1
|
Patel DK, Won SY, Jung E, Han SS. Recent progress in biopolymer-based electrospun nanofibers and their potential biomedical applications: A review. Int J Biol Macromol 2025; 293:139426. [PMID: 39753169 DOI: 10.1016/j.ijbiomac.2024.139426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Tissue engineering offers an alternative approach to developing biological substitutes that restore, maintain, or enhance tissue functionality by integrating principles from medicine, biology, and engineering. In this context, biopolymer-based electrospun nanofibers have emerged as attractive platforms due to their superior physicochemical properties, including excellent biocompatibility, non-toxicity, and desirable biodegradability, compared to synthetic polymers. Considerable efforts have been dedicated to developing suitable substitutes for various biomedical applications, with electrospinning receiving considerable attention as a versatile technique for fabricating nanofibrous platforms. While the applications of biopolymer-based electrospun nanofibers in the biomedical field have been previously reviewed, recent advancements in the electrospinning technique and its specific applications in areas such as bone regeneration, wound healing, drug delivery, and protein/peptide delivery remain underexplored from a material science perspective. This work systematically highlights the effects of biopolymers and critical parameters, including polymer molecular weight, viscosity, applied voltage, flow rate, and tip-to-collector distance, on the resulting nanofiber properties. The selection criteria for different biopolymers tailored to desired biomedical applications are also discussed. Additionally, the challenges and limitations associated with biopolymer-based electrospun nanofibers, alongside future perspectives for advancing their biomedical applications, are rationally analyzed.
Collapse
Affiliation(s)
- Dinesh K Patel
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - So-Yeon Won
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Eunseo Jung
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
2
|
Leon-Valdivieso CY, Bethry A, Pinese C, Dai M, Pompee C, Pernot JM, Garric X. Engineering Shape to Overcome Contraction: The Role of Polymer-Collagen Hybrids in Advanced Dermal Substitutes. J Biomed Mater Res A 2025; 113:e37805. [PMID: 39381904 DOI: 10.1002/jbm.a.37805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/29/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024]
Abstract
Collagen gels are the standard dermal equivalents par excellence, however the problem of rapid cell-mediated contraction remains unresolved. Therefore, the development of hybrid constructs (HCs) based on collagen and polymeric scaffolds is proposed to address the mechanical instability that usually limits the formation of new, functional tissue. Equally important, these synthetic structures should be temporary (degradable) while ensuring that cells are well-adapted to the new extracellular environment. In this study, we screened a library of scaffolds made of various polymers, including homopolymers of polycaprolactone (PCL) and poly D,L-lactide (PLA50), their blends (PCL/PLA50), and copolymers (poly(D,L-lactide-co-caprolactone), PCLLA50) to prepare HCs in a layer-by-layer fashion. The properties of polymers and copolymers along with their processability by electrospinning and 3D-printing were evaluated. Then, we assessed the HCs resistance toward cell-mediated contraction as well as the degradation of the polymeric scaffolds. Our results indicate that scaffolds with higher PLA50 content (e.g., PLA50 100%, PCL/PLA50 or PCLLA50, both at 50/50 caprolactone-to-D,L-lactide molar ratio) presented more drawbacks in terms of handleability and processing, while those with greater PCL presence showed structural steadiness and ease to use. All the scaffolds integrated well with the collagen gel to form the corresponding HCs. With few exceptions, the HCs demonstrated good resistance to cell-derived contraction over 3 weeks. Notably, HCs based on PCLLA50 90/10 (both versions, electrospun or 3D-printed) performed best, showing only a 5%-17% area reduction compared to the 93% observed in collagen-only gels. This copolymer displayed hydrolytic degradation depending on its shape, with up to 45% and 65% loss of molecular weight for the electrospun and 3D-printed forms, respectively, correlating with their progressive change in mechanical features. HCs containing PCLLA50 90/10 also exhibited a better fibroblast distribution, enhanced myofibroblastic differentiation, and a three-fold increase in cell proliferation (when the electrospun type was used) compared to collagen controls. These findings were instrumental in selecting a potential HC that might be used for future experiments in vivo.
