1
|
Kong L, Hu X, Xia D, Wu J, Zhao Y, Guo H, Zhang S, Qin C, Wang Y, Li L, Su Z, Zhu C, Xu S. Janus PEGylated CuS-engineered Lactobacillus casei combats biofilm infections via metabolic interference and innate immunomodulation. Biomaterials 2025; 317:123060. [PMID: 39736219 DOI: 10.1016/j.biomaterials.2024.123060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/25/2024] [Accepted: 12/25/2024] [Indexed: 01/01/2025]
Abstract
Bacterial implant-associated infections predominantly contribute to the failure of prosthesis implantation. The local biofilm microenvironment (BME), characterized by its hyperacidic condition and high hydrogen peroxide (H2O2) level, inhibits the host's immune response, thereby facilitating recurrent infections. Here, a Janus PEGylated CuS nanoparticle (CuPen) armed engineered Lactobacillus casei (L. casei) denoted as LC@CuPen, is proposed to interfere with bacterial metabolism and arouse macrophage antibiofilm function. Once LC@CuPen reached the BME, NIR irradiation-activated mild heat damages L. casei and biofilm structure. Meanwhile, the BME-responsive LC@CuPen can catalyze local H2O2 to produce toxic •OH, whereas in normal tissues, the effect of •OH production is greatly reduced due to the higher pH and lower H2O2 concentration. The released bacteriocin from damaged L. casei can destroy the bacterial membrane to enhance the penetration of •OH into damaged biofilm. Excessive •OH interferes with normal bacterial metabolism, resulting in reduced resistance of bacteria to heat stress. Finally, under the action of mild heat treatment, the bacterial biofilm lysed and died. Furthermore, the pathogen-associated molecular patterns (PAMPs) in LC@CuPen can induce M1 polarization of macrophages through NF-κB pathway and promote the release of inflammatory factors. Inflammatory factors enhance the migration of macrophages to the site of infection and phagocytose bacteria, thereby inhibiting the recurrence of infection. Generally, this engineered L. casei program presents a novel perspective for the treatment of bacterial implant-associated infections and serves as a valuable reference for future clinical applications of engineered probiotics.
Collapse
Affiliation(s)
- Lingtong Kong
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Xianli Hu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Demeng Xia
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jianghong Wu
- Department of Microbiology, College of Basic Medical Science, Department of Emergency, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| | - Yangpeng Zhao
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Hua Guo
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Song Zhang
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Chun Qin
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Yanjun Wang
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Lei Li
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Zheng Su
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Chen Zhu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shuogui Xu
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China.
| |
Collapse
|
2
|
Gong G, Wan W, Zhang X, Chen X, Yin J. Management of ROS and Regulatory Cell Death in Myocardial Ischemia-Reperfusion Injury. Mol Biotechnol 2025; 67:1765-1783. [PMID: 38852121 DOI: 10.1007/s12033-024-01173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/02/2024] [Indexed: 06/10/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is fatal to patients, leading to cardiomyocyte death and myocardial remodeling. Reactive oxygen species (ROS) and oxidative stress play important roles in MIRI. There is a complex crosstalk between ROS and regulatory cell deaths (RCD) in cardiomyocytes, such as apoptosis, pyroptosis, autophagy, and ferroptosis. ROS is a double-edged sword. A reasonable level of ROS maintains the normal physiological activity of myocardial cells. However, during myocardial ischemia-reperfusion, excessive ROS generation accelerates myocardial damage through a variety of biological pathways. ROS regulates cardiomyocyte RCD through various molecular mechanisms. Targeting the removal of excess ROS has been considered an effective way to reverse myocardial damage. Many studies have applied antioxidant drugs or new advanced materials to reduce ROS levels to alleviate MIRI. Although the road from laboratory to clinic has been difficult, many scholars still persevere. This article reviews the molecular mechanisms of ROS inhibition to regulate cardiomyocyte RCD, with a view to providing new insights into prevention and treatment strategies for MIRI.
Collapse
Affiliation(s)
- Ge Gong
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211002, China
| | - Wenhui Wan
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211002, China
| | - Xinghu Zhang
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211002, China
| | - Xiangxuan Chen
- Department of Cardiology, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, China.
| | - Jian Yin
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, China.
