1
|
Taverne M, Lalieve L, Persohn S, Khonsari RH, Paternoster G, James S, Blauwblomme T, Benichi S, Laporte S. Anatomy and mobility in the adult cadaveric craniocervical junction. J Morphol 2024; 285:e21748. [PMID: 38938002 DOI: 10.1002/jmor.21748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Genetic diseases with craniofacial malformations can be associated with anomalies of the craniocervical joint (CCJ). The functions of the CCJ are thus impaired, as mobility may be either limited by abnormal bone fusion causing headaches, or exaggerated in the case of hypermobility, which may cause irreparable damage to the spinal cord. Restoring the balance between mobility and stability requires surgical correction in children. The anatomy and biomechanics of the CCJ are quite unique, yet have been overlooked in the past decades. Pediatric evidence is so scarce, that investigating the adult CCJ is our best shot to disentangle the form-function relationships of this anatomical region. The motivation of the present study was to understand the morphological and functional basis of motion in the CCJ, in the hope to find morphological features accessible from medical imaging able to predict mobility. To do so, we have quantified the in-vitro kinematics of the CCJ in nine cadaveric asymptomatic adults, and estimated a wide range of mobility variables covering the complexity of spinal motion. We compared these variables with the shape of the occipital, the atlas and the axis, obtained using a dense geometric morphometric approach. Morphological joint congruence was also quantified. Our results suggest a strong relationship between bone shape and motion, with the overall geometry predicting best the primary movements, and the joint facets predicting best the secondary movements. We propose a functional hypothesis stating that the musculoligamental system determines movements of great amplitude, while the shape and congruence of joint facets determine the secondary and coupled movements, especially by varying the geometry of bone stops and the way ligaments are tensioned. We believe this work will provide valuable insights in understanding the biomechanics of the CCJ. Furthermore, it should help surgeons treating CCJ anomalies by enabling them to translate objectives of functional and clinical outcome into clear objectives of morphological outcome.
Collapse
Affiliation(s)
- Maxime Taverne
- Craniofacial Growth and Form Laboratory, Necker-Enfants Malades Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Laura Lalieve
- Craniofacial Growth and Form Laboratory, Necker-Enfants Malades Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Sylvain Persohn
- Arts et Métiers - Institute of Technology, Institut de Biomécanique Humaine Georges Charpak, Paris, France
| | - Roman Hossein Khonsari
- Craniofacial Growth and Form Laboratory, Necker-Enfants Malades Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
- Department of Pediatric Maxillofacial Surgery and Plastic surgery, Necker-Enfants Malades Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
- UFR de Médecine, Université Paris Cité, Paris, France
| | - Giovanna Paternoster
- UFR de Médecine, Université Paris Cité, Paris, France
- Department of Pediatric Neurosurgery, Necker-Enfants Malades Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
- CRMR CRANIOST, Filière TeteCou, Necker-Enfants Malades Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Syril James
- UFR de Médecine, Université Paris Cité, Paris, France
- Department of Pediatric Neurosurgery, Necker-Enfants Malades Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Thomas Blauwblomme
- UFR de Médecine, Université Paris Cité, Paris, France
- Department of Pediatric Neurosurgery, Necker-Enfants Malades Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
- CRMR C-MAVEM, Filière NeuroSphinx, Necker-Enfants Malades Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Sandro Benichi
- UFR de Médecine, Université Paris Cité, Paris, France
- Department of Pediatric Neurosurgery, Necker-Enfants Malades Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
- CRMR C-MAVEM, Filière NeuroSphinx, Necker-Enfants Malades Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Sébastien Laporte