Collapse
Affiliation(s)
- Christopher Y Leon-Valdivieso
- Polymers for Health and Biomaterials, IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
- CARTIGEN, University Hospital of Montpellier, Montpellier, France
| | - Audrey Bethry
- Polymers for Health and Biomaterials, IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Coline Pinese
- Polymers for Health and Biomaterials, IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Pharmacy, University Hospital of Nimes, Nimes, France
| | - Michèle Dai
- URGO Recherche Innovation et Développement, Chenôve, France
| | - Christian Pompee
- Polymers for Health and Biomaterials, IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Xavier Garric
- Polymers for Health and Biomaterials, IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Pharmacy, University Hospital of Nimes, Nimes, France
| |
Collapse
|
3
|
Álvarez-Olcina S, López-Álvarez M, Serra J, González P. Iron-Oxide Nanoparticles Embedded in 3D-Printed PLA/HA Scaffolds for Magnetic Hyperthermia Therapy: An Experimental-Numerical Analysis of Thermal Behavior. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5836. [PMID: 39685272 DOI: 10.3390/ma17235836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Hyperthermia is nowadays intensively investigated as a promising strategy to improve the therapeutic efficacy against different types of cancer and resistant infections. In particular, the remote generation of localized hyperthermia by magnetic field through iron-oxide nanoparticles (IONPs) offers good thermal conductivity in a controlled area. The incorporation of these IONPs in 3D-printed scaffolds designed for bone tissue regeneration has been scarcely addressed in the literature. This strategy would add the potential of magnetic-mediated hyperthermia against remnant cancer or resistant infections in the damaged tissue area to these personalized bone-related scaffolds. The present work proposes two methodologies to obtain 3D-printed bone-related scaffolds with magnetic properties: 1-Direct 3D printing with IONPs-embedded polylactic acid (PLA) and hydroxyapatite (HA), resulting in a uniform distribution of IONPs; and 2-Drop coating on 3D-printed PLA/HA scaffolds, resulting in the IONPs being concentrated on the scaffold surface. Physicochemical/mechanical characterizations were performed to confirm the IONPs' distributions and viability assays were carried out to validate the absence of cytotoxicity. Hyperthermia tests (314 kHz) were carried out, including the simulation/validation of the experimental equipment, to establish optimal distances from the planar coil. Temperature-time/distance curves were obtained and parametrized (R2 > 0.96) for both methodologies in relation to the contribution of IONPs (0.20-1.00 mg), their distribution in the scaffold (uniform/concentrated), the electric-current intensity, and the distance. The results validated both methodologies to obtain personalized 3D-printed PLA/HA scaffolds with magnetic properties, reaching the required moderate/ablative hyperthermia levels.
Collapse
Affiliation(s)
- Serxio Álvarez-Olcina
- Grupo Novos Materiais, CINTECX (Centro de Investigación en Tecnoloxía, Enerxía e Procesos Industriais), Universidade de Vigo, 36310 Vigo, Spain
- IISGS (Instituto de Investigación Sanitaria Galicia Sur), Servicio Galego de Saúde-Universidade de Vigo (SERGAS-UVIGO), 36213 Vigo, Spain
| | - Miriam López-Álvarez
- Grupo Novos Materiais, CINTECX (Centro de Investigación en Tecnoloxía, Enerxía e Procesos Industriais), Universidade de Vigo, 36310 Vigo, Spain
- IISGS (Instituto de Investigación Sanitaria Galicia Sur), Servicio Galego de Saúde-Universidade de Vigo (SERGAS-UVIGO), 36213 Vigo, Spain
| | - Julia Serra
- Grupo Novos Materiais, CINTECX (Centro de Investigación en Tecnoloxía, Enerxía e Procesos Industriais), Universidade de Vigo, 36310 Vigo, Spain
- IISGS (Instituto de Investigación Sanitaria Galicia Sur), Servicio Galego de Saúde-Universidade de Vigo (SERGAS-UVIGO), 36213 Vigo, Spain
| | - Pío González
- Grupo Novos Materiais, CINTECX (Centro de Investigación en Tecnoloxía, Enerxía e Procesos Industriais), Universidade de Vigo, 36310 Vigo, Spain
- IISGS (Instituto de Investigación Sanitaria Galicia Sur), Servicio Galego de Saúde-Universidade de Vigo (SERGAS-UVIGO), 36213 Vigo, Spain
| |
Collapse
|
4
|
Omigbodun FT, Oladapo BI. Enhanced Mechanical Properties and Degradation Control of Poly(Lactic) Acid/Hydroxyapatite/Reduced Graphene Oxide Composites for Advanced Bone Tissue Engineering Application. Biomimetics (Basel) 2024; 9:651. [PMID: 39590223 PMCID: PMC11592037 DOI: 10.3390/biomimetics9110651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/07/2024] [Accepted: 10/19/2024] [Indexed: 11/28/2024] Open
Abstract
