1
|
Rahim SA, Bakhsheshi-Rad HR, Licavoli J, Jonard BW, Drelich JW. Overview of biodegradable materials for bone repair and osteosarcoma treatment: From bulk to scaffolds. BIOMATERIALS ADVANCES 2025; 174:214317. [PMID: 40239432 DOI: 10.1016/j.bioadv.2025.214317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Osteosarcoma, the most common type of malignant bone tumor that affects growing bones in teenagers and children, has become a significant challenge for medical science. The combination of chemotherapy and surgery has been the standard treatment strategy for decades. However, concerns about tumor recurrence and the toxic effects of the drugs continue to drive materials scientists to develop multifunctional scaffolds that can simultaneously support bone regeneration and prevent tumor recurrence. Emergent multifunctional scaffolds have the potential to foster essential and dynamic cellular communication, which can directly target, signal, stimulate, and enhance the body's natural bone repair response. This review emphasizes the mechanisms involved and highlights various technologies and manufacturing processes that align with the capability of these scaffolds to effectively promote bone repair, especially in the presence of osteosarcoma. Additionally, the review summarizes the current state of knowledge regarding scaffolds based on magnesium (Mg), zinc (Zn), and iron (Fe), as well as the antitumor properties of their corrosion products. The review also discusses the therapeutic potential of Mg-, Zn-, and Fe-based materials in inhibiting osteosarcoma cell proliferation. The article elaborates on the main research challenges and prospects of biodegradable materials for bone repair and osteosarcoma treatment.
Collapse
Affiliation(s)
- Shebeer A Rahim
- Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| | - Hamid R Bakhsheshi-Rad
- Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA; Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Joseph Licavoli
- Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Brandon W Jonard
- Department of Orthopedic Surgery, University Hospitals/Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jaroslaw W Drelich
- Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| |
Collapse
|
2
|
Zhao H, Cheng J, Zhao C, Wen M, Wang R, Wu D, Wu Z, Yang F, Sheng L. The Recent Developments of Thermomechanical Processing for Biomedical Mg Alloys and Their Clinical Applications. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1718. [PMID: 40333396 PMCID: PMC12028547 DOI: 10.3390/ma18081718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/29/2025] [Accepted: 04/07/2025] [Indexed: 05/09/2025]
Abstract
Magnesium (Mg) alloys have gained much attention for biomedical applications, due to their attractive properties, such as high specific strength, low density, low elasticity modulus, high damping capacity, biodegradation, and relatively good cytocompatibility. However, the biomedical use of Mg alloys also faces several challenges, primarily due to their low corrosion resistance and insufficient strength. Therefore, improving the strength and corrosion resistance of biomedical Mg alloys has become a critical issue. This review briefly summarizes the selection of appropriate alloying elements for biomedical Mg alloys, which is the fundamental factor in determining their microstructure, cytocompatibility, mechanical properties, and corrosion performance. It also discusses typical thermomechanical processing methods, including hot extrusion, hot rolling and hot forging, and examines the influence of deformation mode on microstructure, mechanical properties, and degradation behavior. Specifically, combining different thermomechanical processing methods could be an optimal choice, as it leverages the high efficiency and effectiveness of each method. Finally, the clinical application of biomedical Mg alloys in various fields are summarized and discussed to highlight their potential prospect and corresponding challenges. This review aims to provide insights for the rationale design and development of high-performance biomedical Mg alloys for widespread clinical applications.
Collapse
Affiliation(s)
- Hui Zhao
- School of Material Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China; (H.Z.); (J.C.)
| | - Jing Cheng
- School of Material Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China; (H.Z.); (J.C.)
- PKU-HKUST ShenZhen-HongKong Institution, Shenzhen 518057, China; (M.W.); (R.W.); (F.Y.)
| | - Chaochao Zhao
- Shenzhen Institute, Peking University, Shenzhen 518057, China; (C.Z.); (D.W.)
| | - Min Wen
- PKU-HKUST ShenZhen-HongKong Institution, Shenzhen 518057, China; (M.W.); (R.W.); (F.Y.)