- Arts et Métiers - Institute of Technology, Institut de Biomécanique Humaine Georges Charpak, Paris, France
| |
Collapse
|
2
|
Cappella A, Affatato L, Gibelli D, Mazzarelli D, Zago M, Dolci C, Sforza C, Cattaneo C. An osteometric and 3D analysis of the atlanto-occipital joint: An initial screening method to exclude crania and atlases in commingled remains. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 177:439-453. [PMID: 36787652 PMCID: PMC9299177 DOI: 10.1002/ajpa.24437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 05/07/2023]
Abstract
OBJECTIVES The anatomical features of the atlanto-occipital joint can be potentially useful in re-associating or excluding crania to atlases in commingled remains. This study investigated whether linear measurements and the 3-dimensional (3D) surface of occipital condyles and articular facets of atlases can represent valid insights for this purpose. METHODS The variations among eight corresponding linear distances were analyzed in a sample of 150 individuals through six supervised machine learning techniques attempting to develop classifiers able to identify elements belonging to the same individual. Furthermore, a 3D analysis was conducted on the articular surfaces through superimpositions of 3D models of corresponding and non-corresponding crania and atlases obtained by using respectively stereophotogrammetry and laser scanning. This analysis investigated differences in terms of point-to-point distances (Root Mean Square, RMS) of superimposed 3D surfaces. RESULTS None of the six machine learning techniques were able to correctly detect a satisfying percentage of correspondent pairs in the overall sample by using the linear variables. The 3D analysis of the articular surfaces found RMS values over 0.53 mm only for superimposed non-corresponding surfaces, which sets a threshold value to identify 32% of incorrect pairs. DISCUSSION The re-association of cranium to atlas proved to be challenging and hardly possible when considering only metric variables. However, the 3D geometry of the articular surfaces represents a valid variable for this purpose and 3D analyses pave the way for an initial exclusion of incorrect re-associations, thus should not be considered as a re-association method per se, but as an exclusionary screening technique.
Collapse
Affiliation(s)
- Annalisa Cappella
- Dipartimento di Scienze Biomediche per la SaluteUniversità degli Studi di MilanoMilan
- U.O. Laboratorio di Morfologia Umana ApplicataIRCCS Policlinico San DonatoSan Donato MilaneseMI
| | - Luciana Affatato
- Laboratorio di Antropologia e Odontologia Forense, Sezione Medicina Legale, Dipartimento di Scienze Biomediche per la SaluteUniversità degli Studi di MilanoMilanItaly
| | - Daniele Gibelli
- Dipartimento di Scienze Biomediche per la SaluteUniversità degli Studi di MilanoMilan
| | - Debora Mazzarelli
- Laboratorio di Antropologia e Odontologia Forense, Sezione Medicina Legale, Dipartimento di Scienze Biomediche per la SaluteUniversità degli Studi di MilanoMilanItaly
| | - Matteo Zago
- Dipartimento di meccanicaPolitecnico di MilanoMilanItaly
| | - Claudia Dolci
- Dipartimento di Scienze Biomediche per la SaluteUniversità degli Studi di MilanoMilan
| | - Chiarella Sforza
- Dipartimento di Scienze Biomediche per la SaluteUniversità degli Studi di MilanoMilan
| | - Cristina Cattaneo
- Laboratorio di Antropologia e Odontologia Forense, Sezione Medicina Legale, Dipartimento di Scienze Biomediche per la SaluteUniversità degli Studi di MilanoMilanItaly
| |
Collapse
|
3
|
Shiraishi D, Nishimura Y, Aguirre-Carreno I, Hara M, Yoshikawa S, Eguchi K, Nagashima Y, Ito H, Haimoto S, Yamamoto Y, Ginsberg HJ, Takayasu M, Saito R. Clinical and Radiological Clues of Traumatic Craniocervical Junction Injuries Requiring Occipitocervical Fusion to Early Diagnosis. Neurospine 2022; 18:741-748. [PMID: 35000327 PMCID: PMC8752707 DOI: 10.14245/ns.2142860.430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/16/2021] [Indexed: 11/19/2022] Open
Abstract
Objective The purpose of this study is to find the clinical and radiographic characteristics of traumatic craniocervical junction (CCJ) injuries requiring occipitocervical fusion (OC fusion) for early diagnosis and surgical intervention.