This study explores the enhancement of poly(lactic acid) (PLA) matrix using calcium hydroxyapatite (cHAP) and reduced graphene oxide (rGO) for developing composite scaffolds aimed at bone regeneration applications. The PLA composites were fabricated through solvent evaporation and melt extrusion and characterized by various techniques, including thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and mechanical testing. The incorporation of cHAP and rGO significantly improved the thermal, mechanical, and morphological properties of the PLA matrix. Mechanical testing revealed that adding 10% cHAP and varying amounts of rGO (0.1%, 0.3%, 0.5%) enhanced tensile and compressive strengths, with the highest improvements observed at 0.5% rGO content. Thermal analysis showed increased thermal stability with higher degradation temperatures for the composites. Spectroscopic analyses confirmed the effective integration of cHAP and rGO into the PLA matrix with characteristic peaks of the fillers identified in the composite spectra. In vitro, degraded action tests in phosphate-buffered saline (PBS) at pH 7.4 over 12 months indicated that composites with higher rGO content exhibited lower mass loss and better mechanical stability. Furthermore, finite element analysis (FEA) simulations were performed to validate the experimental results, demonstrating a strong correlation between simulated and experimental compressive strengths. This novel approach demonstrates the potential of PLA/cHAP/rGO composites in creating effective and biocompatible scaffolds for tissue engineering, providing a comprehensive analysis of the synergistic effects of cHAP and rGO on the PLA matrix and offering a promising material for bone regeneration applications.
Collapse
Affiliation(s)
- Francis T. Omigbodun
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK
- The Manufacturing Technology Centre, Coventry CV7 9JU, UK
| | - Bankole I. Oladapo
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK;
| |
Collapse
|
5
|
Zhou T, Chen Y, Fu L, Wang S, Ding H, Bai Q, Guan J, Mao Y. In situ MgO nanoparticle-doped Janus electrospun dressing against bacterial invasion and immune imbalance for irregular wound healing. Regen Biomater 2024; 11:rbae107. [PMID: 39246578 PMCID: PMC11379472 DOI: 10.1093/rb/rbae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/21/2024] [Accepted: 08/18/2024] [Indexed: 09/10/2024] Open
Abstract
Owing to the unpredictable size of wounds and irregular edges formed by trauma, nanofibers' highly customizable and adherent in situ deposition can contribute to intervention in the healing process. However, electrospinning is limited by the constraints of conventional polymeric materials despite its potential for anti-inflammatory and antimicrobial properties. Here, inspired by the Janus structure and biochemistry of nanometal ions, we developed an in situ sprayed electrospinning method to overcome bacterial infections and immune imbalances during wound healing. The bilayer fiber scaffold has a hydrophobic outer layer composed of polycaprolactone (PCL) and a hydrophilic inner layer composed of gelatin, poly(L-lactic acid) (PLLA), and magnesium oxide nanoparticles, constituting the PCL/PLLA-gelatin-MgO (PPGM) electrospun scaffold. This electrospun scaffold blocked the colonization and growth of bacteria and remained stable on the wound for continuous anti-inflammatory properties to promote wound healing. Furthermore, PPGM electrospinning modulated collagen deposition and the inflammatory microenvironment in the full-thickness skin model, significantly accelerating vascularization and epithelialization progression. This personalized Janus electrospun scaffold has excellent potential as a new type of wound dressing for first aid and wound healthcare.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, 233030, China
| | - Yedan Chen
- School of Life Sciences, Bengbu Medical University, Bengbu, 233030, China
- Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
| | - Liangmin Fu
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, 233030, China
- Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
| | - Shan Wang
- School of Life Sciences, Bengbu Medical University, Bengbu, 233030, China
- Anhui Nerve Regeneration Technology and Medical New Materials Engineering Research Center, Bengbu Medical University, Bengbu, 233030, China
| | - Haihu Ding
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, 233030, China
| | - Qiaosheng Bai
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, 233030, China
| | - Jingjing Guan
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, 233030, China
| | - Yingji Mao
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
- School of Life Sciences, Bengbu Medical University, Bengbu, 233030, China
- Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
- Anhui Nerve Regeneration Technology and Medical New Materials Engineering Research Center, Bengbu Medical University, Bengbu, 233030, China
| |
Collapse
|
6
|
Pudełko-Prażuch I, Balasubramanian M, Ganesan SM, Marecik S, Walczak K, Pielichowska K, Chatterjee S, Kandaswamy R, Pamuła E. Characterization and In Vitro Evaluation of Porous Polymer-Blended Scaffolds Functionalized with Tricalcium Phosphate. J Funct Biomater 2024; 15:57. [PMID: 38535250 PMCID: PMC10970789 DOI: 10.3390/jfb15030057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 11/11/2024] Open
