1
|
Shi H, Zheng F, Zheng Y, Sun X, Chen H, Gao Y. A carrier-free tri-component nanoreactor for multi-pronged synergistic cancer therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 253:112886. [PMID: 38490055 DOI: 10.1016/j.jphotobiol.2024.112886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Non-invasive therapies such as photodynamic therapy (PDT) and chemodynamic therapy (CDT) have received wide attention due to their low toxicity and side effects, but their efficacy is limited by the tumor microenvironment (TME), and monotherapy cannot achieve satisfactory efficacy. In this work, a multifunctional nanoparticle co-assembled from oleanolic acid (OA), chlorin e6 (Ce6) and hemin was developed. The as-constructed nanoparticle named OCH with diameters of around 130 nm possessed good biostability, pH/GSH dual-responsive drug release properties, and remarkable cellular internalization and tumor accumulation capabilities. OCH exhibited prominent catalytic activities to generate •OH, deplete GSH, and produce O2 to overcome the hypoxia TME, thus potentiating the photodynamic and chemodynamic effect. In addition, OCH can induce the occurrence of ferroptosis in both ferroptosis-sensitive and ferroptosis-resistant cancer cells. The multi-pronged effects of OCH including hypoxia alleviation, GSH depletion, ferroptosis induction, CDT and PDT effects jointly facilitate excellent anticancer effects in vitro and in vivo. Hence, this work will advance the development of safe and effective clinically transformable nanomedicine by employing clinically-applied agents to form drug combinations for efficient multi-pronged combination cancer therapy.
Collapse
Affiliation(s)
- Huifang Shi
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Fangying Zheng
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yilin Zheng
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Xianbin Sun
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
2
|
Cai J, Yang Y, Zhang J, Bai Z, Zhang X, Li K, Shi M, Liu Z, Gao L, Wang J, Li J. Multilayer nanodrug delivery system with spatiotemporal drug release improves tumor microenvironment for synergistic anticancer therapy. Biofabrication 2024; 16:025012. [PMID: 38277678 DOI: 10.1088/1758-5090/ad22ef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
The inflammatory response is one of the general symptoms that accompany tumorigenesis, the pro-inflammatory factors cyclooxygenase-2 (COX-2) and COX-2-derived prostaglandin-2 (PGE-2) in the inflammatory environment surrounding tumors possess promoting tumor development, metastasis and angiogenesis effects. In addition, the hypoxic environment of tumors severely limits the effectiveness of photodynamic therapy (PDT). In this study, a universal extracellular-intracellular 'on-demand' release nanomedicine DOX@PDA-ICG@MnO2@GN-CEL was developed for the combined fight against malignant tumors using a spatiotemporal controlled gelatin coated polydopamine (PDA@GN) as the carrier and loaded with the chemotherapeutic drug doxorubicin (DOX), the photosensitizer indocyanine green (ICG), the PDT enhancer MnO2and the anti-inflammatory drug celecoxib (CEL) individually. Our results showed that DOX@PDA-ICG@MnO2@GN-CEL could release CEL extracellularly by matrix metalloproteinase-2 response and inhibit the COX-2/PGE-2 pathway, reduce chemotherapy resistance and attenuate the concurrent inflammation. After entering the tumor cells, the remaining DOX@PDA-ICG@MnO2released DOX, ICG and MnO2intracellularly through PDA acid response. MnO2promoted the degradation of endogenous H2O2to generate oxygen under acidic conditions to alleviate the tumor hypoxic environment, enhance PDT triggered by ICG. PDA and ICG exhibited photothermal therapy synergistically, and DOX exerted chemotherapy with reduced chemotherapy resistance. The dual responsive drug release switch enabled the chemotherapeutic, photothermal, photodynamic and anti-inflammatory drugs precisely acted on different sites of tumor tissues and realized a promising multimodal combination therapy.