- Shenzhen Institute, Peking University, Shenzhen 518057, China; (C.Z.); (D.W.)
| | - Rui Wang
- PKU-HKUST ShenZhen-HongKong Institution, Shenzhen 518057, China; (M.W.); (R.W.); (F.Y.)
| | - Di Wu
- Shenzhen Institute, Peking University, Shenzhen 518057, China; (C.Z.); (D.W.)
| | - Zhaoying Wu
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen 518107, China
| | - Fang Yang
- PKU-HKUST ShenZhen-HongKong Institution, Shenzhen 518057, China; (M.W.); (R.W.); (F.Y.)
- Shenzhen Airlines, Shenzhen Bao’an International Airport, Shenzhen 518128, China
| | - Liyuan Sheng
- PKU-HKUST ShenZhen-HongKong Institution, Shenzhen 518057, China; (M.W.); (R.W.); (F.Y.)
- Shenzhen Institute, Peking University, Shenzhen 518057, China; (C.Z.); (D.W.)
| |
Collapse
|
3
|
Ouyang Y, Cao L, Zhao Q, Yang W, Lin C. Biodegradable Mg-1%Ca alloy inhibits the growth of cervical cancer. Biomed Mater 2025; 20:035002. [PMID: 39908673 DOI: 10.1088/1748-605x/adb2cc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/05/2025] [Indexed: 02/07/2025]
Abstract
The traditional treatment for cervical cancer involves aggressive surgery combined with radiotherapy and chemotherapy. Nevertheless, these treatments have certain limitations and side effects, thus breakthroughs and advances are required in cervical cancer therapy. Magnesium alloy is a promising antitumor biomaterial with excellent biocompatibility and biodegradability. However, the potential effects of magnesium alloy on cervical tumors have not been extensively explored. Recent studies have demonstrated that adding a small amount of calcium to the magnesium matrix can reduce grain size and corrosion rate while providing good biocompatibility. We conductedin vivoandin vitroexperiments to test the antitumor properties of Mg-1%Ca alloys. The results indicated that the Mg-1%Ca alloy released Mg2+and OH-more slowly, inhibited the proliferation of SiHa and HeLa cells, induced apoptosis in tumor cells, disrupted the cytoskeleton, and inhibited cell migration and invasion. At the molecular level, Mg-1%Ca alloy significantly activated the mitochondrial apoptosis pathway and inhibited the MAPK/ERK signaling pathway. In the future, Mg-1%Ca may be employed in the treatment of cervical cancer as a novel adjuvant therapeutic material with anticancer function to prevent the occurrence and progression of cancer proliferation and metastasis.
Collapse
Affiliation(s)
- Yunshan Ouyang
- Department of Pathology, School of Basic Medical Sciences
- Key Laboratory of Molecular Biology of Endemic Diseases, Xinjiang Medical University, Urumqi 830017, People's Republic of China
| | - Lingling Cao
- Department of Pathology, School of Basic Medical Sciences
- Key Laboratory of Molecular Biology of Endemic Diseases, Xinjiang Medical University, Urumqi 830017, People's Republic of China
| | - Qian Zhao
- Department of Pathology, School of Basic Medical Sciences
- Key Laboratory of Molecular Biology of Endemic Diseases, Xinjiang Medical University, Urumqi 830017, People's Republic of China
| | - Wang Yang
- Department of Pathology, School of Basic Medical Sciences
- Key Laboratory of Molecular Biology of Endemic Diseases, Xinjiang Medical University, Urumqi 830017, People's Republic of China
| | - Chen Lin
- Department of Pathology, School of Basic Medical Sciences
| |
Collapse
|
4
|
Hu P, Lin L, Chen G, Liu D, Guo H, Xiao M, Zhong Z, Yang G, Xu B, Huang D, Peng S, Li Y, Zhang Y, Huang T, Zhang F. Hydrogen-Generating Magnesium Alloy Seed Strand Sensitizes Solid Tumors to Iodine-125 Brachytherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412263. [PMID: 39656877 PMCID: PMC11792047 DOI: 10.1002/advs.202412263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Radioactive iodine-125 (125I) seed implantation, a brachytherapy technique, effectively kills tumor cells via X-rays and gamma rays, serving as an alternative therapeutic option following the failure of frontline treatments for various solid tumors. However, tumor radioresistance limits its efficacy. Hydrogen gas has anticancer properties and can enhance the efficacy of immunotherapy. However, its role in radiotherapy sensitization has rarely been reported. Many current hydrogen delivery methods involve hydrogen-generating nanomaterials, such as magnesium-based nanomaterials. This study introduces an AZ31 magnesium alloy 125I seed strand (termed AMASS) with pH-dependent slow-release hydrogen characteristics and excellent mechanical properties. AMASS can be implanted into tumors via minimally invasive surgery, releasing hydrogen around the 125I seeds. In vitro experiments showed that hydrogen from AMASS degradation significantly inhibited tumor proliferation, increased apoptosis, disrupted redox homeostasis and mitochondrial membrane potential, reduced adenosine triphosphate levels, and induced DNA damage due to 125I radiation. In mouse xenograft and rabbit liver tumor models, hydrogen from AMASS showed superior therapeutic effects compared with 125I seeds alone, with no noticeable side effects. In addition, AMASS has a uniform radiation dose distribution and simple implantation. Therefore, hydrogen from AMASS enhanced 125I seed efficacy, supporting the further promotion and application of 125I seed implantation in cancer therapy.