Abstract
Bone tissue is one of the most transplanted tissues. The ageing population and bone diseases are the main causes of the growing need for novel treatments offered by bone tissue engineering. Three-dimensional (3D) scaffolds, as artificial structures that fulfil certain characteristics, can be used as a temporary matrix for bone regeneration. In this study, we aimed to fabricate 3D porous polymer scaffolds functionalized with tricalcium phosphate (TCP) particles for applications in bone tissue regeneration. Different combinations of poly(lactic acid) (PLA), poly(ethylene glycol) (PEG with molecular weight of 600 or 2000 Da) and poly(ε-caprolactone) (PCL) with TCP were blended by a gel-casting method combined with rapid heating. Porous composite scaffolds with pore sizes from 100 to 1500 µm were obtained. ATR-FTIR, DSC, and wettability tests were performed to study scaffold composition, thermal properties, and hydrophilicity, respectively. The samples were observed with the use of optical and scanning electron microscopes. The addition of PCL to PLA increased the hydrophobicity of the composite scaffolds and reduced their susceptibility to degradation, whereas the addition of PEG increased the hydrophilicity and degradation rates but concomitantly resulted in enhanced creation of rounded mineral deposits. The scaffolds were not cytotoxic according to an indirect test in L929 fibroblasts, and they supported adhesion and growth of MG-63 cells when cultured in direct contact.
Collapse
Affiliation(s)
- Iwona Pudełko-Prażuch
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland; (I.P.-P.); (S.M.); (K.W.); (K.P.)
| | - Mareeswari Balasubramanian
- Department of Rubber and Plastics Technology, Madras Institute of Technology Campus, Anna University, Chromepet, Chennai 600 044, Tamil Nadu, India; (M.B.); (S.M.G.)
| | - Sundara Moorthi Ganesan
- Department of Rubber and Plastics Technology, Madras Institute of Technology Campus, Anna University, Chromepet, Chennai 600 044, Tamil Nadu, India; (M.B.); (S.M.G.)
| | - Stanisław Marecik
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland; (I.P.-P.); (S.M.); (K.W.); (K.P.)
| | - Kamila Walczak
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland; (I.P.-P.); (S.M.); (K.W.); (K.P.)
| | - Kinga Pielichowska
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland; (I.P.-P.); (S.M.); (K.W.); (K.P.)
| | - Suvro Chatterjee
- Department of Biotechnology, Golapbag Campus, University of Burdwan, Burdwan 713 104, West Bengal, India;
| | - Ravichandran Kandaswamy
- Department of Rubber and Plastics Technology, Madras Institute of Technology Campus, Anna University, Chromepet, Chennai 600 044, Tamil Nadu, India; (M.B.); (S.M.G.)
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland; (I.P.-P.); (S.M.); (K.W.); (K.P.)
| |
Collapse
|
7
|
Oztemur J, Ozdemir S, Tezcan-Unlu H, Cecener G, Sezgin H, Yalcin-Enis I. Investigation of biodegradability and cellular activity of PCL/PLA and PCL/PLLA electrospun webs for tissue engineering applications. Biopolymers 2023; 114:e23564. [PMID: 37614178 DOI: 10.1002/bip.23564] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 08/25/2023]
Abstract
Biodegradability and cellular activity are key performance indicators that should be prioritized for tissue engineering applications. Biopolymer selection, determination of necessary structural properties, and their synergistic interactions play an active role in obtaining the expected biodegradability and biological activity from scaffolds. In this study, it is aimed to produce electrospun webs with improved biocompatibility by blending polycaprolactone (PCL) with polylactic acid (PLA) and poly-l-lactide (PLLA), and examine the effect of biopolymer selection and blend ratio on the biodegradability and cellular activity of surfaces. In this context, fibrous webs are produced from PCL/PLA and PCL/PLLA blends with a weight ratio of 80/20 and 50/50 and pure polymers of PCL, PLA, and PLLA by electrospinning method and subjected to morphological and biological analyses. The biodegradation tests are carried out hydrolytically while the cell viability and cell proliferation analyses are performed with adult human primary dermal fibroblasts and human umbilical endothelial cells (HUVECs). The results show that the fiber diameters of the fabricated webs ranged from 0.747 to 1.685 μm. At the end of the 5th month, it is observed that the biodegradation rates of the webs blended 50% with PLA and PLLA, in comparison to PCL ones, increase from 3.7% to 13.33% and 7.69%, respectively. On the other hand, cell culture results highlight that the addition of 20% PLA and PLLA improves the cellular activity of both cell types, but increased PLA or PLLA ratio in PCL webs has a negative effect as it makes the structure stiff and brittle.
