1
|
Li XR, Deng QS, He SH, Liu PL, Gao Y, Wei ZY, Zhang CR, Wang F, Zhu TH, Dawes H, Rui BY, Tao SC, Guo SC. 3D cryo-printed hierarchical porous scaffolds provide immobilization of surface-functionalized sleep-inspired small extracellular vesicles: synergistic therapeutic strategies for vascularized bone regeneration based on macrophage phenotype modulation and angiogenesis-osteogenesis coupling. J Nanobiotechnology 2024; 22:764. [PMID: 39695679 DOI: 10.1186/s12951-024-02977-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Bone defect healing is a multi-factorial process involving the inflammatory microenvironment, bone regeneration and the formation of blood vessels, and remains a great challenge in clinical practice. Combined use of three-dimensional (3D)-printed scaffolds and bioactive factors is an emerging strategy for the treatment of bone defects. Scaffolds can be printed using 3D cryogenic printing technology to create a microarchitecture similar to trabecular bone. Melatonin (MT) has attracted attention in recent years as an excellent factor for promoting cell viability and tissue repair. In this study, porous scaffolds were prepared by cryogenic printing with poly(lactic-co-glycolic acid) and ultralong hydroxyapatite nanowires. The hierarchical pore size distribution of the scaffolds was evaluated by scanning electron microscopy (SEM) and micro-computed tomography (micro-CT). Sleep-inspired small extracellular vesicles (MT-sEVs) were then obtained from MT-stimulated cells and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol)-inorganic pyrophosphate (DSPE-PEG-PPi) was used to modify the membrane of MT-sEVs to obtain PPi-MT-sEVs. RNA sequencing was performed to explore the potential mechanisms. The results demonstrated that PPi-MT-sEVs not only enhanced cell proliferation, migration and angiogenesis, but also regulated the osteogenic/adipogenic fate determination and M1/M2 macrophage polarization switch in vitro. PPi-MT-sEVs were used to coat scaffolds, enabled by the capacity of PPi to bind to hydroxyapatite, and computational simulations were used to analyze the interfacial bonding of PPi and hydroxyapatite. The macrophage phenotype-modulating and osteogenesis-angiogenesis coupling effects were evaluated in vivo. In summary, this study suggests that the combination of hierarchical porous scaffolds and PPi-MT-sEVs could be a promising candidate for the clinical treatment of bone defects.
Collapse
Affiliation(s)
- Xu-Ran Li
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Qing-Song Deng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Shu-Hang He
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Po-Lin Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yuan Gao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zhan-Ying Wei
- Shanghai Clinical Research Centre of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chang-Ru Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Fei Wang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
| | - Tong-He Zhu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-Coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, China
| | - Helen Dawes
- Faculty of Health and Life Science, Oxford Brookes University, Headington Road, Oxford, OX3 0BP, UK
- NIHR Oxford Health Biomedical Research Centre, Oxford, OX3 7JX, UK
- College of Medicine and Health, St Lukes Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Bi-Yu Rui
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
| | - Shi-Cong Tao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China.
| | - Shang-Chun Guo
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China.
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
2
|
Tyrina E, Yakubets D, Markina E, Buravkova L. Hippo Signaling Pathway Involvement in Osteopotential Regulation of Murine Bone Marrow Cells Under Simulated Microgravity. Cells 2024; 13:1921. [PMID: 39594669 PMCID: PMC11592674 DOI: 10.3390/cells13221921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/02/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
The development of osteopenia is one of the most noticeable manifestations of the adverse effects of space factors on crew members. The Hippo signaling pathway has been shown to play a central role in regulating the functional activity of cells through their response to mechanical stimuli. In the present study, the components of the Hippo pathway and the protective properties of osteodifferentiation inducers were investigated under simulated microgravity (smg) using a heterotypic bone marrow cell culture model, which allows for the maintenance of the close interaction between the stromal and hematopoietic compartments, present in vivo and of great importance for both the fate of osteoprogenitors and hematopoiesis. After 14 days of smg, the osteopotential and osteodifferentiation of bone marrow stromal progenitor cells, the expression of Hippo cascade genes and the immunocytochemical status of the adherent fraction of bone marrow cells, as well as the paracrine profile in the conditioned medium and the localization of Yap1 and Runx2 in mechanosensitive cells of the bone marrow were obtained. Simulated microgravity negatively affects stromal and hematopoietic cells when interacting in a heterotypic murine bone marrow cell culture. This is evidenced by the decrease in cell proliferation and osteopotential. Changes in the production of pleiotropic cytokines IL-6, GROβ and MCP-1 were revealed. Fourteen days of simulated microgravity induced a decrease in the nuclear translocation of Yap1 and the transcription factor Runx2 in the stromal cells of the intact group. Exposure to osteogenic induction conditions partially compensated for the negative effect of simulated microgravity. The data obtained will be crucial for understanding the effects of spaceflight on osteoprogenitor cell growth and differentiation via Hippo-Yap signaling.
