeneration are discussed in detail. In addition, the challenges and future directions of applying nanomaterials in periodontitis therapy are also discussed.
Collapse
Affiliation(s)
- Ziyi Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yue Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuoshun Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuanhong Li
- Department of Orthodontics, Shanghai Stomatological Hospital and School of Stomatology, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, China
| | - Lili Chang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Bee SL, Hamid ZAA. Chitosan-based dental barrier membrane for periodontal guided tissue regeneration and guided bone regeneration: A review. Int J Biol Macromol 2025; 295:139504. [PMID: 39761899 DOI: 10.1016/j.ijbiomac.2025.139504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Guided tissue regeneration (GTR) and guided bone regeneration (GBR) are two common dental regenerative procedures used to repair periodontal defects caused by periodontitis. In both procedures, a barrier membrane is placed at the interface between the soft tissue and the periodontal defect, serving to impede the infiltration of soft tissue while creating a secluded space for periodontal regeneration. Recently, barrier membranes based on chitosan (CS) have emerged as a promising avenue for these applications. However, despite numerous studies on the development of CS-based membranes, comprehensive review articles specifically addressing their progress in GTR/GBR applications remain scarce. Herein, we review recent research and advancements in the use of CS-based membranes for periodontal GTR and GBR. The review begins by highlighting the advantageous properties of CS that make it a suitable biomaterial for GTR/GBR applications. Next, the development of composite CS-based membranes, reinforced with various compositions like bioactive fillers and therapeutic agents, is discussed in detail based on recent literature, with a focus on their enhanced efficacy in promoting periodontal regeneration. Finally, the review explores the emergence of functionally graded CS-based membranes, emphasizing their potential to address specific challenges encountered in GTR/GBR procedures.
Collapse
Affiliation(s)
- Soo-Ling Bee
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia.
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
3
|
Jafari T, Naghib SM, Mozafari MR. Chitosan-based Nano/Biomaterials in Bone Tissue Engineering and Regenerative Medicine: Recent Progress and Advances. Curr Org Synth 2025; 22:457-480. [PMID: 40420784 DOI: 10.2174/0115701794307242240612075648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/29/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2025]
Abstract
The biopolymer chitosan, which is derived from chitin, has shown great promise for tissue regeneration and regulated drug delivery. Its broad-spectrum antibacterial action, low toxicity, biocompatibility, and many other attributes make it appealing for use in biomedical applications. Crucially, chitosan may be synthesized into a range of forms that can be customized to provide desired results, such as hydrogels, membranes, scaffolds, and nanoparticles. Hydrogels that are biocompatible and self-healing are innovative soft materials with considerable potential for use in biomedical applications. Hydrogels that self-heal using chitosan, which are mostly made by dynamic imine linkages, have gained a lot of interest because of their great biocompatibility, moderate preparation requirements, and capacity to mend themselves in a physiological setting. In this study, a summary of the applications of chitosan-based self-healing hydrogels in bone, cartilage, and tooth tissue regeneration and drug delivery is provided. Lastly, we have mentioned the difficulties and potential outcomes for the biomedical field's creation of hydrogels based on chitosan that can mend themselves.
Collapse
Affiliation(s)
- Taha Jafari
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Monash Institute of Medical Research, Clayton, VIC 3168, Australia
| |
Collapse
|
4
|
Mahmood A, Maher N, Amin F, Alqutaibi AY, Kumar N, Zafar MS. Chitosan-based materials for dental implantology: A comprehensive review. Int J Biol Macromol 2024; 268:131823. [PMID: 38677667 DOI: 10.1016/j.ijbiomac.2024.131823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Chitosan, a versatile biopolymer, has gained recognition in the discipline of dental implantology due to possessing salient properties. This comprehensive review explores the potential of chitosan in dental implants, focusing on its biocompatibility, bioactivity, and the various chitosan-based materials that have been utilized for dental implant therapy. The review also highlights the importance of surface treatment in dental implants to enhance osseointegration and inhibit bacterial biofilm formation. Additionally, the chemical structure, properties, and sources of chitosan are described, along with its different structural forms. The characteristics of chitosan particularly color, molecular weight, viscosity, and degree of deacetylation are discussed about their influence on its applications. This review provides valuable insights into the promising utilization of polymeric chitosan in enhancing the success and functionality of dental implants. This study highlights the potential applications of chitosan in oral implantology. Chitosan possesses various advantageous properties, including muco-adhesiveness, hemostatic action, biocompatibility, biodegradability, bioactivity, and antibacterial and antifungal activities, which enhance its uses in dental implantology. However, it has limited aqueous solubility at the physiological pH, which sometimes restricts its biological application, but this problem can be overcome by using modified chitosan or chitosan derivatives, which have also shown encouraging results. Recent research suggests that chitosan may act as a promising material for coating titanium-based implants, improving osteointegration together with antibacterial properties.
Collapse
Affiliation(s)
- Anum Mahmood
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Nazrah Maher
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Faiza Amin
- Department of Science of Dental Materials, Dow Dental College, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Ahmed Yaseen Alqutaibi
- Department of Substitutive Dental Sciences, College of Dentistry, Taibah University, Al Madinah, Saudi Arabia; Department of Prosthodontics, College of Dentistry, Ibb University, Ibb, Yemen
| | - Naresh Kumar
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah, Saudi Arabia; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman 346, United Arab Emirates; School of Dentistry, University of Jordan, Amman, Jordan; Department of Dental Materials, Islamic International College, Riphah International University, Islamabad, Pakistan.
| |
Collapse
|
5
|
Kruczkowska W, Gałęziewska J, Grabowska K, Liese G, Buczek P, Kłosiński KK, Kciuk M, Pasieka Z, Kałuzińska-Kołat Ż, Kołat D. Biomedical Trends in Stimuli-Responsive Hydrogels with Emphasis on Chitosan-Based Formulations. Gels 2024; 10:295. [PMID: 38786212 PMCID: PMC11121652 DOI: 10.3390/gels10050295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Biomedicine is constantly evolving to ensure a significant and positive impact on healthcare, which has resulted in innovative and distinct requisites such as hydrogels. Chitosan-based formulations stand out for their versatile utilization in drug encapsulation, transport, and controlled release, which is complemented by their biocompatibility, biodegradability, and non-immunogenic nature. Stimuli-responsive hydrogels, also known as smart hydrogels, have strictly regulated release patterns since they respond and adapt based on various external stimuli. Moreover, they can imitate the intrinsic tissues' mechanical, biological, and physicochemical properties. These characteristics allow stimuli-responsive hydrogels to provide cutting-edge, effective, and safe treatment. Constant progress in the field necessitates an up-to-date summary of current trends and breakthroughs in the biomedical application of stimuli-responsive chitosan-based hydrogels, which was the aim of this review. General data about hydrogels sensitive to ions, pH, redox potential, light, electric field, temperature, and magnetic field are recapitulated. Additionally, formulations responsive to multiple stimuli are mentioned. Focusing on chitosan-based smart hydrogels, their multifaceted utilization was thoroughly described. The vast application spectrum encompasses neurological disorders, tumors, wound healing, and dermal infections. Available data on smart chitosan hydrogels strongly support the idea that current approaches and developing novel solutions are worth improving. The present paper constitutes a valuable resource for researchers and practitioners in the currently evolving field.