Collapse
Affiliation(s)
- Jiahui Cai
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Yibo Yang
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Jia Zhang
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Zhimin Bai
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Xin Zhang
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Kun Li
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Ming Shi
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
- Qinhuangdao Biopha Biotechnology Co., Ltd, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Zhiwei Liu
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
- Qinhuangdao Biopha Biotechnology Co., Ltd, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Liming Gao
- The First Hospital of Qinhuangdao, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Jidong Wang
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Jian Li
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| |
Collapse
|
3
|
Jo J, Kim JY, Yun JJ, Lee YJ, Jeong YIL. β-Cyclodextrin Nanophotosensitizers for Redox-Sensitive Delivery of Chlorin e6. Molecules 2023; 28:7398. [PMID: 37959817 PMCID: PMC10648776 DOI: 10.3390/molecules28217398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
The aim of this study is to prepare redox-sensitive nanophotosensitizers for the targeted delivery of chlorin e6 (Ce6) against cervical cancer. For this purpose, Ce6 was conjugated with β-cyclodextrin (bCD) via a disulfide bond, creating nanophotosensitizers that were fabricated for the redox-sensitive delivery of Ce6 against cancer cells. bCD was treated with succinic anhydride to synthesize succinylated bCD (bCDsu). After that, cystamine was attached to the carboxylic end of bCDsu (bCDsu-ss), and the amine end group of bCDsu-ss was conjugated with Ce6 (bCDsu-ss-Ce6). The chemical composition of bCDsu-ss-Ce6 was confirmed with 1H and 13C NMR spectra. bCDsu-ss-Ce6 nanophotosensitizers were fabricated by a dialysis procedure. They formed small particles with an average particle size of 152.0 ± 23.2 nm. The Ce6 release rate from the bCDsu-ss-Ce6 nanophotosensitizers was accelerated by the addition of glutathione (GSH), indicating that the bCDsu-ss-Ce6 nanophotosensitizers have a redox-sensitive photosensitizer delivery capacity. The bCDsu-ss-Ce6 nanophotosensitizers have a low intrinsic cytotoxicity against CCD986Sk human skin fibroblast cells as well as Ce6 alone. However, the bCDsu-ss-Ce6 nanophotosensitizers showed an improved Ce6 uptake ratio, higher reactive oxygen species (ROS) production, and phototoxicity compared to those of Ce6 alone. GSH addition resulted in a higher Ce6 uptake ratio, ROS generation, and phototoxicity than Ce6 alone, indicating that the bCDsu-ss-Ce6 nanophotosensitizers have a redox-sensitive biological activity in vitro against HeLa human cervical cancer cells. In a tumor xenograft model using HeLa cells, the bCDsu-ss-Ce6 nanophotosensitizers efficiently accumulated in the tumor rather than in normal organs. In other words, the fluorescence intensity in tumor tissues was significantly higher than that of other organs, while Ce6 alone did not specifically target tumor tissue. These results indicated a higher anticancer activity of bCDsu-ss-Ce6 nanophotosensitizers, as demonstrated by their efficient inhibition of the growth of tumors in an in vivo animal tumor xenograft study.
Collapse
Affiliation(s)
- Jaewon Jo
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Republic of Korea; (J.J.); (J.Y.K.)
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ji Yoon Kim
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Republic of Korea; (J.J.); (J.Y.K.)
| | - Je-Jung Yun
- Research Center for Environmentally Friendly Agricultural Life Sciences, Jeonnam Bioindustry Foundation, Jeonnam 58275, Republic of Korea;
| | - Young Ju Lee
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Republic of Korea; (J.J.); (J.Y.K.)
| | - Young-IL Jeong
- Department of Dental Materials, College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
- Tyros Biotechnology Inc., 75 Kneeland St. 14 Floors, Boston, MA 02111, USA
| |
Collapse
|
4
|
Yan R, Liu J, Dong Z, Peng Q. Nanomaterials-mediated photodynamic therapy and its applications in treating oral diseases. BIOMATERIALS ADVANCES 2022; 144:213218. [PMID: 36436431 DOI: 10.1016/j.bioadv.2022.213218] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Oral diseases, such as dental caries, periodontitis and oral cancer, have a very high morbidity over the world. Basically, many oral diseases are commonly related to bacterial infections or cell malignant proliferation, and usually located on the superficial positions. These features allow the convenient and efficient application of photodynamic therapy (PDT) for oral diseases, since PDT is ideally suitable for the diseases on superficial sites and has been widely used for antimicrobial and anticancer therapy. Photosensitizers (PSs) are an essential element in PDT, which induce the generation of a large number of reactive oxygen species (ROS) upon absorption of specific lights. Almost all the PSs are small molecules and commonly suffered from various problems in the PDT environment, such as low solubility and poor stability. Recently, reports on the nanomedicine-based PDT have been well documented. Various functionalized nanomaterials can serve either as the PSs carriers or the direct PSs, thus enhancing the PDT efficacy. Herein, we aim to provide a comprehensive understanding of the features of different oral diseases and discuss the potential applications of nanomedicine-based PDT in the treatment of some common oral diseases. Also, the concerns and possible solutions for nanomaterials-mediated PDT are discussed.
Collapse
Affiliation(s)
- Ruijiao Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jianhong Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|