Collapse
Affiliation(s)
- Janset Oztemur
- Textile Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Suzan Ozdemir
- Textile Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Havva Tezcan-Unlu
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Gulsah Cecener
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Hande Sezgin
- Textile Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Ipek Yalcin-Enis
- Textile Engineering Department, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
8
|
Belabbes K, Simon M, Leon-Valdivieso CY, Massonié M, Bethry A, Subra G, Garric X, Pinese C. Development of hybrid bioactive nanofibers composed of star Poly(lactic acid) and gelatin by sol-gel crosslinking during the electrospinning process. NANOTECHNOLOGY 2023; 34:485701. [PMID: 37647881 DOI: 10.1088/1361-6528/acf501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
The design of a biomimetic scaffold is a major challenge in tissue engineering to promote tissue reconstruction. The use of synthetic polymer nanofibers is widely described as they provide biocompatible matrices whose topography mimics natural extracellular matrix (ECM). To closely match the biochemical composition of the ECM, bioactive molecules such as gelatin are added to the nanofibers to enhance cell adhesion and proliferation. To overcome the rapid solubilization of gelatin in biological fluids and to allow a lasting biological effect, the covalent crosslinking of this macromolecule in the network is crucial. The sol-gel route offers the possibility of gentle crosslinking during shaping but is rarely combined with electrospinning. In this study, we present the creation of Poly(lactic acid)/Gelatin hybrid nanofibers by sol-gel route during electrospinning. To enable sol-gel crosslinking, we synthesized star-shaped PLA and functionalized it with silane groups; then we functionalized gelatin with the same groups for their subsequent reaction with the polymer and thus the creation of the hybrid nanonetwork. We evaluated the impact of the presence of gelatin in Poly(lactic acid)/Gelatin hybrid nanofibers at different percentages on the mechanical properties, nanonetwork crosslinking, degradation and biological properties of the hybrid nanofibers. The addition of gelatin modulated nanonetwork crosslinking that impacted the stiffness of the nanofibers, resulting in softer materials for the cells. Moreover, these hybrid nanofibers also showed a significant improvement in fibroblast proliferation and present a degradation rate suitable for tissue reconstruction. Finally, the bioactive hybrid nanofibers possess versatile properties, interesting for various potential applications in tissue reconstruction.
Collapse
Affiliation(s)
- Karima Belabbes
- Polymers for Health and Biomaterials, IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Matthieu Simon
- IBMM peptide, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Mathilde Massonié
- Polymers for Health and Biomaterials, IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Audrey Bethry
- Polymers for Health and Biomaterials, IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Gilles Subra
- IBMM peptide, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Xavier Garric
- Polymers for Health and Biomaterials, IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, Nimes, France
| | - Coline Pinese
- Polymers for Health and Biomaterials, IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, Nimes, France
| |
Collapse
|
9
|
Ivanova EA, Dzyuman AN, Dvornichenko MV. Local biocompatibility and biochemical profile of hepatic cytolysis in subcutaneous implantation of polylactide matrices. BULLETIN OF SIBERIAN MEDICINE 2023. [DOI: 10.20538/1682-0363-2022-4-63-71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The aim of the study was to investigate local biocompatibility and systemic effects of nonwoven polylactide (PLA) matrices on blood and liver parameters after their subcutaneous implantation in Wistar rats.Materials and methods. Bioabsorbable fibrous PLA matrices were produced by electrospinning and had dimensions (10 × 10 mm², thickness of no more than 0.5 mm; fiber diameter in the matrix ~1 μm) appropriate for subcutaneous implantation in white laboratory rats. Polymer implants were sterilized in ethylene oxide vapor. Thirty days after the implantation of PLA matrices, local biocompatibility according to GOST ISO 10993-6-2011, cellular parameters (total leukocyte count, hemogram, erythrocyte count, hemoglobin concentration), and biochemical blood parameters (lactate concentration, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels) were studied, and a standard histologic evaluation of the liver was performed.Results. PLA matrix samples were mild local irritants on a scale of 1–1.9 points according to GOST ISO 10993-6-2011 criteria 30 days after the subcutaneous implantation. The median density of distribution of multinucleated giant cells (MNGCs) in the connective tissue around and in PLA matrices was 1,500 (1,350; 1,550) per 1 mm² of a slice. Pronounced leukocytic reaction due to lymphocytosis was noted (an increase by 1.7 times compared with a sham-operated (SO) control group, р < 0.02). The absence of a significant neutrophil count in the blood revealed sterile inflammation proceeding in the subcutaneous tissue around the PLA materials. Normalization of hepatic cytolysis markers (ALT and AST activity) in the blood without pronounced changes in the structure of the liver and the number of binuclear hepatocytes was noted. These markers were increased in SO controls (ALT up to 123% and AST up to 142%, p < 0.001 compared with values in the intact group).Conclusion. Nonwoven PLA matrices are biocompatible with subcutaneous tissue, undergo bioresorption by MNGCs, and have a distant protective effect on the functional state of the liver in laboratory animals. Hypotheses on the detected systemic effect during subcutaneous implantation of PLA matrices were discussed; however, specific mechanisms require further study.