Collapse
Affiliation(s)
- Weronika Kruczkowska
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Julia Gałęziewska
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Katarzyna Grabowska
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Gabriela Liese
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Paulina Buczek
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Karol Kamil Kłosiński
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Zbigniew Pasieka
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Żaneta Kałuzińska-Kołat
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Damian Kołat
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| |
Collapse
|
6
|
Ozkendir O, Karaca I, Cullu S, Erdoğan OC, Yaşar HN, Dikici S, Owen R, Aldemir Dikici B. Engineering periodontal tissue interfaces using multiphasic scaffolds and membranes for guided bone and tissue regeneration. BIOMATERIALS ADVANCES 2024; 157:213732. [PMID: 38134730 DOI: 10.1016/j.bioadv.2023.213732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Periodontal diseases are one of the greatest healthcare burdens worldwide. The periodontal tissue compartment is an anatomical tissue interface formed from the periodontal ligament, gingiva, cementum, and bone. This multifaceted composition makes tissue engineering strategies challenging to develop due to the interface of hard and soft tissues requiring multiphase scaffolds to recreate the native tissue architecture. Multilayer constructs can better mimic tissue interfaces due to the individually tuneable layers. They have different characteristics in each layer, with modulation of mechanical properties, material type, porosity, pore size, morphology, degradation properties, and drug-releasing profile all possible. The greatest challenge of multilayer constructs is to mechanically integrate consecutive layers to avoid delamination, especially when using multiple manufacturing processes. Here, we review the development of multilayer scaffolds that aim to recapitulate native periodontal tissue interfaces in terms of physical, chemical, and biological characteristics. Important properties of multiphasic biodegradable scaffolds are highlighted and summarised, with design requirements, biomaterials, and fabrication methods, as well as post-treatment and drug/growth factor incorporation discussed.
Collapse
Affiliation(s)
- Ozgu Ozkendir
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Ilayda Karaca
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Selin Cullu
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Oğul Can Erdoğan
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Hüsniye Nur Yaşar
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Serkan Dikici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Robert Owen
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Betül Aldemir Dikici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey.
| |
Collapse
|
7
|
Gupta P, Sharma S, Jabin S, Jadoun S. Chitosan nanocomposite for tissue engineering and regenerative medicine: A review. Int J Biol Macromol 2024; 254:127660. [PMID: 37907176 DOI: 10.1016/j.ijbiomac.2023.127660] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023]
Abstract
Regenerative medicine and tissue engineering have emerged as a multidisciplinary promising field in the quest to address the limitations of traditional medical approaches. One of the key aspects of these fields is the development of such types of biomaterials that can mimic the extracellular matrix and provide a conducive environment for tissue regeneration. In this regard, chitosan has played a vital role which is a naturally derived linear bi-poly-aminosaccharide, and has gained significant attention due to its biocompatibility and unique properties. Chitosan possesses many unique physicochemical properties, making it a significant polysaccharide for different applications such as agriculture, nutraceutical, biomedical, food, nutraceutical, packaging, etc. as well as significant material for developing next-generation hydrogel and bio-scaffolds for regenerative medicinal applications. Moreover, chitosan can be easily modified to incorporate desirable properties, such as improved mechanical strength, enhanced biodegradability, and controlled release of bioactive molecules. Blending chitosan with other polymers or incorporating nanoparticles into its matrix further expands its potential in tissue engineering applications. This review summarizes the most recent studies of the last 10 years based on chitosan, blends, and nanocomposites and their application in bone tissue engineering, hard tissue engineering, dental implants, dental tissue engineering, dental fillers, and cartilage tissue engineering.
Collapse
Affiliation(s)
- Priti Gupta
- Department of Chemistry, Manav Rachna University, Faridabad, Haryana 121001, India.
| | - Shilpa Sharma
- Department of Chemistry, Manav Rachna University, Faridabad, Haryana 121001, India.
| | - Shagufta Jabin
- Department of Chemistry, Faculty of Engineering, Manav Rachna International Institute of Research & Studies, Faridabad, India.
| | - Sapana Jadoun
- Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Avda. General Velásquez, 1775 Arica, Chile.
| |
Collapse
|
8
|
Rossi R, Carli E, Bambini F, Mummolo S, Licini C, Memè L. The Use of Nano-Hydroxyapatite (NH) for Socket Preservation: Communication of an Upcoming Multicenter Study with the Presentation of a Pilot Case Report. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1978. [PMID: 38004027 PMCID: PMC10673145 DOI: 10.3390/medicina59111978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
Background and Objectives: The use of biomaterials in dentistry is extremely common. From a commercial perspective, different types of osteoconductive and osteoinductive biomaterials are available to clinicians. In the field of osteoconductive materials, clinicians have biomaterials made of heterologous bones at their disposal, including biomaterials of bovine, porcine, and equine origins, and biomaterials of natural origin, such as corals and hydroxyapatites. In recent years, it has become possible to synthesize nano-Ha and produce scaffolds using digital information. Although a large variety of biomaterials has been produced, there is no scientific evidence that proves their absolute indispensability in terms of the preservation of postextraction sites or in the execution of guided bone regeneration. While there is no scientific evidence showing that one material is better than another, there is evidence suggesting that several products have better in situ permanence. This article describes a preliminary study to evaluate the histological results, ISQ values, and prevalence of nano-HA. Materials and Methods: In this study, we planned to use a new biomaterial based on nanohydroxyapatite for implantation at one postextraction site; the nano-HA in this study was NuvaBONE (Overmed, Buccinasco, Milano, Italy). This is a synthetic bone graft substitute that is based on nanostructured biomimetic hydroxyapatite for application in oral-maxillofacial surgery, orthopedics, traumatology, spine surgery, and neurosurgery. In our pilot case, a patient with a hopeless tooth underwent extraction, and the large defect remaining after the removal of the tooth was filled with nano-HA to restore the volume. Twelve months later, the patient was booked for implant surgery to replace the missing tooth. At the time of the surgery, a biopsy of the regenerated tissue was taken using a trephine of 4 mm in the inner side and 8 mm deep. Results: The histological results of the biopsy showed abundant bone formation, high values of ISQ increasing from the insertion to the prosthetic phase, and a good reorganization of hydroxyapatite granules during resorption. The implant is in good function, and the replaced tooth shows good esthetics. Conclusions: The good results of this pilot case indicate starting the next Multicentric study to have more and clearer information about this nanohydroxyapatite (NH) compared with control sites.
Collapse
Affiliation(s)
| | - Elisabetta Carli
- Unit of Pediatric Dentistry, Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, 56126 Pisa, Italy; (E.C.); (L.M.)
| | - Fabrizio Bambini
- Department of Clinical Sciences and Stomatology, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Stefano Mummolo
- Department of Life, Health and Environmental Sciences, Università degli Studi dell’Aquila, 67100 L’Aquila, Italy;
| | - Caterina Licini
- Department of Clinic and Molecular Science, Polytechnic University of Marche, 60126 Ancona, Italy;
| | - Lucia Memè
- Unit of Pediatric Dentistry, Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, 56126 Pisa, Italy; (E.C.); (L.M.)
| |
Collapse
|
9
|
Yuan X, Wu T, Lu T, Ye J. Effects of Zinc and Strontium Doping on In Vitro Osteogenesis and Angiogenesis of Calcium Silicate/Calcium Phosphate Cement. ACS Biomater Sci Eng 2023; 9:5761-5771. [PMID: 37676927 DOI: 10.1021/acsbiomaterials.3c00193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Based on multiple biological functions (mainly osteogenesis and angiogenesis) of bioactive ions, Zn/Sr-doped calcium silicate/calcium phosphate cements (Zn/Sr-CS/CPCs, including 10Zn-CS/CPC, 20Sr-CS/CPC, and 10Zn/20Sr-CS/CPC) were prepared by the addition of Zn and Sr dual active ions into CS/CPC to further accelerate its bone regeneration in this study. The physicochemical and biological properties of the Zn/Sr-CS/CPCs were systematically investigated. The results showed that the setting time was slightly prolonged, the compressive strength and porosity did not change much, and all groups maintained good injectability after the doping of Zn and Sr. Besides, the doping of Zn and Sr had little effect on the phase and microstructure of hydrated products of CS/CPC. The degradation rate of Zn/Sr-CS/CPCs decreased after doping with Zn and Sr. In mouse bone marrow mesenchymal stem cells (mBMSC) experiments, all Zn/Sr-CS/CPCs stimulated the viability, adhesion, proliferation, and alkaline phosphatase (ALP) activity together with osteogenesis-related genes (ALP, Runx2, Col-I, OCN, and OPN). The further addition of Zn and Sr played better and synergistic roles in in vitro osteogenesis. Thereinto, 10Zn/20Sr-CS/CPC manifested the optimum in vitro osteogenic performance. As for human umbilical vein endothelial cell (HUVEC) experiments, the incorporation of CS doped with Zn and Sr into CPC possessed good vascularization properties of proliferation, NO secretion, tube formation, and the expression of angiogenesis-related genes (VEGF, bFGF, and eNOS). In conclusion, the doping of Zn and Sr into CS/CPC could exhibit excellent osteogenesis and good angiogenesis potentials and 10Zn/20Sr-CS/CPC could be considered as a promising candidate in bone repair.