- Department of Orthopedics, Jiangning Clinical Medical College of Jiangsu Medical Vocational College, Nanjing, 211100, China.
- Department of Orthopedics, Jiangning Clinical Medical College of Nanjing Medical University Kangda College, Nanjing, 211100, China.
| |
Collapse
|
3
|
Chen Y, Jiang Z, Li X. New insights into crosstalk between Nrf2 pathway and ferroptosis in lung disease. Cell Death Dis 2024; 15:841. [PMID: 39557840 PMCID: PMC11574213 DOI: 10.1038/s41419-024-07224-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Ferroptosis is a distinctive process of cellular demise that is linked to amino acid metabolism, lipid oxidation, and iron oxidation. The ferroptosis cascade genes, which are closely associated with the onset of lung diseases, are among the regulatory targets of nuclear factor erythroid 2-related factor 2 (Nrf2). Although the regulation of ferroptosis is mostly mediated by Nrf2, the precise roles and underlying regulatory mechanisms of ferroptosis and Nrf2 in lung illness remain unclear. This review provides new insights from recent discoveries involving the modulation of Nrf2 and ferroptosis in a range of lung diseases. It also systematically describes regulatory mechanisms involving lipid peroxidation, intracellular antioxidant levels, ubiquitination of Nrf2, and expression of FSP1 and GPX4. Finally, it summarises active ingredients and drugs with potential for the treatment of lung diseases. With the overarching aim of expediting improvements in treatment, this review provides a reference for novel therapeutic mechanisms and offers suggestions for the development of new medications for a variety of lung disorders.
Collapse
Affiliation(s)
- Yonghu Chen
- College of Pharmacy, Yanbian University Hospital, Yanbian University, Yanji, 133002, P. R. China
| | - Zhe Jiang
- College of Pharmacy, Yanbian University Hospital, Yanbian University, Yanji, 133002, P. R. China.
| | - Xuezheng Li
- College of Pharmacy, Yanbian University Hospital, Yanbian University, Yanji, 133002, P. R. China.
| |
Collapse
|
4
|
Kang W, Wang Y, Xin L, Chen L, Zhao K, Yu L, Song X, Zheng Z, Dai R, Zhang W, Zhang R. Biodegradable Cascade-Amplified Nanotheranostics for Photoacoustic-Guided Synergistic PTT/CDT/Starvation Antitumor in the NIR-II Window. Adv Healthc Mater 2024; 13:e2401459. [PMID: 38938149 DOI: 10.1002/adhm.202401459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/26/2024] [Indexed: 06/29/2024]
Abstract
The development of nanoassemblies, activated by the tumor microenvironment, capable of generating photothermal therapy (PTT) and amplifying the "ROS (·OH) storm," is essential for precise and effective synergistic tumor treatment. Herein, an innovative cascade-amplified nanotheranostics based on biodegradable Pd-BSA-GOx nanocomposite for NIR-II photoacoustic imaging (PAI) guides self-enhanced NIR-II PTT/chemodynamic therapy (CDT)/starvation synergistic therapy. The Pd-BSA-GOx demonstrates the ability to selectively convert overexpressed H2O2 into strongly toxic ·OH by a Pd/Pd2+-mediated Fenton-like reaction at a lower pH level. Simultaneously, the GOx generates H2O2 and gluconic acid, effectively disrupting nutrient supply and instigating tumor starvation therapy. More importantly, the heightened levels of H2O2 and increased acidity greatly enhance the Fenton-like reactivity, generating a significant "·OH storm," thereby achieving Pd2+-mediated cascade-amplifying CDT. The specific PTT facilitated by undegraded Pd accelerates the Fenton-like reaction, establishing a positive feedback process for self-enhancing synergetic PTT/CDT/starvation therapy via the NIR-II guided-PAI. Therefore, the multifunctional nanotheranostics presents a simple and versatile strategy for the precision diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Weiwei Kang
- Department of Anesthesiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yuhang Wang
- Department of Anesthesiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Lei Xin
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Lin Chen
- Department of Anesthesiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Keqi Zhao
- Department of Anesthesiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Lujie Yu
- Department of Anesthesiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaorui Song