Collapse
|
10
|
Navarro-Cerón A, Barceló-Santana FH, Vera-Graziano R, Rivera-Torres F, Jiménez-Ávila A, Rosales-Ibáñez R, Navarro-Cerón E, Castell-Rodríguez AE, Maciel-Cerda A. Bovine dentin collagen/poly(lactic acid) scaffolds for teeth tissue regeneration. IRANIAN POLYMER JOURNAL 2023. [DOI: 10.1007/s13726-023-01139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AbstractElectrospun scaffolds with diameter fibers compared to those in the extracellular matrix were produced with poly(lactic acid) (PLA) and non-denatured collagen from bovine dentin (DCol). DCol was obtained through an improved version of the Longin method by acid erosion of the hydroxyapatite of the roots of teeth from a 2-year-old cattle. The dentin collagen was characterized by energy dispersive X-ray spectroscopy (EDS), and carbon, nitrogen, and oxygen were found to be the main elements of the protein. Infrared analysis revealed the typical bands of collagen at about 3300, 1631, 1539, and 1234 cm−1 for amides A, I, II, and III, respectively. Calorimetric and infrared analyses also demonstrated that the collagen was non-denatured. With scanning electron microscopy, it was found that the thinnest fibers with a diameter comparable to that of fibers in the extracellular matrix were obtained when dentin collagen and acetic acid (AAc) were added to the solution of PLA in trifluoroethanol (TFE). The scaffolds with the thinnest diameter had also the highest porosity, and we considered that they could be beneficial in the growth of dentin cell. Human placenta-derived mesenchymal stem cells were seeded onto electrospun scaffolds. After 24, 48 and 96 h of culture, cell proliferation was evaluated by two independent strategies. In both assays, it was found that the pl-MSCs were capable of adhering and proliferating in different scaffolds. It was also observed that cell adhesion and proliferation increased significantly in scaffolds containing collagen, although the addition of AAc slightly decreased this effect on all scaffolds.
Graphical abstract
Collapse
|
11
|
Song J, Lin X, Ee LY, Li SFY, Huang M. A Review on Electrospinning as Versatile Supports for Diverse Nanofibers and Their Applications in Environmental Sensing. ADVANCED FIBER MATERIALS 2022; 5:429-460. [PMID: 36530770 PMCID: PMC9734373 DOI: 10.1007/s42765-022-00237-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/13/2022] [Indexed: 05/26/2023]
Abstract
Rapid industrialization is accompanied by the deterioration of the natural environment. The deepening crisis associated with the ecological environment has garnered widespread attention toward strengthening environmental monitoring and protection. Environmental sensors are one of the key technologies for environmental monitoring, ultimately enabling environmental protection. In recent decades, micro/nanomaterials have been widely studied and applied in environmental sensing owing to their unique dimensional properties. Electrospinning has been developed and adopted as a facile, quick, and effective technology to produce continuous micro- and nanofiber materials. The technology has advanced rapidly and become one of the hotspots in the field of nanomaterials research. Environmental sensors made from electrospun nanofibers possess many advantages, such as having a porous structure and high specific surface area, which effectively improve their performance in environmental sensing. Furthermore, by introducing functional nanomaterials (carbon nanotubes, metal oxides, conjugated polymers, etc.) into electrospun fibers, synergistic effects between different materials can be utilized to improve the catalytic activity and sensitivity of the sensors. In this review, we aimed to outline the progress of research over the past decade on electrospinning nanofibers with different morphologies and functional characteristics in environmental sensors.