Collapse
Affiliation(s)
- Xinyuan Yuan
- School of Materials Science and Engineering and Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology, Guangzhou 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
| | - Tingting Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510536, P. R. China
| | - Teliang Lu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P. R. China
| | - Jiandong Ye
- School of Materials Science and Engineering and Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology, Guangzhou 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
| |
Collapse
|
10
|
Mousavi SJ, Ejeian F, Razmjou A, Nasr-Esfahani MH. In vivo evaluation of bone regeneration using ZIF8-modified polypropylene membrane in rat calvarium defects. J Clin Periodontol 2023; 50:1390-1405. [PMID: 37485621 DOI: 10.1111/jcpe.13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 06/02/2023] [Accepted: 07/04/2023] [Indexed: 07/25/2023]
Abstract
AIM The profound potential of zeolitic imidazolate framework 8 (ZIF8) thin film for inducing osteogenesis has been previously established under in vitro conditions. As the next step towards the clinical application of ZIF8-modified substrates in periodontology, this in vivo study aimed to evaluate the ability of the ZIF8 crystalline layer to induce bone regeneration in an animal model defect. MATERIALS AND METHODS Following the mechanical characterization of the membranes and analysing the in vitro degradation of the ZIF8 layer, in vivo bone regeneration was evaluated in a critical-sized (5-mm) rat calvarial bone defect model. For each animal, one defect was randomly covered with either a polypropylene (PP) or a ZIF8-modified membrane (n = 7 per group), while the other defect was left untreated as a control. Eight weeks post surgery, bone formation was assessed by microcomputed tomography scanning, haematoxylin and eosin staining and immunohistochemical analysis. RESULTS The ZIF8-modified membrane outperformed the PP membrane in terms of mechanical properties and revealed a trace Zn+2 release. Results of in vivo evaluation verified the superior barrier function of the ZIF8-coated membrane compared with pristine PP membrane. Compared with the limited marginal bone formation in the control and PP groups, the defect area was almost filled with mature bone in the ZIF8-coated membrane group. CONCLUSIONS Our results support the effectiveness of the ZIF8-coated membrane as a promising material for improving clinical outcomes of guided bone regeneration procedures, without using biological components.
Collapse
Affiliation(s)
- Seyed Javad Mousavi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Fatemeh Ejeian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, Perth, Western Australia, Australia
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
11
|
Teimoori M, Nokhbatolfoghahaei H, Khojasteh A. Bilayer scaffolds/membranes for bone tissue engineering applications: A systematic review. BIOMATERIALS ADVANCES 2023; 153:213528. [PMID: 37352742 DOI: 10.1016/j.bioadv.2023.213528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
OBJECTIVE This systematic review evaluates the purpose, materials, physio-mechanical, and biological effects of bilayer scaffolds/membranes used for bone tissue engineering applications. METHODS A comprehensive electronic search of English-language literature from 2012 to October 2022 was conducted in PubMed, Scopus, ScienceDirect, and Google Scholar online databases according to the PRISMA 2020 guidelines. The quality of animal studies was evaluated through the SYRCLE's risk of bias tool. RESULTS A total of 77 studies were sought for retrieval, and 39 studies met the inclusion criteria. According to the synthesis results, most bilayers had a dense barrier layer that prevented connective tissue penetration and a loose osteogenic layer that supported cell migration and osteogenesis. PLGA, PCL, and chitosan were the most common polymers in the barrier layers, while the most utilized polymers in osteogenic layers were PLGA and gelatin. Electrospinning and solvent casting were the most common fabrication methods to design the bilayer structures. Many studies reported higher biological results for bilayers compared to their single layers. Also, fabricated bilayers' in vitro osteogenesis and in vivo new bone formation were significantly superior or at least comparable to the frequently used commercial membranes. CONCLUSION 1) Bilayers with two distinct layers and different materials, porosities, mechanical properties, and biological behavior can significantly improve heterogeneous bone regeneration; 2) the addition of ceramics and/or drugs to the osteogenic layer enhances the osteogenic properties of the bilayers; 3) fabrication method and pore size of the layers play an important role in determining the mechanical and biological behavior of them.
Collapse
Affiliation(s)
- Mahdis Teimoori
- Student Research Committee, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Cranio-Maxillofacial Surgery, University Hospital, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
12
|
Pushpalatha C, Gayathri V, Sowmya S, Augustine D, Alamoudi A, Zidane B, Hassan Mohammad Albar N, Bhandi S. Nanohydroxyapatite in dentistry: A comprehensive review. Saudi Dent J 2023; 35:741-752. [PMID: 37817794 PMCID: PMC10562112 DOI: 10.1016/j.sdentj.2023.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/13/2023] [Accepted: 05/19/2023] [Indexed: 10/12/2023] Open
Abstract
Enamel, being the hardest and the highest mineralized tissue of the human body, contains nearly 96% inorganic components and 4% organic compounds and water. Dentin contains 65% inorganic components and 35% organic and water content. The translucency and white appearance of enamel are attributed to Hydroxyapatite (HA), which constitutes the major part of the inorganic component of dental hard tissue. With the advent of nanotechnology, the application of Nanohydroxyapatite (nHA) has piqued interest in dentistry due to its excellent mechanical, physical, and chemical properties. Compared to HA, nHA is found to have superior properties such as increased solubility, high surface energy and better biocompatibility. This is due to the morphological and structural similarity of nanosized hydroxyapatite particles to tooth hydroxyapatite crystals. These nanoparticles have been incorporated into various dental formulations for different applications to ensure comprehensive oral healthcare. To prevent dental caries, several nHA based dentifrices, mouth rinsing solutions and remineralizing pastes have been developed. nHA-based materials, such as nanocomposites, nano impression materials, and nanoceramics, have proven to be very effective in restoring tooth deformities (decay, fracture, and tooth loss). The nHA coating on the surface of the dental implant helps it bind to the bone by forming a biomimetic coating. A recent innovative strategy involves using nHA to reduce dentinal hypersensitivity and to reconstruct periodontal bone defects. The purpose of the present review is to discuss the different applications of nHA in dentistry, especially in preventive and restorative dentistry, dental implantology, bleaching and dentine hypersensitivity management.
Collapse
Affiliation(s)
- C. Pushpalatha
- Department of Pedodontics and Preventive Dentistry, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - V.S. Gayathri
- Department of Pedodontics and Preventive Dentistry, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - S.V. Sowmya
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Dominic Augustine
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Ahmed Alamoudi
- Oral Biology Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bassam Zidane
- Restorative Dentistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Shilpa Bhandi
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| |
Collapse
|
13
|
Radulescu DE, Vasile OR, Andronescu E, Ficai A. Latest Research of Doped Hydroxyapatite for Bone Tissue Engineering. Int J Mol Sci 2023; 24:13157. [PMID: 37685968 PMCID: PMC10488011 DOI: 10.3390/ijms241713157] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
Bone tissue engineering has attracted great interest in the last few years, as the frequency of tissue-damaging or degenerative diseases has increased exponentially. To obtain an ideal treatment solution, researchers have focused on the development of optimum biomaterials to be applied for the enhancement of bioactivity and the regeneration process, which are necessary to support the proper healing process of osseous tissues. In this regard, hydroxyapatite (HA) has been the most widely used material in the biomedical field due to its great biocompatibility and similarity with the native apatite from the human bone. However, HA still presents some deficiencies related to its mechanical properties, which are essential for HA to be applied in load-bearing applications. Bioactivity is another vital property of HA and is necessary to further improve regeneration and antibacterial activity. These drawbacks can be solved by doping the material with trace elements, adapting the properties of the material, and, finally, sustaining bone regeneration without the occurrence of implant failure. Considering these aspects, in this review, we have presented some general information about HA properties, synthesis methods, applications, and the necessity for the addition of doping ions into its structure. Also, we have presented their influence on the properties of HA, as well as the latest applications of doped materials in the biomedical field.