- Department of Anesthesiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ziliang Zheng
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Rong Dai
- Department of Anesthesiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Weiwei Zhang
- Department of Anesthesiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ruiping Zhang
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| |
Collapse
|
5
|
Wu S, Gao M, Chen L, Wang Y, Zheng X, Zhang B, Li J, Zhang XD, Dai R, Zheng Z, Zhang R. A Multifunctional Nanoreactor-Induced Dual Inhibition of HSP70 Strategy for Enhancing Mild Photothermal/Chemodynamic Synergistic Tumor Therapy. Adv Healthc Mater 2024; 13:e2400819. [PMID: 38722289 DOI: 10.1002/adhm.202400819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/29/2024] [Indexed: 05/18/2024]
Abstract
Mild photothermal therapy (PTT) is a spatiotemporally controllable method that utilizes the photothermal effect at relatively low temperatures (40-45 °C) to especially eliminate tumor tissues with negligible side effects on the surrounding normal tissues. However, the overexpression of heat shock protein 70 (HSP70) and limited effect of single treatment drastically impede the therapeutic efficacy. Herein, the constructed multifunctional core-shell structured Ag-Cu@SiO2-PDA/GOx nanoreactors (APG NRs) that provide a dual inhibition of HSP70 strategy for the second near-infrared photoacoustic (NIR-II PA) imaging-guided combined mild PTT/chemodynamic therapy (CDT). The Ag-Cu cores can convert endogenous H2O2 to hydroxyl radical (•OH), which can induce lipid peroxidation (LPO) and further degrade HSP70. The polydopamine (PDA)/glucose oxidase (GOx) shells are utilized as the NIR-II photothermal agent to generate low temperature, and the GOx can reduce the energy supplies and inhibit energy-dependent HSP70 expression. Furthermore, both the generation of •OH and GOx-mediated energy shortage can reduce HSP70 expression to sensitize mild PTT under 1064 nm laser, and in turn, GOx and laser self-amplify the catalytic reactions of APG NRs for more production of •OH. The multifunctional nanoreactors will provide more potential possibilities for the clinical employment of mild PTT and the advancement of tumor combination therapies.
Collapse
Affiliation(s)
- Shutong Wu
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Mengting Gao
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Lin Chen
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Yuhang Wang
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaochun Zheng
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Binyue Zhang
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Juan Li
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Rong Dai
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ziliang Zheng
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ruiping Zhang
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| |
Collapse
|
6
|
Deng Y, Wang D, Zhao W, Qiu G, Zhu X, Wang Q, Qin T, Tang J, Jiang J, Lin N, Wei L, Liu Y, Xie Y, Chen J, Deng L, Liu J. A Multifunctional Nanocatalytic Metal-Organic Framework as a Ferroptosis Amplifier for Mild Hyperthermia Photothermal Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0397. [PMID: 38952997 PMCID: PMC11214948 DOI: 10.34133/research.0397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/07/2024] [Indexed: 07/03/2024]
Abstract
Hyperthermia therapy is considered an effective anticancer strategy. However, high temperature can trigger an excessive inflammatory response, leading to tumor self-protection, immunosuppression, metastasis, and recurrence. To address this issue, we reported a multifunctional photothermal nanoplatform to achieve mild hyperthermia photothermal therapy (mild PTT) based on cisplatin (DDP) and a ferrocene metal-organic framework (MOF-Fc) nanocomposite, which can specifically enhance ferroptosis-triggered oxidative stress levels and synchronously amplify mild hyperthermia PTT-mediated anticancer responses. Both in vitro and in vivo antineoplastic results verify the superiority of mild PTT with DDP/MOF-Fc@HA. The combination of DDP and MOF-Fc exhibits Fenton catalytic activity and glutathione depletion capacity, magnifying mild hyperthermia effects via the radical oxygen species (ROS)-adenosine triphosphate (ATP)-HSP silencing pathway, with important implications for clinical hyperthermia therapy.