Collapse
Affiliation(s)
- Ekaterina Tyrina
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia; (D.Y.); (L.B.)
| | | | - Elena Markina
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia; (D.Y.); (L.B.)
| | | |
Collapse
|
3
|
Zhang M, Huang Z, Wang X, Liu X, He W, Li Y, Wu D, Wu S. Personalized PLGA/BCL Scaffold with Hierarchical Porous Structure Resembling Periosteum-Bone Complex Enables Efficient Repair of Bone Defect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401589. [PMID: 39018263 PMCID: PMC11425253 DOI: 10.1002/advs.202401589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/21/2024] [Indexed: 07/19/2024]
Abstract
Using bone regeneration scaffolds to repair craniomaxillofacial bone defects is a promising strategy. However, most bone regeneration scaffolds still exist some issues such as a lack of barrier structure, inability to precisely match bone defects, and necessity to incorporate biological components to enhance efficacy. Herein, inspired by a periosteum-bone complex, a class of multifunctional hierarchical porous poly(lactic-co-glycolic acid)/baicalein scaffolds is facilely prepared by the union of personalized negative mold technique and phase separation strategy and demonstrated to precisely fit intricate bone defect cavity. The dense up-surface of the scaffold can prevent soft tissue cell penetration, while the loose bottom-surface can promote protein adsorption, cell adhesion, and cell infiltration. The interior macropores of the scaffold and the loaded baicalein can synergistically promote cell differentiation, angiogenesis, and osteogenesis. These findings can open an appealing avenue for the development of personalized multifunctional hierarchical materials for bone repair.
Collapse
Affiliation(s)
- Mengqi Zhang
- Hospital of StomatologyGuanghua School of StomatologyGuangdong Provincial Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhou510055P. R. China
| | - Zhike Huang
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080P. R. China
| | - Xun Wang
- Hospital of StomatologyGuanghua School of StomatologyGuangdong Provincial Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhou510055P. R. China
| | - Xinyu Liu
- Hospital of StomatologyGuanghua School of StomatologyGuangdong Provincial Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhou510055P. R. China
| | - Wenyi He
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationSchool of ChemistrySun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Yan Li
- Hospital of StomatologyGuanghua School of StomatologyGuangdong Provincial Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhou510055P. R. China
| | - Dingcai Wu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationSchool of ChemistrySun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Shuyi Wu
- Hospital of StomatologyGuanghua School of StomatologyGuangdong Provincial Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhou510055P. R. China
| |
Collapse
|
4
|
Li H, He W, Feng Q, Chen J, Xu X, Lv C, Zhu C, Dong H. Engineering superstable islets-laden chitosan microgels with carboxymethyl cellulose coating for long-term blood glucose regulation in vivo. Carbohydr Polym 2024; 323:121425. [PMID: 37940297 DOI: 10.1016/j.carbpol.2023.121425] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 11/10/2023]
Abstract
Islet transplantation to restore endogenous insulin secretion is a promising therapy for type 1 diabetes in clinic. However, host immune rejection seriously limits the survival of transplanted islets. Despite of the various encapsulation strategies and materials developed so far to provide immune isolation for transplanted islets, long-term blood glucose regulation is still difficult due to the inherent defects of the encapsulation materials. Herein, a novel islet-encapsulation composite material with low immunogenicity, good biocompatibility and excellent stability is reported. Specifically, chitosan (CS) microgels (diameter: ∼302 μm) are prepared via Michael addition reaction between maleimide grafted chitosan (CS-Mal) and thiol grafted chitosan (CS-NAC) in droplet-based microfluidic device, and then zwitterionic surface layer is constructed on CS microgel surface by covalent binding between maleimide groups on CS and thiol groups on thiol modified carboxymethyl cellulose (CMC-SH). The as-formed carboxymethyl cellulose coated chitosan (CS@CMC) microgels show not only long-term stability in vivo owing to the non-biodegradability of CMC, but also fantastic anti-adsorption and antifibrosis because of the stable zwitterionic surface layer. As a result, islets encapsulated in the CS@CMC microgels exhibit high viability and good insulin secretion function in vivo, and long-term blood glucose regulation is achieved for 180 days in diabetic mice post-transplantation.