Collapse
Affiliation(s)
- Diana-Elena Radulescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania
| | - Otilia Ruxandra Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, Bucharest National Polytechnic University of Science and Technology, 060042 Bucharest, Romania
- Romanian Academy of Scientists, 050045 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, Bucharest National Polytechnic University of Science and Technology, 060042 Bucharest, Romania
- Romanian Academy of Scientists, 050045 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, Bucharest National Polytechnic University of Science and Technology, 060042 Bucharest, Romania
- Romanian Academy of Scientists, 050045 Bucharest, Romania
| |
Collapse
|
14
|
Shi X, Li X, Tian Y, Qu X, Zhai S, Liu Y, Jia W, Cui Y, Chu S. Physical, mechanical, and biological properties of collagen membranes for guided bone regeneration: a comparative in vitro study. BMC Oral Health 2023; 23:510. [PMID: 37481548 PMCID: PMC10362553 DOI: 10.1186/s12903-023-03223-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND To provide a reference for clinical selection of collagen membranes by analyzing the properties of three kinds of collagen membranes widely used in clinics: Bio-Gide membrane from porcine dermis (PD), Heal-All membrane from bovine dermis (BD), and Lyoplant membrane from bovine pericardium (BP). METHODS The barrier function of three kinds of collagen membranes were evaluated by testing the surface morphology, mechanical properties, hydrophilicity, and degradation rate of collagen membranes in collagenase and artificial saliva. In addition, the bioactivity of each collagen membrane as well as the proliferation and osteogenesis of MC3T3-E1 cells were evaluated. Mass spectrometry was also used to analyze the degradation products. RESULTS The BP membrane had the highest tensile strength and Young's modulus as well as the largest water contact angle. The PD membrane exhibited the highest elongation at break, the smallest water contact angle, and the lowest degradation weight loss. The BD membrane had the highest degradation weight loss, the highest number of proteins in its degradation product, the strongest effect on the proliferation of MC3T3-E1 cells, and the highest expression level of osteogenic genes. CONCLUSIONS The PD membrane is the best choice for shaping and maintenance time, while the BD membrane is good for osteogenesis, and the BP membrane is suitable for spatial maintenance. To meet the clinical requirements of guided bone regeneration, using two different kinds of collagen membranes concurrently to exert their respective advantages is an option worth considering.
Collapse
Affiliation(s)
- Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xianjing Li
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xinyao Qu
- Department of Drug Clinical Trial, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Shaobo Zhai
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yang Liu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Wei Jia
- Yongchang Community Health Service Center of Chaoyang District, Changchun, China
| | - Yan Cui
- Department of Dermatology and Venereology, First Hospital of Jilin University, Jilin University, Changchun, China.
| | - Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
15
|
Yang J, Yuan K, Zhang T, Zhou S, Li W, Chen Z, Wang Y. Accelerated Bone Reconstruction by the Yoda1 Bilayer Membrane via Promotion of Osteointegration and Angiogenesis. Adv Healthc Mater 2023; 12:e2203105. [PMID: 36912184 DOI: 10.1002/adhm.202203105] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/28/2023] [Indexed: 03/14/2023]
Abstract
Guided bone regeneration membranes are widely used to prevent fibroblast penetration and facilitate bone defect repair by osteoblasts. However, the current clinically available collagen membranes lack bone induction and angiogenic capacities, exhibiting limited bone regeneration. The mechanically sensitive channel, Piezo1, which is activated by Yoda1, has been reported to play crucial roles in osteogenesis and angiogenesis. Nevertheless, the application of Yoda1 alone is unsustainable to maintain this activity. Therefore, this study fabricates a Yoda1-loading bilayer membrane using electrospinning technology. Its inner layer in contact with the bone defect is composed of vertically aligned fibers, which regulate the proliferation and differentiation of cells, release Yoda1, and promote bone regeneration. Its outer layer in contact with the soft tissue is dense with oriented fibers by UV cross-linking, mainly preventing fibroblast infiltration and inhibiting the immune response. Furthermore, the loaded Yoda1 affects osteogenesis and angiogenesis via the Piezo1/RhoA/Rho-associated coiled-coil-containing protein kinase 1/Yes1-associated transcriptional regulator signaling pathway. The results reveal that the Yoda1 bilayer membrane is efficient and versatile in accelerating bone regeneration, suggesting its potential as a novel therapeutic agent for various clinical issues.
Collapse
Affiliation(s)
- Jinghong Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Kaiting Yuan
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Tingting Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Shiqi Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Weichang Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| |
Collapse
|
16
|
Bertsch C, Maréchal H, Gribova V, Lévy B, Debry C, Lavalle P, Fath L. Biomimetic Bilayered Scaffolds for Tissue Engineering: From Current Design Strategies to Medical Applications. Adv Healthc Mater 2023; 12:e2203115. [PMID: 36807830 PMCID: PMC11469754 DOI: 10.1002/adhm.202203115] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Indexed: 02/20/2023]
Abstract
Tissue damage due to cancer, congenital anomalies, and injuries needs new efficient treatments that allow tissue regeneration. In this context, tissue engineering shows a great potential to restore the native architecture and function of damaged tissues, by combining cells with specific scaffolds. Scaffolds made of natural and/or synthetic polymers and sometimes ceramics play a key role in guiding cell growth and formation of the new tissues. Monolayered scaffolds, which consist of uniform material structure, are reported as not being sufficient to mimic complex biological environment of the tissues. Osteochondral, cutaneous, vascular, and many other tissues all have multilayered structures, therefore multilayered scaffolds seem more advantageous to regenerate these tissues. In this review, recent advances in bilayered scaffolds design applied to regeneration of vascular, bone, cartilage, skin, periodontal, urinary bladder, and tracheal tissues are focused on. After a short introduction on tissue anatomy, composition and fabrication techniques of bilayered scaffolds are explained. Then, experimental results obtained in vitro and in vivo are described, and their limitations are given. Finally, difficulties in scaling up production of bilayer scaffolds and reaching the stage of clinical studies are discussed when multiple scaffold components are used.
Collapse
Affiliation(s)
- Christelle Bertsch
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
| | - Hélène Maréchal
- Service d'ORL et de Chirurgie Cervico‐FacialeHôpitaux Universitaires de Strasbourg1 avenue MolièreStrasbourg67200France
| | - Varvara Gribova
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
| | - Benjamin Lévy
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
| | - Christian Debry
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
- Service d'ORL et de Chirurgie Cervico‐FacialeHôpitaux Universitaires de Strasbourg1 avenue MolièreStrasbourg67200France
| | - Philippe Lavalle
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
| | - Léa Fath
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
- Service d'ORL et de Chirurgie Cervico‐FacialeHôpitaux Universitaires de Strasbourg1 avenue MolièreStrasbourg67200France
| |
Collapse
|
17
|
Ganesh SS, Anushikaa R, Swetha Victoria VS, Lavanya K, Shanmugavadivu A, Selvamurugan N. Recent Advancements in Electrospun Chitin and Chitosan Nanofibers for Bone Tissue Engineering Applications. J Funct Biomater 2023; 14:jfb14050288. [PMID: 37233398 DOI: 10.3390/jfb14050288] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Treatment of large segmental bone loss caused by fractures, osteomyelitis, and non-union results in expenses of around USD 300,000 per case. Moreover, the worst-case scenario results in amputation in 10% to 14.5% of cases. Biomaterials, cells, and regulatory elements are employed in bone tissue engineering (BTE) to create biosynthetic bone grafts with effective functionalization that can aid in the restoration of such fractured bones, preventing amputation and alleviating expenses. Chitin (CT) and chitosan (CS) are two of the most prevalent natural biopolymers utilized in the fields of biomaterials and BTE. To offer the structural and biochemical cues for augmenting bone formation, CT and CS can be employed alone or in combination with other biomaterials in the form of nanofibers (NFs). When compared with several fabrication methods available to produce scaffolds, electrospinning is regarded as superior since it enables the development of nanostructured scaffolds utilizing biopolymers. Electrospun nanofibers (ENFs) offer unique characteristics, including morphological resemblance to the extracellular matrix, high surface-area-to-volume ratio, permeability, porosity, and stability. This review elaborates on the recent strategies employed utilizing CT and CS ENFs and their biocomposites in BTE. We also summarize their implementation in supporting and delivering an osteogenic response to treat critical bone defects and their perspectives on rejuvenation. The CT- and CS-based ENF composite biomaterials show promise as potential constructions for bone tissue creation.