Collapse
Affiliation(s)
- Pan Hu
- Department of Minimally Invasive InterventionState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Letao Lin
- Department of Minimally Invasive InterventionState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Guanyu Chen
- Department of Minimally Invasive InterventionState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Dengyao Liu
- Department of Minimally Invasive InterventionState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Huanqing Guo
- Department of Minimally Invasive InterventionState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Meigui Xiao
- Department of Minimally Invasive InterventionState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Zhihui Zhong
- Department of Minimally Invasive InterventionState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Guang Yang
- Department of Minimally Invasive InterventionState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Bingchen Xu
- Department of Minimally Invasive InterventionState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Dongcun Huang
- Department of Minimally Invasive InterventionState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Sheng Peng
- Department of Minimally Invasive InterventionState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yong Li
- Zhuhai Interventional Medical CenterZhuhai Precision Medical CenterZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhai519000P. R. China
| | - Yanling Zhang
- School of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhou510515P. R. China
| | - Tao Huang
- Department of Minimally Invasive InterventionState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Fujun Zhang
- Department of Minimally Invasive InterventionState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| |
Collapse
|
5
|
Lin Z, Wei Y, Yang H. Mg alloys with antitumor and anticorrosion properties for orthopedic oncology: A review from mechanisms to application strategies. APL Bioeng 2024; 8:021504. [PMID: 38638143 PMCID: PMC11026114 DOI: 10.1063/5.0191800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
As a primary malignant bone cancer, osteosarcoma (OS) poses a great threat to human health and is still a huge challenge for clinicians. At present, surgical resection is the main treatment strategy for OS. However, surgical intervention will result in a large bone defect, and some tumor cells remaining around the excised bone tissue often lead to the recurrence and metastasis of OS. Biomedical Mg-based materials have been widely employed as orthopedic implants in bone defect reconstruction, and, especially, they can eradicate the residual OS cells due to the antitumor activities of their degradation products. Nevertheless, the fast corrosion rate of Mg alloys has greatly limited their application scope in the biomedical field, and the improvement of the corrosion resistance will impair the antitumor effects, which mainly arise from their rapid corrosion. Hence, it is vital to balance the corrosion resistance and the antitumor activities of Mg alloys. The presented review systematically discussed the potential antitumor mechanisms of three corrosion products of Mg alloys. Moreover, several strategies to simultaneously enhance the anticorrosion properties and antitumor effects of Mg alloys were also proposed.