Collapse
Affiliation(s)
- Ying Deng
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital,
Guangxi Medical University, Nanning, Guangxi, China
| | - Duo Wang
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital,
Guangxi Medical University, Nanning, Guangxi, China
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School,
Southeast University, Nanjing, Jiangsu, China
| | - Wenhua Zhao
- Department of Oncology and Research Department, Guangxi Medical University Cancer Hospital,
Guangxi Medical University, Nanning, Guangxi, China
| | - Guanhua Qiu
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital,
Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoqi Zhu
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital,
Guangxi Medical University, Nanning, Guangxi, China
| | - Qin Wang
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital,
Guangxi Medical University, Nanning, Guangxi, China
| | - Tian Qin
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital,
Guangxi Medical University, Nanning, Guangxi, China
| | - Jiali Tang
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital,
Guangxi Medical University, Nanning, Guangxi, China
| | - Jinghang Jiang
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital,
Guangxi Medical University, Nanning, Guangxi, China
| | - Ningjing Lin
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital,
Guangxi Medical University, Nanning, Guangxi, China
| | - Lili Wei
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital,
Guangxi Medical University, Nanning, Guangxi, China
| | - Yichen Liu
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital,
Guangxi Medical University, Nanning, Guangxi, China
| | - Yuan Xie
- Department of Oncology and Research Department, Guangxi Medical University Cancer Hospital,
Guangxi Medical University, Nanning, Guangxi, China
| | - Jie Chen
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital,
Guangxi Medical University, Nanning, Guangxi, China
| | - Liu Deng
- Hunan Provincial Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering,
Central South University, Changsha, Hunan, China
| | - Junjie Liu
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital,
Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
7
|
Zhang Y, Song Q, Zhang Y, Xiao J, Deng X, Xing X, Hu H, Zhang Y. Iron-Based Nanovehicle Delivering Fin56 for Hyperthermia-Boosted Ferroptosis Therapy Against Osteosarcoma. Int J Nanomedicine 2024; 19:91-107. [PMID: 38192634 PMCID: PMC10773462 DOI: 10.2147/ijn.s441112] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024] Open
Abstract
Background Although systemic chemotherapy is a standard approach for osteosarcoma (OS) treatment, its efficacy is limited by the inherent or acquired resistance to apoptosis of tumor cells. Ferroptosis is considered as an effective strategy capable of stimulating alternative pathways of cancer cell demise. The purpose of this study is to develop a novel strategy boosting ferroptotic cascade for synergistic cancer therapy. Methods and Results A novel nanovehicle composed of arginine-glycine-aspartate (RGD) modified mesoporous silica-coated iron oxide loading Fin56 was rationally prepared (FSR-Fin56). With the RGD-mediated targeting affinity, FSR-Fin56 could achieve selective accumulation and accurate delivery of cargos into cancer cells. Upon exposure to NIR light, the nanovehicle could generate localized hyperthermia and disintegrate to liberate the therapeutic payload. The released Fin56 triggered the degradation of GPX4, while Fe3+ depleted the intracellular GSH pool, producing Fe2+ as a Fenton agent. The local rise in temperature, in conjunction with Fe2+-mediated Fenton reaction, led to a rapid and significant accumulation of ROS, culminating in LPOs and ferroptotic death. The outstanding therapeutic efficacy and safety of the nanovehicle were validated both in vitro and in vivo. Conclusion The Fin56-loaded FSR nanovehicle could effectively disturb the redox balance in cancer cells. Coupled with NIR laser irradiation, the cooperative CDT and PTT achieved a boosted ferroptosis-inducing therapy. Taken together, this study offers a compelling strategy for cancer treatment, particularly for ferroptosis-sensitive tumors like osteosarcoma.
Collapse
Affiliation(s)
- Yiran Zhang
- School of Medicine, Nankai University, Tianjin, 300071, People’s Republic of China
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- HeBei Ex&Invivo Biotechnology Co. Ltd, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Qingcheng Song
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Yueyao Zhang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Jiheng Xiao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Xiangtian Deng
- Orthopaedics Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Xin Xing
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Hongzhi Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Yingze Zhang
- School of Medicine, Nankai University, Tianjin, 300071, People’s Republic of China
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
8
|
Li Y, Guo Y, Zhang K, Zhu R, Chen X, Zhang Z, Yang W. Cell Death Pathway Regulation by Functional Nanomedicines for Robust Antitumor Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306580. [PMID: 37984863 PMCID: PMC10797449 DOI: 10.1002/advs.202306580] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/16/2023] [Indexed: 11/22/2023]
Abstract
Cancer immunotherapy has become a mainstream cancer treatment over traditional therapeutic modes. Cancer cells can undergo programmed cell death including ferroptosis, pyroptosis, autophagy, necroptosis, apoptosis and cuproptosis which are find to have intrinsic relationships with host antitumor immune response. However, direct use of cell death inducers or regulators may bring about severe side effects that can also be rapidly excreted and degraded with low therapeutic efficacy. Nanomaterials are able to carry them for long circulation time, high tumor accumulation and controlled release to achieve satisfactory therapeutic effect. Nowadays, a large number of studies have focused on nanomedicines-based strategies through modulating cell death modalities to potentiate antitumor immunity. Herein, immune cell types and their function are first summarized, and state-of-the-art research progresses in nanomedicines mediated cell death pathways (e.g., ferroptosis, pyroptosis, autophagy, necroptosis, apoptosis and cuproptosis) with immune response provocation are highlighted. Subsequently, the conclusion and outlook of potential research focus are discussed.