Collapse
Affiliation(s)
- S Shree Ganesh
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Ramprasad Anushikaa
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Venkadesan Sri Swetha Victoria
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Krishnaraj Lavanya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| |
Collapse
|
18
|
Dogan D, Erdem U, Bozer BM, Turkoz MB, Yıldırım G, Metin AU. Resorbable membrane design: In vitro characterization of silver doped-hydroxyapatite-reinforced XG/PEI semi-IPN composite. J Mech Behav Biomed Mater 2023; 142:105887. [PMID: 37141744 DOI: 10.1016/j.jmbbm.2023.105887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
In this study, the production and characterization of silver-doped hydroxyapatite (AgHA) reinforced Xanthan gum (XG) and Polyethyleneimine (PEI) reinforced semi-interpenetrating polymer network (IPN) biocomposite, known to be used as bone cover material for therapeutic purposes in bone tissue, were performed. XG/PEI IPN films containing 2AgHA nanoparticles were produced by simultaneous condensation and ionic gelation. Characteristics of 2AgHA-XG/PEI nanocomposite film were evaluated by structural, morphological (SEM, XRD, FT-IR, TGA, TM, and Raman) and biological activity analysis (degradation, MTT, genotoxicity, and antimicrobial activity) techniques. In the physicochemical characterization, it was determined that 2AgHA nanoparticles were homogeneously dispersed in the XG/PEI-IPN membrane at high concentration and the thermal and mechanical stability of the formed film were high. The nanocomposites showed high antibacterial activity against Acinetobacter Baumannii (A.Baumannii), Staphylococcus aureus (S.aureus), and Streptococcus mutans (S.mutans). L929 exhibited good biocompatibility for fibroblast cells and was determined to support the formation of MCC cells. It was shown that a resorbable 2AgHA-XG/PEI composite material was obtained with a high degradation rate and 64% loss of mass at the end of the 7th day. Physico-chemically developed biocompatible and biodegradable XG-2AgHA/PEI nanocomposite semi-IPN films possessed an important potential for the treatment of defects in bone tissue as an easily applicable bone cover. Besides, it was noted that 2AgHA-XG/PEI biocomposite could increase cell viability, especially in dental-bone treatments for coating, filling, and occlusion.
Collapse
Affiliation(s)
- Deniz Dogan
- Kirikkale University, Faculty of Science, Department of Chemistry, 71450, Turkey
| | - Umit Erdem
- Kirikkale University, Scientific and Tech. Research Center, Kirikkale, 71450, Turkey.
| | - Busra M Bozer
- Hitit University, Scientific Technical App. and Research Center, Corum, 19030, Turkey
| | - Mustafa B Turkoz
- Karabuk University, Faculty of Engineering, Electric and Electronics Engineering, Karabuk, 78050, Turkey
| | - Gurcan Yıldırım
- Abant Izzet Baysal University, Faculty of Engineering, Mechanical Engineering, Bolu, 14280, Turkey
| | - Aysegul U Metin
- Kirikkale University, Faculty of Science, Department of Chemistry, 71450, Turkey
| |
Collapse
|
19
|
Wan T, Zhang M, Jiang HR, Zhang YC, Zhang XM, Wang YL, Zhang PX. Tissue-Engineered Nanomaterials Play Diverse Roles in Bone Injury Repair. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091449. [PMID: 37176994 PMCID: PMC10180507 DOI: 10.3390/nano13091449] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/08/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Nanomaterials with bone-mimicking characteristics and easily internalized by the cell could create suitable microenvironments in which to regulate the therapeutic effects of bone regeneration. This review provides an overview of the current state-of-the-art research in developing and using nanomaterials for better bone injury repair. First, an overview of the hierarchical architecture from the macroscale to the nanoscale of natural bone is presented, as these bone tissue microstructures and compositions are the basis for constructing bone substitutes. Next, urgent clinical issues associated with bone injury that require resolution and the potential of nanomaterials to overcome them are discussed. Finally, nanomaterials are classified as inorganic or organic based on their chemical properties. Their basic characteristics and the results of related bone engineering studies are described. This review describes theoretical and technical bases for the development of innovative methods for repairing damaged bone and should inspire therapeutic strategies with potential for clinical applications.
Collapse
Affiliation(s)
- Teng Wan
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Hao-Ran Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Yi-Chong Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Xiao-Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Yi-Lin Wang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| |
Collapse
|
20
|
Souto-Lopes M, Grenho L, Manrique YA, Dias MM, Fernandes MH, Monteiro FJ, Salgado CL. Full physicochemical and biocompatibility characterization of a supercritical CO 2 sterilized nano-hydroxyapatite/chitosan biodegradable scaffold for periodontal bone regeneration. BIOMATERIALS ADVANCES 2023; 146:213280. [PMID: 36682201 DOI: 10.1016/j.bioadv.2023.213280] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/07/2022] [Accepted: 01/02/2023] [Indexed: 01/08/2023]
Abstract
Despite bone's innate self-renewal capability, some periodontal pathologic and traumatic defects' size inhibits full spontaneous regeneration. This current research characterized a 3D porous biodegradable nano-hydroxyapatite/chitosan (nHAp/CS, 70/30) scaffold for periodontal bone regeneration, which preparation method includes the final solvent extraction and sterilization through supercritical CO2 (scCO2). Micro-CT analysis revealed the fully interconnected porous microstructure of the nHAp/CS scaffold (total porosity 78 %, medium pore size 200 μm) which is critical for bone regeneration. Scanning electron microscopy (SEM) showed HAp crystals forming on the surface of the nHAp/CS scaffold after 21 days in simulated body fluid, demonstrating its bioactivity in vitro. The presence of nHAp in the scaffolds promoted a significantly lower biodegradation rate compared to a plain CS scaffold in PBS. Dynamic mechanical analysis confirmed their viscoelasticity, but the presence of nHAp significantly enhanced the storage modulus (42.34 ± 6.09 kPa at 10 Hz after 28 days in PBS), showing that it may support bone ingrowth at low-load bearing bone defects. Both scaffold types significantly inhibited the growth, attachment and colony formation abilities of S. aureus and E. coli, enhancing the relevance of chitosan in the grafts' composition for the naturally contaminated oral environment. At SEM and laser scanning confocal microscopy, MG63 cells showed normal morphology and could adhere and proliferate inside the biomaterials' porous structure, especially for the nHAp/CS scaffold, reaching higher proliferative rate at day 14. MG63 cells seeded within nHAp/CS scaffolds presented a higher expression of RUNX2, collagen A1 and Sp7 osteogenic genes compared to the CS samples. The in vivo subcutaneous implantation in mice of both scaffold types showed lower biodegradability with the preservation of the scaffolds porous structure that allowed the ingrowth of connective tissue until 5 weeks. Histology shows an intensive and progressive ingrowth of new vessels and collagen between the 3rd and the 5th week, especially for the nHAp/CS scaffold. So far, the scCO2 method enabled the production of a cost-effective and environment-friendly ready-to-use nHAp/CS scaffold with microstructural, chemical, mechanical and biocompatibility features that make it a suitable bone graft alternative for defect sites in an adverse environment as in periodontitis and peri-implantitis.