Collapse
Affiliation(s)
- Haofei Li
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Weijun He
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Qi Feng
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Junlin Chen
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Xinbin Xu
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Chuhan Lv
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Changchun Zhu
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Hua Dong
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
5
|
Li J, He D, Hu L, Li S, Zhang C, Yin X, Zhang Z. Decellularized periosteum promotes guided bone regeneration via manipulation of macrophage polarization. Biotechnol J 2023; 18:e2300094. [PMID: 37300523 DOI: 10.1002/biot.202300094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Periosteum has shown potential as an effective barrier membrane for guided bone regeneration (GBR). However, if recognized as a "foreign body," insertion of a barrier membrane in GBR treatment will inevitably alter the local immune microenvironment and subsequently influence bone regeneration. The aim of this investigation was to fabricate decellularized periosteum (DP) and investigate its immunomodulatory properties in GBR. DP was successfully fabricated from periosteum from the mini-pig cranium. In vitro experiments indicated that the DP scaffold modulated macrophage polarization toward a pro-regenerative M2 phenotype, which in turn facilitated migration and osteogenic differentiation of bone marrow-derived mesenchymal stem cells. A rat GBR model with a cranial critical-size defect was established, and our in vivo experiment confirmed the beneficial effects of DP on the local immune microenvironment and bone regeneration. Collectively, the findings of this study indicate that the prepared DP possesses immunomodulatory properties and represents a promising barrier membrane for GBR procedures.
Collapse
Affiliation(s)
- Jiayang Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China
- Department of Endodontics, Shanghai Stomatological Hospital, Fudan University; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Dongming He
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China
| | - Longwei Hu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China
| | - Siyi Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China
| | - Chenping Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China
| | - Xuelai Yin
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China
| | - Zhen Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China
| |
Collapse
|
6
|
Liu Z, Zhu J, Li Z, Liu H, Fu C. Biomaterial scaffolds regulate macrophage activity to accelerate bone regeneration. Front Bioeng Biotechnol 2023; 11:1140393. [PMID: 36815893 PMCID: PMC9932600 DOI: 10.3389/fbioe.2023.1140393] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Bones are important for maintaining motor function and providing support for internal organs. Bone diseases can impose a heavy burden on individuals and society. Although bone has a certain ability to repair itself, it is often difficult to repair itself alone when faced with critical-sized defects, such as severe trauma, surgery, or tumors. There is still a heavy reliance on metal implants and autologous or allogeneic bone grafts for bone defects that are difficult to self-heal. However, these grafts still have problems that are difficult to circumvent, such as metal implants that may require secondary surgical removal, lack of bone graft donors, and immune rejection. The rapid advance in tissue engineering and a better comprehension of the physiological mechanisms of bone regeneration have led to a new focus on promoting endogenous bone self-regeneration through the use of biomaterials as the medium. Although bone regeneration involves a variety of cells and signaling factors, and these complex signaling pathways and mechanisms of interaction have not been fully understood, macrophages undoubtedly play an essential role in bone regeneration. This review summarizes the design strategies that need to be considered for biomaterials to regulate macrophage function in bone regeneration. Subsequently, this review provides an overview of therapeutic strategies for biomaterials to intervene in all stages of bone regeneration by regulating macrophages.