Collapse
Affiliation(s)
- Jialing Song
- College of Environmental Science and Engineering, Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, 201620 People’s Republic of China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
| | - Xuanhao Lin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
| | - Liang Ying Ee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
- National University of Singapore Environmental Research Institute, T Lab Bldg, 5A Engineering Drive 1, Singapore, 117411 Singapore
| | - Manhong Huang
- College of Environmental Science and Engineering, Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, 201620 People’s Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 People’s Republic of China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620 People’s Republic of China
| |
Collapse
|
12
|
Eldeeb AE, Salah S, Elkasabgy NA. Biomaterials for Tissue Engineering Applications and Current Updates in the Field: A Comprehensive Review. AAPS PharmSciTech 2022; 23:267. [PMID: 36163568 PMCID: PMC9512992 DOI: 10.1208/s12249-022-02419-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/09/2022] [Indexed: 01/10/2023] Open
Abstract
Tissue engineering has emerged as an interesting field nowadays; it focuses on accelerating the auto-healing mechanism of tissues rather than organ transplantation. It involves implanting an In Vitro cultured initiative tissue or a scaffold loaded with tissue regenerating ingredients at the damaged area. Both techniques are based on the use of biodegradable, biocompatible polymers as scaffolding materials which are either derived from natural (e.g. alginates, celluloses, and zein) or synthetic sources (e.g. PLGA, PCL, and PLA). This review discusses in detail the recent applications of different biomaterials in tissue engineering highlighting the targeted tissues besides the in vitro and in vivo key findings. As well, smart biomaterials (e.g. chitosan) are fascinating candidates in the field as they are capable of elucidating a chemical or physical transformation as response to external stimuli (e.g. temperature, pH, magnetic or electric fields). Recent trends in tissue engineering are summarized in this review highlighting the use of stem cells, 3D printing techniques, and the most recent 4D printing approach which relies on the use of smart biomaterials to produce a dynamic scaffold resembling the natural tissue. Furthermore, the application of advanced tissue engineering techniques provides hope for the researchers to recognize COVID-19/host interaction, also, it presents a promising solution to rejuvenate the destroyed lung tissues.
Collapse
Affiliation(s)
- Alaa Emad Eldeeb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Salwa Salah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Nermeen A Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
13
|
Nachev N, Spasova M, Manolova N, Rashkov I, Naydenov M. Electrospun Polymer Materials with Fungicidal Activity: A Review. Molecules 2022; 27:5738. [PMID: 36080503 PMCID: PMC9457848 DOI: 10.3390/molecules27175738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, there has been special interest in innovative technologies such as polymer melt or solution electrospinning, electrospraying, centrifugal electrospinning, coaxial electrospinning, and others. Applying these electrokinetic methods, micro- or nanofibrous materials with high specific surface area, high porosity, and various designs for diverse applications could be created. By using these techniques it is possible to obtain fibrous materials from both synthetic and natural biocompatible and biodegradable polymers, harmless to the environment. Incorporation of low-molecular substances with biological activity (e.g., antimicrobial, antifungal) is easily feasible. Moreover, biocontrol agents, able to suppress the development and growth of plant pathogens, have been embedded in the fibrous materials as well. The application of such nanotechnologies for the creation of plant protection products is an extremely promising new direction. This review emphasizes the recent progress in the development of electrospun fungicidal dressings and their potential to be applied in modern agriculture.