Collapse
Affiliation(s)
- Mariana Souto-Lopes
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Liliana Grenho
- Faculty of Dental Medicine of the University of Porto, R. Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; LAQV/REQUIMTE - Laboratório Associado para a Química Verde/Rede de Química e Tecnologia, Portugal
| | - Yaidelin Alves Manrique
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Madalena Maria Dias
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria Helena Fernandes
- Faculty of Dental Medicine of the University of Porto, R. Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; LAQV/REQUIMTE - Laboratório Associado para a Química Verde/Rede de Química e Tecnologia, Portugal
| | - Fernando Jorge Monteiro
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Christiane Laranjo Salgado
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal.
| |
Collapse
|
21
|
Kim Y, Zharkinbekov Z, Raziyeva K, Tabyldiyeva L, Berikova K, Zhumagul D, Temirkhanova K, Saparov A. Chitosan-Based Biomaterials for Tissue Regeneration. Pharmaceutics 2023; 15:pharmaceutics15030807. [PMID: 36986668 PMCID: PMC10055885 DOI: 10.3390/pharmaceutics15030807] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Chitosan is a chitin-derived biopolymer that has shown great potential for tissue regeneration and controlled drug delivery. It has numerous qualities that make it attractive for biomedical applications such as biocompatibility, low toxicity, broad-spectrum antimicrobial activity, and many others. Importantly, chitosan can be fabricated into a variety of structures including nanoparticles, scaffolds, hydrogels, and membranes, which can be tailored to deliver a desirable outcome. Composite chitosan-based biomaterials have been demonstrated to stimulate in vivo regeneration and the repair of various tissues and organs, including but not limited to, bone, cartilage, dental, skin, nerve, cardiac, and other tissues. Specifically, de novo tissue formation, resident stem cell differentiation, and extracellular matrix reconstruction were observed in multiple preclinical models of different tissue injuries upon treatment with chitosan-based formulations. Moreover, chitosan structures have been proven to be efficient carriers for medications, genes, and bioactive compounds since they can maintain the sustained release of these therapeutics. In this review, we discuss the most recently published applications of chitosan-based biomaterials for different tissue and organ regeneration as well as the delivery of various therapeutics.
Collapse
|
22
|
Recent Developments in Polymer Nanocomposites for Bone Regeneration. Int J Mol Sci 2023; 24:ijms24043312. [PMID: 36834724 PMCID: PMC9959928 DOI: 10.3390/ijms24043312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Most people who suffer acute injuries in accidents have fractured bones. Many of the basic processes that take place during embryonic skeletal development are replicated throughout the regeneration process that occurs during this time. Bruises and bone fractures, for example, serve as excellent examples. It almost always results in a successful recovery and restoration of the structural integrity and strength of the broken bone. After a fracture, the body begins to regenerate bone. Bone formation is a complex physiological process that requires meticulous planning and execution. A normal healing procedure for a fracture might reveal how the bone is constantly rebuilding as an adult. Bone regeneration is becoming more dependent on polymer nanocomposites, which are composites made up of a polymer matrix and a nanomaterial. This study will review polymer nanocomposites that are employed in bone regeneration to stimulate bone regeneration. As a result, we will introduce the role of bone regeneration nanocomposite scaffolds, and the nanocomposite ceramics and biomaterials that play a role in bone regeneration. Aside from that, recent advances in polymer nanocomposites might be used in a variety of industrial processes to help people with bone defects overcome their challenges will be discussed.
Collapse
|
23
|
Preparation and In Vitro Characterization of Magnetic CS/PVA/HA/pSPIONs Scaffolds for Magnetic Hyperthermia and Bone Regeneration. Int J Mol Sci 2023; 24:ijms24021128. [PMID: 36674644 PMCID: PMC9863008 DOI: 10.3390/ijms24021128] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Conventional bone cancer treatment often results in unwanted side effects, critical-sized bone defects, and inefficient cancer-cell targeting. Therefore, new approaches are necessary to better address bone cancer treatment and patient's recovery. One solution may reside in the combination of bone regeneration scaffolds with magnetic hyperthermia. By incorporating pristine superparamagnetic iron oxide nanoparticles (pSPIONs) into additively manufactured scaffolds we created magnetic structures for magnetic hyperthermia and bone regeneration. For this, hydroxyapatite (HA) particles were integrated in a polymeric matrix composed of chitosan (CS) and poly (vinyl alcohol) (PVA). Once optimized, pSPIONs were added to the CS/PVA/HA paste at three different concentrations (1.92, 3.77, and 5.54 wt.%), and subsequently additively manufactured to form a scaffold. Results indicate that scaffolds containing 3.77 and 5.54 wt.% of pSPIONs, attained temperature increases of 6.6 and 7.5 °C in magnetic hyperthermia testing, respectively. In vitro studies using human osteosarcoma Saos-2 cells indicated that pSPIONs incorporation significantly stimulated cell adhesion, proliferation and alkaline phosphatase (ALP) expression when compared to CS/PVA/HA scaffolds. Thus, these results support that CS/PVA/HA/pSPIONs scaffolds with pSPIONs concentrations above or equal to 3.77 wt.% have the potential to be used for magnetic hyperthermia and bone regeneration.
Collapse
|
24
|
Cui H, You Y, Cheng GW, Lan Z, Zou KL, Mai QY, Han YH, Chen H, Zhao YY, Yu GT. Advanced materials and technologies for oral diseases. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2156257. [PMID: 36632346 PMCID: PMC9828859 DOI: 10.1080/14686996.2022.2156257] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Oral disease, as a class of diseases with very high morbidity, brings great physical and mental damage to people worldwide. The increasing burden and strain on individuals and society make oral diseases an urgent global health problem. Since the treatment of almost all oral diseases relies on materials, the rapid development of advanced materials and technologies has also promoted innovations in the treatment methods and strategies of oral diseases. In this review, we systematically summarized the application strategies in advanced materials and technologies for oral diseases according to the etiology of the diseases and the comparison of new and old materials. Finally, the challenges and directions of future development for advanced materials and technologies in the treatment of oral diseases were refined. This review will guide the fundamental research and clinical translation of oral diseases for practitioners of oral medicine.
Collapse
Affiliation(s)
- Hao Cui
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yan You
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Wang Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhou Lan
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Ke-Long Zou
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Qiu-Ying Mai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan-Hua Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yu-Yue Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Guang-Tao Yu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Wei Y, Wang Z, Han J, Jiang X, Lei L, Yang X, Sun W, Gou Z, Chen L. Modularized bioceramic scaffold/hydrogel membrane hierarchical architecture beneficial for periodontal tissue regeneration in dogs. Biomater Res 2022; 26:68. [PMID: 36461132 PMCID: PMC9717521 DOI: 10.1186/s40824-022-00315-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/04/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Destruction of alveolar bone and periodontal ligament due to periodontal disease often requires surgical treatment to reconstruct the biological construction and functions of periodontium. Despite significant advances in dental implants in the past two decades, it remains a major challenge to adapt bone grafts and barrier membrane in surgery due to the complicated anatomy of tooth and defect contours. Herein, we developed a novel biphasic hierarchical architecture with modularized functions and shape based on alveolar bone anatomy to achieve the ideal outcomes. METHODS The integrated hierarchical architecture comprising of nonstoichiometric wollastonite (nCSi) scaffolds and gelatin methacrylate/silanized hydroxypropyl methylcellulose (GelMA/Si-HPMC) hydrogel membrane was fabricated by digital light processing (DLP) and photo-crosslinked hydrogel injection technique respectively. The rheological parameters, mechanical properties and degradation rates of composite hydrogels were investigated. L-929 cells were cultured on the hydrogel samples to evaluate biocompatibility and cell barrier effect. Cell scratch assay, alkaline phosphatase (ALP) staining, and alizarin red (AR) staining were used to reveal the migration and osteogenic ability of hydrogel membrane based on mouse mandible-derived osteoblasts (MOBs). Subsequently, a critical-size one-wall periodontal defect model in dogs was prepared to evaluate the periodontal tissue reconstruction potential of the biphasic hierarchical architecture. RESULTS The personalized hydrogel membrane integrating tightly with the nCSi scaffolds exhibited favorable cell viability and osteogenic ability in vitro, while the scratch assay showed that osteoblast migration was drastically correlated with Si-HPMC content in the composite hydrogel. The equivalent composite hydrogel has proven good physiochemical properties, and its membrane exhibited potent occlusive effect in vivo; meanwhile, the hierarchical architectures exerted a strong periodontal regeneration capability in the periodontal intrabony defect models of dogs. Histological examination showed effective bone and periodontal ligament regeneration in the biomimetic architecture system; however, soft tissue invasion was observed in the control group. CONCLUSIONS Our results suggested that such modularized hierarchical architectures have excellent potential as a next-generation oral implants, and this precisely tuned guided tissue regeneration route offer an opportunity for improving periodontal damage reconstruction and reducing operation sensitivity.