Collapse
Affiliation(s)
- Zongtai Liu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China
- Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Jiabo Zhu
- Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Zhuohan Li
- Department of Gynecology, Affiliated Hospital of Beihua University, Jilin, China
| | - Hanyan Liu
- Department of Orthopedics, Baicheng Central Hospital, Baicheng, China
| | - Changfeng Fu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Liang K, Zhao C, Song C, Zhao L, Qiu P, Wang S, Zhu J, Gong Z, Liu Z, Tang R, Fang X, Zhao Y. In Situ Biomimetic Mineralization of Bone-Like Hydroxyapatite in Hydrogel for the Acceleration of Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:292-308. [PMID: 36583968 DOI: 10.1021/acsami.2c16217] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A critical-sized bone defect, which cannot be repaired through self-healing, is a major challenge in clinical therapeutics. The combination of biomimetic hydrogels and nano-hydroxyapatite (nano-HAP) is a promising way to solve this problem by constructing an osteogenic microenvironment. However, it is challenging to generate nano-HAP with a similar morphology and structure to that of natural bone, which limits the improvement of bone regeneration hydrogels. Inspired by our previous works on organic-inorganic cocross-linking, here, we built a strong organic-inorganic interaction by cross-linking periosteum-decellularized extracellular matrix and calcium phosphate oligomers, which ensured the in situ mineralization of bone-like nano-HAP in hydrogels. The resulting biomimetic osteogenic hydrogel (BOH) promotes bone mineralization, construction of immune microenvironment, and angiogenesis improvement in vitro. The BOH exhibited acceleration of osteogenesis in vivo, achieving large-sized bone defect regeneration and remodeling within 8 weeks, which is superior to many previously reported hydrogels. This study demonstrates the important role of bone-like nano-HAP in osteogenesis, which deepens the understanding of the design of biomaterials for hard tissue repair. The in situ mineralization of bone-like nano-HAP emphasizes the advantages of inorganic ionic oligomers in the construction of organic-inorganic interaction, which provides an alternative method for the preparation of advanced biomimetic materials.
Collapse
Affiliation(s)
- Kaiyu Liang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Chenchen Zhao
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Chenxin Song
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Lan Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Pengcheng Qiu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Shengyu Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Jinjin Zhu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Zhe Gong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Yueqi Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| |
Collapse
|
8
|
Pazarçeviren AE, Evis Z, Dikmen T, Altunbaş K, Yaprakçı MV, Keskin D, Tezcaner A. Alginate/gelatin/boron-doped hydroxyapatite-coated Ti implants: in vitro and in vivo evaluation of osseointegration. Biodes Manuf 2023. [DOI: 10.1007/s42242-022-00218-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Xu Z, Wu L, Tang Y, Xi K, Tang J, Xu Y, Xu J, Lu J, Guo K, Gu Y, Chen L. Spatiotemporal Regulation of the Bone Immune Microenvironment via Dam-Like Biphasic Bionic Periosteum for Bone Regeneration. Adv Healthc Mater 2023; 12:e2201661. [PMID: 36189833 PMCID: PMC11469314 DOI: 10.1002/adhm.202201661] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/24/2022] [Indexed: 02/03/2023]
Abstract
The bone immune microenvironment (BIM) regulates bone regeneration and affects the prognosis of fractures. However, there is currently no effective strategy that can precisely modulate macrophage polarization to improve BIM for bone regeneration. Herein, a hybridized biphasic bionic periosteum, inspired by the BIM and functional structure of the natural periosteum, is presented. The gel phase is composed of genipin-crosslinked carboxymethyl chitosan and collagen self-assembled hybrid hydrogels, which act as the "dam" to intercept IL-4 released during the initial burst from the bionic periosteum fiber phase, thus maintaining the moderate inflammatory response of M1 macrophages for mesenchymal stem cell recruitment and vascular sprouting at the acute fracture. With the degradation of the gel phase, released IL-4 cooperates with collagen to promote the polarization towards M2 macrophages, which reconfigure the local microenvironment by secreting PDGF-BB and BMP-2 to improve vascular maturation and osteogenesis twofold. In rat cranial defect models, the controlled regulation of the BIM is validated with the temporal transition of the inflammatory/anti-inflammatory process to achieve faster and better bone defect repair. This strategy provides a drug delivery system that constructs a coordinated BIM, so as to break through the predicament of the contradiction between immune response and bone tissue regeneration.