Methods We retrospectively reviewed 12 patients with CCJ injuries presenting to St. Michaels Hospital in Toronto who underwent OC fusion and looked into the following variables; (1) initial trauma data on emergency room arrival, (2) associated injuries, (3) imaging characteristics of computed tomography (CT) scan and magnetic resonance imaging (MRI), (4) surgical procedures, surgical complications, and neurological outcome.
Results All patients were treated as acute spinal injuries and underwent OC fusion on an emergency basis. Patients consisted of 10 males and 2 females with an average age of 47 years (range, 18–82 years). All patients sustained high-energy injuries. Three patients out of 6 patients with normal BAI (basion-axial interval) and BDI (basion-dens interval) values showed visible CCJ injuries on CT scans. However, the remaining 3 patients had no clear evidence of occipitoatlantal instability on CT scans. MRI clearly described several findings indicating occipitoatlantal instability. The 8 patients with normal values of ADI (atlantodens interval interval) demonstrated atlantoaxial instability on CT scan, however, all MRI more clearly and reliably demonstrated C1/2 facet injury and/or cruciate ligament injury.
Conclusion We advocate measures to help recognize CCJ injury at an early stage in the present study. Occipitoatlantal instability needs to be carefully investigated on MRI in addition to CT scan with special attention to facet joint and ligament integrity.
Collapse
Affiliation(s)
- Daimon Shiraishi
- Department of Neurosurgery, Nagoya University Hospital, Nagoya, Japan.,Department of Neurosurgery, Inazawa Manucipal Hospital, Aichi, Japan
| | - Yusuke Nishimura
- Department of Neurosurgery, Nagoya University Hospital, Nagoya, Japan
| | - Isaac Aguirre-Carreno
- Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Masahito Hara
- Department of Neurosurgery, Aichi Medical University Hospital, Aichi, Japan
| | - Satoshi Yoshikawa
- Department of Neurosurgery, Nagoya University Hospital, Nagoya, Japan
| | - Kaoru Eguchi
- Department of Neurosurgery, Nagoya University Hospital, Nagoya, Japan
| | | | - Hiroshi Ito
- Department of Neurosurgery, Nagoya University Hospital, Nagoya, Japan
| | - Shoichi Haimoto
- Department of Neurosurgery, Nagoya University Hospital, Nagoya, Japan
| | - Yu Yamamoto
- Department of Neurosurgery, Inazawa Manucipal Hospital, Aichi, Japan
| | - Howard J Ginsberg
- Department of Neurosurgery, Inazawa Manucipal Hospital, Aichi, Japan
| | - Masakazu Takayasu
- Department of Neurosurgery, Aichi Medical University Hospital, Aichi, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
4
|
Labuda R, Nwotchouang BST, Ibrahimy A, Allen PA, Oshinski JN, Klinge P, Loth F. A new hypothesis for the pathophysiology of symptomatic adult Chiari malformation Type I. Med Hypotheses 2022; 158. [PMID: 34992329 PMCID: PMC8730378 DOI: 10.1016/j.mehy.2021.110740] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chiari malformation Type I (CMI) is characterized by herniation of the cerebellar tonsils through the foramen magnum. The pathophysiology of CMI is not well elucidated; however, the prevailing theory focuses on the underdevelopment of the posterior cranial fossa which results in tonsillar herniation. Symptoms are believed to be due to the herniation causing resistance to the natural flow of cerebrospinal fluid (CSF) and exerting a mass effect on nearby neural tissue. However, asymptomatic cases vastly outnumber symptomatic ones and it is not known why some people become symptomatic. Recently, it has been proposed that CMI symptoms are primarily due to instability of either the atlanto-axial (AA) or the atlanto-occipital (AO) joint and the cerebellar tonsils herniate to prevent mechanical pinching. However, only a small percentage of patients exhibit clinical instability and these theories do not account for asymptomatic herniations. We propose that the pathophysiology of adult CMI involves a combination of craniocervical abnormalities which leads to tonsillar herniation and reduced compliance of the cervical spinal canal. Specifically, abnormal AO and/or AA joint morphology leads to chronic cervical instability, often subclinical, in a large portion of CMI patients. This in turn causes overwork of the suboccipital muscles as they try to compensate for the instability. Over time, the repeated, involuntary activation of these muscles leads to mechanical overload of the myodural bridge complex, altering the mechanical properties of the dura it merges with. As a result, the dura becomes stiffer, reducing the overall compliance of the cervical region. This lower compliance, combined with CSF resistance at the same level, leads to intracranial pressure peaks during the cardiac cycle (pulse pressure) that are amplified during activities such as coughing, sneezing, and physical exertion. This increase in pulse pressure reduces the compliance of the cervical subarachnoid space which increases the CSF wave speed in the spinal canal, and further increases pulse pressure in a feedback loop. Finally, the abnormal pressure environment induces greater neural tissue motion and strain, causing microstructural damage to the cerebellum, brainstem, and cervical spinal cord, and leading to symptoms. This hypothesis explains how the combination of craniocervical bony abnormalities, anatomic CSF restriction, and reduced compliance leads to symptoms in adult CMI.