Collapse
Affiliation(s)
- Yingming Wei
- grid.13402.340000 0004 1759 700XDepartment of Oral Medicine, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009 People’s Republic of China
| | - Zhongxiu Wang
- grid.13402.340000 0004 1759 700XDepartment of Oral Medicine, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009 People’s Republic of China
| | - Jiayin Han
- grid.13402.340000 0004 1759 700XDepartment of Oral Medicine, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009 People’s Republic of China
| | - Xiaojian Jiang
- grid.13402.340000 0004 1759 700XDepartment of Oral Medicine, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009 People’s Republic of China
| | - Lihong Lei
- grid.13402.340000 0004 1759 700XDepartment of Oral Medicine, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009 People’s Republic of China
| | - Xianyan Yang
- grid.13402.340000 0004 1759 700XBio-Nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Weilian Sun
- grid.13402.340000 0004 1759 700XDepartment of Oral Medicine, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009 People’s Republic of China
| | - Zhongru Gou
- grid.13402.340000 0004 1759 700XBio-Nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Lili Chen
- grid.13402.340000 0004 1759 700XDepartment of Oral Medicine, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009 People’s Republic of China
| |
Collapse
|
26
|
Layered scaffolds in periodontal regeneration. J Oral Biol Craniofac Res 2022; 12:782-797. [PMID: 36159068 PMCID: PMC9489757 DOI: 10.1016/j.jobcr.2022.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Periodontitis is a common inflammatory disease in dentistry that may lead to tooth loss and aesthetic problems. Periodontal tissue has a sophisticated architecture including four sections of alveolar bone, cementum, gingiva, and periodontal ligament fiber; all these four can be damaged during periodontitis. Thus, for whole periodontal regeneration, it is important to form both hard and soft tissue structures simultaneously on the tooth root surface without forming junctional epithelium and ankylosis. This condition makes the treatment of the periodontium a challenging process. Various regenerative methods including Guided Bone/Tissue Regeneration (GBR/GTR) using various membranes have been developed. Although using such GBR/GTR membranes was successful for partial periodontal treatment, they cannot be used for the regeneration of complete periodontium. For this purpose, multilayered scaffolds are now being developed. Such scaffolds may include various biomaterials, stem cells, and growth factors in a multiphasic configuration in which each layer is designed to regenerate specific section of the periodontium. This article provides a comprehensive review of the multilayered scaffolds for periodontal regeneration based on natural or synthetic polymers, and their combinations with other biomaterials and bioactive molecules. After highlighting the challenges related to multilayered scaffolds preparation, features of suitable scaffolds for periodontal regeneration are discussed.
Collapse
|
27
|
Liu X, Jiang Z, Xing D, Yang Y, Li Z, Sun Z. Recent progress in nanocomposites of carbon dioxide fixation derived reproducible biomedical polymers. Front Chem 2022; 10:1035825. [PMID: 36277338 PMCID: PMC9585172 DOI: 10.3389/fchem.2022.1035825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
In recent years, the environmental problems accompanying the extensive application of biomedical polymer materials produced from fossil fuels have attracted more and more attentions. As many biomedical polymer products are disposable, their life cycle is relatively short. Most of the used or overdue biomedical polymer products need to be burned after destruction, which increases the emission of carbon dioxide (CO2). Developing biomedical products based on CO2 fixation derived polymers with reproducible sources, and gradually replacing their unsustainable fossil-based counterparts, will promote the recycling of CO2 in this field and do good to control the greenhouse effect. Unfortunately, most of the existing polymer materials from renewable raw materials have some property shortages, which make them unable to meet the gradually improved quality and property requirements of biomedical products. In order to overcome these shortages, much time and effort has been dedicated to applying nanotechnology in this field. The present paper reviews recent advances in nanocomposites of CO2 fixation derived reproducible polymers for biomedical applications, and several promising strategies for further research directions in this field are highlighted.
Collapse
Affiliation(s)
- Xin Liu
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhiwen Jiang
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Zhiwen Jiang, ; Zhiying Li,
| | - Dejun Xing
- Tumor Hospital of Jilin Province, Changchun, China
| | - Yan Yang
- Tumor Hospital of Jilin Province, Changchun, China
| | - Zhiying Li
- Tumor Hospital of Jilin Province, Changchun, China
- *Correspondence: Zhiwen Jiang, ; Zhiying Li,
| | - Zhiqiang Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
28
|
Shu Z, Zhang C, Yan L, Lei H, Peng C, Liu S, Fan L, Chu Y. Antibacterial and osteoconductive polycaprolactone/polylactic acid/nano-hydroxyapatite/Cu@ZIF-8 GBR membrane with asymmetric porous structure. Int J Biol Macromol 2022; 224:1040-1051. [DOI: 10.1016/j.ijbiomac.2022.10.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
29
|
Chitosan-based therapeutic systems and their potentials in treatment of oral diseases. Int J Biol Macromol 2022; 222:3178-3194. [DOI: 10.1016/j.ijbiomac.2022.10.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
30
|
Liu J, Wu S, Ma J, Liu C, Dai T, Wu X, Zhao H, Zhou D. Polycaprolactone/Gelatin/Hydroxyapatite Electrospun Nanomembrane Materials Incorporated with Different Proportions of Attapulgite Synergistically Promote Bone Formation. Int J Nanomedicine 2022; 17:4087-4103. [PMID: 36105619 PMCID: PMC9467850 DOI: 10.2147/ijn.s372247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/31/2022] [Indexed: 12/28/2022] Open
Abstract
Purpose To enhance the osteoinductive effect of Hydroxyapatite (HA) in bone tissue engineering, this study manufactured polycaprolactone (PCL)/gelatin (GEL)/HA nanofibrous scaffolds incorporated with different ratios of attapulgite (ATP): HA (0:3, 0:0, 1:1, 2:1 and 3:0) by high-voltage electrospinning. The synergistic effect exerted by ATP and HA on bone formation was explored both in vivo and in vitro. Methods and Results First, we determined the group composition and crystal structure of the nanosheets by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analyses. Then, the physical properties of the scaffolds, including the modulus of elasticity, porosity and water absorption were evaluated. Moreover, the surface microstructure of the nanofibrous scaffolds was captured by Scanning electron microscopy (SEM) and Transmission Electron Microscope (TEM). The biocompatibility of the fabricated scaffolds represented by cell counting kit 8 (CCK-8) and phalloidin staining was also assessed. Next, in vitro osteogenesis was evaluated. Real-time PCR, alkaline phosphatase (ALP) staining and Alizarin red S (ARS) staining results showed that the materials incorporated with HA and ATP at a ratio of 2:1 synergistically promoted more osteoblastic differentiation and extracellular mineralization than scaffolds doped with HA and ATP alone. Last, in vivo, Hematoxylin-Eosin staining (HE staining) and Masson staining showed that groups treated with HA and ATP acquired optimal patterns of bone regeneration. Conclusion This study clarified for the first time that the combination of HA and ATP orchestrated biomaterial-induced osseointegration, and the synergistic effect was more significant when the ratio of ATP/HA was 2:1. This conclusion also provides new ideas and a scientific basis for the development of functionalized nanomaterials in bone tissue engineering.