Collapse
Affiliation(s)
- Zhensheng Lin
- Medical Engineering Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan, China
| | - Yuhe Wei
- Department of Medical Equipment, Tianjin Chest Hospital, Tianjin 300350, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| |
Collapse
|
6
|
Elborolosy SA, Hussein LA, Mahran H, Ammar HR, Sivasankaran S, Abd El-Ghani SF, Abdelfattah MY, Abou-Zeid AW, Ibrahim SH, Elshamaa MM. Evaluation of the biocompatibility, antibacterial and anticancer effects of a novel nano-structured Fe-Mn-based biodegradable alloys in-vitro study. Heliyon 2023; 9:e20932. [PMID: 37885712 PMCID: PMC10598492 DOI: 10.1016/j.heliyon.2023.e20932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Scientific backgrounds Development of nanostructured biodegradable alloys has generated a great deal of interest in the recent years as they offer promising bioactive materials for reconstruction of bony defects following traumatic fractures or surgical excision of tumors. Objectives The aim of the current study was to investigate the biocompatibility of Iron-Manganese -based alloys (Fe-Mn) with addition of copper (Cu), Tungsten (W) and cobalt (Co) to obtain 3 different alloys namely, Fe-Mn-Cu, Fe-Mn-W, and Fe-Mn-Co on normal oral epithelial cell line,and their possible anticancer effect on MG-63: osteosarcoma cell line. Materials and methods The sulforhodamine B (SRB) assay was used to assess cell viability percentage of both cell lines after exposure to discs of the proposed experimental alloys. Moreover, the antibacterial effect of such alloys against Escherichia coli (E. coli) was tested using disc diffusion susceptibility (Kirby-Bauer method) and colony suspension method. Results The cell viability percentage of oral epithelial cell line showed a significant increase in all the experimental groups in comparison to the control group. The highest percentage was observed in Fe-Mn-Co group, followed by Fe-Mn-W then Fe-Mn-Cu, at 24 and 72-h intervals, respectively. While the cell viability percentage of osteosarcoma cell line showed significant increase in all the experimental groups at 24-h intervals, it showed a significant drop in all the study groups at 72-h intervals. The lowest percentage was observed in Fe-Mn-Cu group, followed by Fe-Mn-W then Fe-Mn-Co. Moreover, all the examined study groups didn't show any inhibition zones against E. coli reference culture. Conclusions The novel nanostructured biodegradable Fe-Mn-Cu, Fe-Mn-W, and Fe-Mn-Co metal alloys exhibit good biocompatibility on oral epithelial cell lines with the enhancement of cell proliferation in a time-dependent manner that favors bone regeneration. On the other hand, all the alloys manifested possible anticancer activity against MG-63: osteosarcoma cell line. Furthermore, our study sheds the light on the importance of Co, W and Cu as promising alloying elements. However, the antibacterial activity of the examined alloys is still questionable. Clinical relevance The novel nanostructured biodegradable Fe-Mn-Cu, Fe-Mn-W, and Fe-Mn-Co metal alloys offer promising bioactive materials for reconstruction of bony defects following traumatic fractures or surgical excision of tumors, In addition, they could be excellent alternatives for undegradable or non-resorbable alloys that are commonly used. Moreover, they could be used as beneficial 3D printing materials to obtain patient-specific medical implants that favor bone regeneration in addition to manufacturing of plates and screws suitable for fracture fixation.
Collapse
Affiliation(s)
- Samir Ali Elborolosy
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Beni-Suef University, Beni-Suef, Egypt
| | - Lamis Ahmed Hussein
- Dental Biomaterials, Department of Removable Prosthetics, Faculty of Dentistry, Misr International University, Cairo, Egypt
| | - Hamada Mahran
- Maxillofacial Surgery, General Surgery Department, Faculty of Medicine, Assiut University, Egypt
| | - Hany R. Ammar
- College of Engineering, Mechanical Engineering Department, Qassim University, Buraidah, 51452, Saudi Arabia
| | - S. Sivasankaran
- College of Engineering, Mechanical Engineering Department, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Safa Fathy Abd El-Ghani
- Oral and Maxillofacial Pathology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Oral Pathology Department, School of Dentistry, Newgiza University, Egypt
| | | | - Ahmed Wael Abou-Zeid
- Department of Basic Dental Science, National Research Centre, Egypt
- Oral Biology Department, School of Dentistry, Newgiza University, Egypt
| | - Shereen Hafez Ibrahim
- Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Mohamed Mostafa Elshamaa
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
7
|
Thanigaivel S, Priya A, Balakrishnan D, Dutta K, Rajendran S, Soto-Moscoso M. Insight on recent development in metallic biomaterials: Strategies involving synthesis, types and surface modification for advanced therapeutic and biomedical applications. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|