Collapse
Affiliation(s)
- Yongjuan Li
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450001China
- The center of Infection and ImmunityAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450001China
| | - Yichen Guo
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Kaixin Zhang
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Rongrong Zhu
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineering, and Biomedical EngineeringYong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingapore119074Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Zhenzhong Zhang
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Weijing Yang
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| |
Collapse
|
9
|
Luo J, Lu Q, Sun B, Shao N, Huang W, Hu G, Cai B, Si W. Chrysophanol improves memory impairment and cell injury by reducing the level of ferroptosis in A β25-35 treated rat and PC12 cells. 3 Biotech 2023; 13:348. [PMID: 37780805 PMCID: PMC10539257 DOI: 10.1007/s13205-023-03769-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023] Open
Abstract
Alzheimer's disease (AD) is a common age-related chronic and neurodegenerative disease that has become a global health problem. AD pathogenesis is complex, and the clinical efficacy of commonly used anti-AD drugs is suboptimal. Recent research has revealed a close association between AD-induced damage and the activation of ferroptosis signaling pathways. Chrysophanol (CHR) the principal medicinal component of Rhubarb, has been reported to have anti-AD effects and can reduce ROS levels in AD-damaged models. AD has been linked to the activation of ferroptosis signaling pathways, which has an important feature of higher levels of reactive oxygen species (ROS). Therefore, the present study explored whether CHR had an anti-AD effect by regulating the ferroptosis levels in AD injury models. Morris water maze, novel object recognition test, Y-maze test, Hematoxylin-eosin (H&E) staining, western blotting, ROS measurement, GPx activity measurement, LPO measurement, transmission electron microscopy, live/dead cell staining were used to investigate the changes in spatial memory level and ferroptosis level in AD model, and the intervention effect of CHR. CHR improved the spatial memory level of AD rat models, reduced the level of hippocampal neuron damage, and improved the survival rate of PC12 cells damaged by β-amyloid (Aβ). Meanwhile, CHR increased glutathione peroxidase-4 (GPX4) protein expression, GPx activity, and GSH, decreased ROS and LPO levels in AD rat models and Aβ-damaged PC12 cells, and improved mitochondrial pathological damage. Our findings suggest that CHR may play a protective role in AD injury by lowering ferroptosis levels, which may provide a potential pathway for developing drugs for AD. However, the mechanism of CHR's role requires further investigation.
Collapse
Affiliation(s)
- Jing Luo
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Qingyang Lu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Bin Sun
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Nan Shao
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Wei Huang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Guanhua Hu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Biao Cai
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012 China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012 China
| | - Wenwen Si
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012 China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012 China
| |
Collapse
|
10
|
Chen W, Xie W, Gao Z, Lin C, Tan M, Zhang Y, Hou Z. Mild-Photothermal Effect Induced High Efficiency Ferroptosis-Boosted-Cuproptosis Based on Cu 2 O@Mn 3 Cu 3 O 8 Nanozyme. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303694. [PMID: 37822154 PMCID: PMC10667815 DOI: 10.1002/advs.202303694] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/02/2023] [Indexed: 10/13/2023]
Abstract
A core-shell-structured Cu2 O@Mn3 Cu3 O8 (CMCO) nanozyme is constructed to serve as a tumor microenvironment (TME)-activated copper ionophore to achieve safe and efficient cuproptosis. The Mn3 Cu3 O8 shell not only prevents exposure of normal tissues to the Cu2 O core to reduce systemic toxicity but also exhibits enhanced enzyme-mimicking activity owing to the better band continuity near the Fermi surface. The glutathione oxidase (GSHOx)-like activity of CMCO depletes glutathione (GSH), which diminishes the ability to chelate Cu ions, thereby exerting Cu toxicity and inducing cuproptosis in cancer cells. The catalase (CAT)-like activity catalyzes the overexpressed H2 O2 in the TME, thereby generating O2 in the tricarboxylic acid (TCA) cycle to enhance cuproptosis. More importantly, the Fenton-like reaction based on the release of Mn ions and the inactivation of glutathione peroxidase 4 induced by the elimination of GSH results in ferroptosis, accompanied by the accumulation of lipid peroxidation and reactive oxygen species that can cleave stress-induced heat shock proteins to compromise their protective capacity of cancer cells and further sensitize cuproptosis. CMCO nanozymes are partially sulfurized by hydrogen sulfide in the colorectal TME, exhibiting excellent photothermal properties and enzyme-mimicking activity. The mild photothermal effect enhances the enzyme-mimicking activity of the CMCO nanozymes, thus inducing high-efficiency ferroptosis-boosted-cuproptosis.