Collapse
Affiliation(s)
- Jun Liu
- Medical Research Centre, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213164, People's Republic of China.,Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Siyu Wu
- Medical Research Centre, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213164, People's Republic of China.,Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Jiayi Ma
- Medical Research Centre, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213164, People's Republic of China.,Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Chun Liu
- Medical Research Centre, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213164, People's Republic of China
| | - Ting Dai
- Medical Research Centre, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213164, People's Republic of China
| | - Xiaoyu Wu
- Medical Research Centre, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213164, People's Republic of China
| | - Hongbin Zhao
- Medical Research Centre, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213164, People's Republic of China
| | - Dong Zhou
- Medical Research Centre, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213164, People's Republic of China
| |
Collapse
|
31
|
Notario-Pérez F, Martín-Illana A, Cazorla-Luna R, Ruiz-Caro R, Veiga MD. Applications of Chitosan in Surgical and Post-Surgical Materials. Mar Drugs 2022; 20:md20060396. [PMID: 35736199 PMCID: PMC9228111 DOI: 10.3390/md20060396] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
The continuous advances in surgical procedures require continuous research regarding materials with surgical applications. Biopolymers are widely studied since they usually provide a biocompatible, biodegradable, and non-toxic material. Among them, chitosan is a promising material for the development of formulations and devices with surgical applications due to its intrinsic bacteriostatic, fungistatic, hemostatic, and analgesic properties. A wide range of products has been manufactured with this polymer, including scaffolds, sponges, hydrogels, meshes, membranes, sutures, fibers, and nanoparticles. The growing interest of researchers in the use of chitosan-based materials for tissue regeneration is obvious due to extensive research in the application of chitosan for the regeneration of bone, nervous tissue, cartilage, and soft tissues. Chitosan can serve as a substance for the administration of cell-growth promoters, as well as a support for cellular growth. Another interesting application of chitosan is hemostasis control, with remarkable results in studies comparing the use of chitosan-based dressings with traditional cotton gauzes. In addition, chitosan-based or chitosan-coated surgical materials provide the formulation with antimicrobial activity that has been highly appreciated not only in dressings but also for surgical sutures or meshes.
Collapse
|
32
|
Iliou K, Kikionis S, Ioannou E, Roussis V. Marine Biopolymers as Bioactive Functional Ingredients of Electrospun Nanofibrous Scaffolds for Biomedical Applications. Mar Drugs 2022; 20:md20050314. [PMID: 35621965 PMCID: PMC9143254 DOI: 10.3390/md20050314] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 02/01/2023] Open
Abstract
Marine biopolymers, abundantly present in seaweeds and marine animals, feature diverse structures and functionalities, and possess a wide range of beneficial biological activities. Characterized by high biocompatibility and biodegradability, as well as unique physicochemical properties, marine biopolymers are attracting a constantly increasing interest for the development of advanced systems for applications in the biomedical field. The development of electrospinning offers an innovative technological platform for the production of nonwoven nanofibrous scaffolds with increased surface area, high encapsulation efficacy, intrinsic interconnectivity, and structural analogy to the natural extracellular matrix. Marine biopolymer-based electrospun nanofibrous scaffolds with multifunctional characteristics and tunable mechanical properties now attract significant attention for biomedical applications, such as tissue engineering, drug delivery, and wound healing. The present review, covering the literature up to the end of 2021, highlights the advancements in the development of marine biopolymer-based electrospun nanofibers for their utilization as cell proliferation scaffolds, bioadhesives, release modifiers, and wound dressings.
Collapse
|
33
|
Novello S, Tricot-Doleux S, Novella A, Pellen-Mussi P, Jeanne S. Influence of Periodontal Ligament Stem Cell-Derived Conditioned Medium on Osteoblasts. Pharmaceutics 2022; 14:pharmaceutics14040729. [PMID: 35456563 PMCID: PMC9028528 DOI: 10.3390/pharmaceutics14040729] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stem cells (MSC) are involved in the regeneration of various missing or compromised periodontal tissues, including bone. MSC-derived conditioned medium (CM) has recently been explored as a favorable surrogate for stem cell therapy, as it is capable of producing comparable therapeutic effects. This study aimed to evaluate the influence of periodontal ligament stem cells (PDLSC)-CM on osteoblasts (OB) and its potential as a therapeutic tool for periodontal regeneration. Human PDLSC were isolated and characterized, and CM from these cells was collected. The presence of exosomes in the culture supernatant was observed by immunofluorescence and by transmission electron microscopy. CM was added to a cultured osteoblastic cell line (Saos-2 cells) and viability (MTT assay) and gene expression analysis (real-time PCR) were examined. A cell line derived from the periodontal ligament and showing all the characteristics of MSC was successfully isolated and characterized. The addition of PDLSC-CM to Saos-2 cells led to an enhancement of their proliferation and an increased expression of some osteoblastic differentiation markers, but this differentiation was not complete. Saos-2 cells were involved in the initial inflammation process by releasing IL-6 and activating COX2. The effects of PDLSC-CM on Saos-2 appear to arise from a cumulative effect of different effective components rather than a few factors present at high levels.
Collapse
Affiliation(s)
- Solen Novello
- ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Université de Rennes, 35000 Rennes, France; (S.T.-D.); (A.N.); (P.P.-M.); (S.J.)
- Unité de Formation et de Recherche d’Odontologie, Université de Rennes, 35000 Rennes, France
- UF Parodontologie, Pôle d’Odontologie, Centre Hospitalier Universitaire de Rennes, 35000 Rennes, France
- Correspondence:
| | - Sylvie Tricot-Doleux
- ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Université de Rennes, 35000 Rennes, France; (S.T.-D.); (A.N.); (P.P.-M.); (S.J.)
| | - Agnès Novella
- ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Université de Rennes, 35000 Rennes, France; (S.T.-D.); (A.N.); (P.P.-M.); (S.J.)
| | - Pascal Pellen-Mussi
- ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Université de Rennes, 35000 Rennes, France; (S.T.-D.); (A.N.); (P.P.-M.); (S.J.)
| | - Sylvie Jeanne
- ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Université de Rennes, 35000 Rennes, France; (S.T.-D.); (A.N.); (P.P.-M.); (S.J.)
- Unité de Formation et de Recherche d’Odontologie, Université de Rennes, 35000 Rennes, France
- UF Parodontologie, Pôle d’Odontologie, Centre Hospitalier Universitaire de Rennes, 35000 Rennes, France
| |
Collapse
|
34
|
Cao S, Li Q, Zhang S, Liu K, Yang Y, Chen J. Oxidized bacterial cellulose reinforced nanocomposite scaffolds for bone repair. Colloids Surf B Biointerfaces 2022; 211:112316. [PMID: 35026542 DOI: 10.1016/j.colsurfb.2021.112316] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022]
Abstract
Bone tissue engineering has been widely used in promoting the repair and regeneration of bone defects. Tissue-engineered bone scaffolds can simulate the extracellular matrix environment and induce the proliferation and differentiation of osteoblasts. The first issues to be considered when constructing bone repair scaffolds include biocompatibility, stress resistance, degradability and stability. Here, a low-cost manufacturing introduces a new bone repair composite scaffold (CS/OBC/nHAP). The scaffolds were composed of only natural derived components, including nano hydroxyapatite (nHAP) formed by in-situ crystallization of Ca2+/PO42- solution and evenly dispersed in oxidized bacterial cellulose (OBC) and chitosan (CS) scaffolds. The experimental results showed that compared with CS/nHAP scaffold, CS/OBC/nHAP scaffold has significantly improve mechanical properties and water retention performance, and has a more stable degradation rate. Cell experiments showed that the CS/OBC/nHAP scaffold has good biocompatibility and significantly promote the proliferation of MC3T3-E1 cells. The rat skull defect model further proves that the CS/OBC/nHAP scaffold could induce the formation of bone tissue. Meanwhile, H&E staining experiment show that the CS/OBC/nHAP scaffold has good stability in vivo and could better promote the formation of bone tissue.
Collapse
Affiliation(s)
- Shujun Cao
- Marine College, Shandong University, Weihai 264209, China
| | - Qiujing Li
- Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264299, China
| | - Shukun Zhang
- Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264299, China
| | - Kaihua Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Yifan Yang
- Marine College, Shandong University, Weihai 264209, China
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|