Collapse
Affiliation(s)
- Zonghan Xu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Liang Wu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Yu Tang
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Kun Xi
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Jincheng Tang
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Yichang Xu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Jingzhi Xu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Jian Lu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Kaijin Guo
- Department of Orthopedicsthe Affiliated Hospital of Xuzhou Medical University99 Huaihai West RoadXuzhouJiangsu221000P. R. China
| | - Yong Gu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Liang Chen
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| |
Collapse
|
10
|
Wang J, Lei J, Hu Y, Meng L, Li W, Zhu F, Xie B, Wang Y, Yang C, Wu Q. Calcium Silicate Whiskers-Enforced Poly(Ether-Ether-Ketone) Composites with Improved Mechanical Properties and Biological Activities for Bearing Bone Reconstruction. Macromol Biosci 2022; 22:e2200321. [PMID: 36057971 DOI: 10.1002/mabi.202200321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Indexed: 01/15/2023]
Abstract
Poly (ether-ether-ketone) (PEEK) displays promising potential application in bone tissue repair and orthopedic surgery due to its good biocompatibility and chemical stability. However, the bio-inertness and poor mechanical strength of PEEK greatly limit its application in load-bearing bones. In this study, calcium silicate whiskers (CSws) are synthesized and then compounded with PEEK to fabricate the PEEK/CSw composites with excellent mechanical properties, biological activity. Compared with PEEK, the PEEK/CSw composites exhibited higher hydrophilicity and ability to deposit hydroxyapatite on the surface. CSws are evenly dispersed in the PEEK matrix at 10 wt% content and the mechanical strength of the PEEK/CSw composite is ≈96.9 ± 2.4 MPa, 136.3 ± 2.4 MPa, and 266.0 ± 3.2 MPa, corresponding to tensile strength, compressive strength, and bending strength, respectively, which is 20%, 18%, and 52% higher than that of pure PEEK. The composites improve the adhesion, proliferation, and osteogenic differentiation of BMSCs. Furthermore, PEEK/CSw composite remarkably improves bone formation and osteointegration, which has higher bone repair capacity than PEEK. These results demonstrate that the PEEK/CSw scaffolds display superior abilities to integrate with the host bone and promising potential in the field of load bearing bone repair.
Collapse
Affiliation(s)
- Jin Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jie Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Yanru Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Lihui Meng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wenchao Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Fang Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Bing Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Youfa Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Qingzhi Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
11
|
Xu H, Zhang Z, Zhang L, Chen Z, Wang S. Tungsten disulfide nanoflowers with multi-nanoenzyme activities for the treatment of acute liver injury. J Colloid Interface Sci 2022; 625:544-554. [PMID: 35749849 DOI: 10.1016/j.jcis.2022.06.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
In this study, polyvinyl pyrrolidone modified tungsten disulfide (WS2-PVP) nanoflower was synthesized using a simple and effective one-pot method. Owing to the surface polyvinyl pyrrolidone (PVP) modification, WS2-PVP nanoflowers showed excellent colloidal stability in different circumstances, which can be well dispersed in water, saline, and cell culture medium. Meanwhile, the WS2-PVP nanoflowers have a good biocompatibility both in vitro and in vivo. Further studies confirmed that the WS2-PVP nanoflowers have the ability of simulating catalase, superoxide dismutase and glutathione peroxidase enzymes and scavenging reactive oxygen species (ROS). Therefore, WS2-PVP nanoflowers were used to treat reactive oxygen species-related diseases, which showed the cell protection effect and significantly improved the treatment results of acute liver injury on mice. We hope that our findings will facilitate the development of nanomaterials with multiple enzymatic mimicking properties and further clinical application of tungsten-based ROS scavengers in biomedical therapy and research.
Collapse
Affiliation(s)
- Hao Xu
- Department of Infectious Diseases, Changhai Hospital, Naval Military Medical University, Shanghai 200433, China
| | - Zhirui Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Liying Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Zheng Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China.
| |
Collapse
|
12
|
Nambiar J, Jana S, Nandi SK. Strategies for Enhancing Vascularization of Biomaterial-Based Scaffold in Bone Regeneration. CHEM REC 2022; 22:e202200008. [PMID: 35352873 DOI: 10.1002/tcr.202200008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/12/2022] [Indexed: 12/29/2022]
Abstract
Despite the recent advances in reconstructive orthopedics; fracture union is a challenge to bone regeneration. Concurrent angiogenesis is a complex process governed by events, delicately entwined with osteogenesis. However, poorly perfused scaffolds have lower success rates; necessitating the need for a better vascular component, which is important for the delivery of nutrients, oxygen, waste elimination, recruitment of cells for optimal bone repair. This review highlights the latest strategies to promote biomaterial-based scaffold vascularization by incorporation of cells, growth factors, inorganic ions, etc. into natural or synthetic polymers, ceramic materials, or composites of organic and inorganic compounds. Furthermore, it emphasizes structural modifications, biophysical stimuli, and natural molecules to fabricate scaffolds aiding the genesis of dense vascularization following their implantation to manifest a compatible regenerative microenvironment without graft rejection.
Collapse
Affiliation(s)
- Jasna Nambiar
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, India
| | - Sonali Jana
- Department of Veterinary Physiology, West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, India
| |
Collapse
|