Collapse
Affiliation(s)
- Rick Labuda
- Conquer Chiari, 320 Osprey Ct., Wexford, PA 15090, United States
| | - Blaise Simplice Talla Nwotchouang
- Conquer Chiari Research Center, Department of Mechanical Engineering, The University of Akron, 264 Wolf Ledges Pkwy Rm 211b, Akron, OH 44325, United States
| | - Alaaddin Ibrahimy
- Department of Biomedical Engineering, Yale University, 17 Hillhouse Avenue, New Haven, CT 06520, United States
| | - Philip A Allen
- Conquer Chiari Research Center, Department of Psychology, The University of Akron, 302 Buchtel Hall, Akron, OH 44325, United States
| | - John N Oshinski
- Department of Radiology & Imaging Sciences, Emory University School of Medcinece, Atlanta, GA 30322, United States
| | - Petra Klinge
- The Warren Alpert Medical School of Brown University, United States
| | - Francis Loth
- Department of Mechanical & Industrial Engineering, Department of Bioengineering, Northeastern University, 334 Snell Engineering, 360 Huntington Ave, Boston, MA 02115, United States
| |
Collapse
|
5
|
Intersegmental Kinematics of the Upper Cervical Spine: Normal Range of Motion and Its Alteration After Alar Ligament Transection. Spine (Phila Pa 1976) 2021; 46:E1320-E1326. [PMID: 34269757 DOI: 10.1097/brs.0000000000004167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Biomechanical study using cadaveric cervical spines. OBJECTIVE To evaluate joint mobility and stiffness at the craniovertebral junction. SUMMARY OF BACKGROUND DATA Data on the intersegmental kinematics of the craniovertebral joints are available in the literature with a widespread range of values. The effect that alar ligament injuries have on intersegmental kinematics remains unclear and requires further biomechanical investigation. METHODS Ten occipito-atlanto-axial (C0-C1-C2) human specimens were articulated to flexion, extension, bilateral lateral bending, and bilateral axial rotation. The moment-rotation response was continuously tracked through the entire range of motion before and after unilateral alar ligament transection of the right side. RESULTS The intersegmental (C0-C1/C1-C2) moment-rotation response was continuously quantified in full flexion (7.2 ± 6.6°/12.1 ± 5.8°), extension (11.1 ± 6.4°/3.0 ± 2.8°), lateral bending to the right (3.1 ± 2.2°/1.6 ± 1.2°) and left sides (3.3 ± 1.6°/2.1 ± 1.5°), and axial rotation to the right (1.2 ± 3.5°/32.3 ± 9.3°) and left sides (2.7 ± 2.6°/25.3 ± 8.3°). Unilateral alar ligament transection increased the range of motion of C0-C2 in the three planes of movement; however, intersegmental motion alterations were not always observed. CONCLUSION Increases in the range of extension and lateral bending at C0-C1, which had not been reported previously, were observed. Further, the range of rotation on the right and left sides increased, in conjunction with the increased ranges at C0-C1 and C1-C2.Level of Evidence: N/A.
Collapse
|