Collapse
Affiliation(s)
- Nasko Nachev
- Laboratory of Bioactive Polymers (LBAP), Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia, Bulgaria
| | - Mariya Spasova
- Laboratory of Bioactive Polymers (LBAP), Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia, Bulgaria
| | - Nevena Manolova
- Laboratory of Bioactive Polymers (LBAP), Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia, Bulgaria
| | - Iliya Rashkov
- Laboratory of Bioactive Polymers (LBAP), Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia, Bulgaria
| | - Mladen Naydenov
- Department of Microbiology, Agricultural University, BG-4000 Plovdiv, Bulgaria
| |
Collapse
|
14
|
Leonés A, Peponi L, Fiori S, Lieblich M. Effect of the Addition of MgO Nanoparticles on the Thermally-Activated Shape Memory Behavior of Plasticized PLA Electrospun Fibers. Polymers (Basel) 2022; 14:polym14132657. [PMID: 35808702 PMCID: PMC9268919 DOI: 10.3390/polym14132657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
In this work, the thermally-activated shape memory behavior of poly(lactic acid)-based electrospun fibers (PLA-based efibers) reinforced with different amounts of magnesium oxide (MgO) nanoparticles (NPs) was studied at different temperatures. In particular, MgO NPs were added at different concentrations, such as 0.1, 0.5, 1 and 3 wt%, with respect to the PLA matrix. The glass-transition temperature of PLA-based efibers was modulated by adding a 20 wt% of oligomer lactic acid as plasticizer. Once the plasticized PLA-based efibers were obtained and basically characterized in term of morphology as well as thermal and mechanical properties, thermo-mechanical cycles were carried out at 60 °C and 45 °C in order to study their thermally-activated shape memory response, demonstrating that their crystalline nature strongly affects their shape memory behavior. Importantly, we found that the plastificant effect in the mechanical response of the reinforced plasticized PLA efibers is balanced with the reinforcing effect of the MgO NPs, obtaining the same mechanical response of neat PLA fibers. Finally, both the strain recovery and strain fixity ratios of each of the plasticized PLA-based efibers were calculated, obtaining excellent thermally-activated shape memory response at 45 °C, demonstrating that 1 wt% MgO nanoparticles was the best concentration for the plasticized system.
Collapse
Affiliation(s)
- Adrián Leonés
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), 28006 Madrid, Spain
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), 28006 Madrid, Spain
- Correspondence:
| | - Stefano Fiori
- Condensia Química SA, R&D Department, C/La Cierva 8, 08184 Barcelona, Spain;
| | - Marcela Lieblich
- Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), 28040 Madrid, Spain;
| |
Collapse
|
15
|
Soto‐Quintero A, González‐Alva P, Covelo A, Hernández MA. Study of the in vitro degradation and characterization of the
HaCat
keratinocytes adherence on electrospun scaffolds based polyvinyl alcohol/sodium alginate. J Appl Polym Sci 2022. [DOI: 10.1002/app.52775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Albanelly Soto‐Quintero
- División de Ingeniería Mecánica e Industrial Facultad de Ingeniería, UNAM Ciudad de México Mexico
| | - Patricia González‐Alva
- Laboratorio de Bioingeniería de Tejidos Facultad de Odontología, UNAM Ciudad de México Mexico
| | - Alba Covelo
- División de Ingeniería Mecánica e Industrial Facultad de Ingeniería, UNAM Ciudad de México Mexico
| | - Miguel Angel Hernández
- División de Ingeniería Mecánica e Industrial Facultad de Ingeniería, UNAM Ciudad de México Mexico
| |
Collapse
|
16
|
Electrospun nanofibrous membrane for biomedical application. SN APPLIED SCIENCES 2022; 4:172. [PMID: 35582285 PMCID: PMC9099337 DOI: 10.1007/s42452-022-05056-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/02/2022] [Indexed: 11/09/2022] Open
Abstract
Electrospinning is a simple, cost-effective, flexible, and feasible continuous micro-nano polymer fiber preparation technology that has attracted extensive scientific and industrial interest over the past few decades, owing to its versatility and ability to manufacture highly tunable nanofiber networks. Nanofiber membrane materials prepared using electrospinning have excellent properties suitable for biomedical applications, such as a high specific surface area, strong plasticity, and the ability to manipulate their nanofiber components to obtain the desired properties and functions. With the increasing popularity of nanomaterials in this century, electrospun nanofiber membranes are gradually becoming widely used in various medical fields. Here, the research progress of electrospun nanofiber membrane materials is reviewed, including the basic electrospinning process and the development of the materials as well as their biomedical applications. The main purpose of this review is to discuss the latest research progress on electrospun nanofiber membrane materials and the various new electrospinning technologies that have emerged in recent years for various applications in the medical field. The application of electrospun nanofiber membrane materials in recent years in tissue engineering, wound dressing, cancer diagnosis and treatment, medical protective equipment, and other fields is the main topic of discussion in this review. Finally, the development of electrospun nanofiber membrane materials in the biomedical field is systematically summarized and prospects are discussed. In general, electrospinning has profound prospects in biomedical applications, as it is a practical and flexible technology used for the fabrication of microfibers and nanofibers. This review summarizes recent research on the application of electrospun nanofiber membranes as tissue engineering materials for the cardiovascular system, motor system, nervous system, and other clinical aspects. Research on the application of electrospun nanofiber membrane materials as protective products is discussed in the context of the current epidemic situation. Examples and analyses of recent popular applications in tissue engineering, wound dressing, protective products, and cancer sensors are presented.
Collapse
|