Collapse
Affiliation(s)
- Wei Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Wenyu Xie
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Zhimin Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Chen Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Meiling Tan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Yaru Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Zhiyao Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| |
Collapse
|
11
|
Ding X, Wang T, Bai S, Yang M, Peng N, Qiu T, Liu Y. A Dual Heat Shock Protein Down-Regulation Strategy Using PDA/Cu/ICG/R Controlled by NIR "Switch" Enhances Mild-Photothermal Therapy Effect. Adv Healthc Mater 2023; 12:e2300929. [PMID: 37300324 DOI: 10.1002/adhm.202300929] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/06/2023] [Indexed: 06/12/2023]
Abstract
The purpose of this study is to down-regulate heat shock proteins and improve the mild photothermal therapy (mild-PTT) effect of polydopamine (PDA) by preparing the nanosystem of Cu2+ and indocyanine green (ICG)-loaded PDA nanospheres with surface modification of integrin-targeted cyclic peptide (cRGD) (PDA/Cu/ICG/R), which can limit ATP synthesis through the double mitochondrial destruction pathway. In vitro and in vivo experiments using PDA/Cu/ICG/R irradiated with an NIR laser demonstrate that when NIR is "OFF," Cu2+ can undergo Fenton-like reaction in tumor cells, producing a large amount of hydroxyl radicals (·OH), which leads to oxidative stress in cells. This oxidative stress can cause mitochondrial oxidative phosphorylation dysfunction, resulting in limited ATP synthesis. When NIR is "ON," mild-PTT can accelerate Cu2+ to produce ·OH. Simultaneously, NIR can activate ICG to produce reactive oxygen species (ROS) storm, amplify intracellular oxidative stress, and continuously damage mitochondria. The biodegradability of PDA greatly reduces the risk of toxicity caused by long-term retention of PDA/Cu/ICG/R in organisms. Finally, the improvement of the mild-PTT effect of PDA is successfully achieved through the double mitochondrial destruction pathway of Cu2+ and ICG controlled by NIR "switch."
Collapse
Affiliation(s)
- Xin Ding
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Tianyu Wang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Mian Yang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Na Peng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
- Belt and Road Joint Laboratory on Measurement and Control Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| |
Collapse
|
12
|
Li Y, Zhang Y, Dong Y, Akakuru OU, Yao X, Yi J, Li X, Wang L, Lou X, Zhu B, Fan K, Qin Z. Ablation of Gap Junction Protein Improves the Efficiency of Nanozyme-Mediated Catalytic/Starvation/Mild-Temperature Photothermal Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210464. [PMID: 36964940 DOI: 10.1002/adma.202210464] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/22/2023] [Indexed: 06/02/2023]
Abstract
Reactive oxygen species (ROS)-mediated tumor catalytic therapy is typically hindered by gap junction proteins that form cell-to-cell channels to remove cytotoxic ROS, thereby protecting tumor cells from oxidative damage. In this work, a multifunctional nanozyme, FePGOGA, is designed and prepared by Fe(III)-mediated oxidative polymerization (FeP), followed by glucose oxidase (GOx) and GAP19 peptides co-loading through electrostatic and π-π interactions. The FePGOGA nanozyme exhibits excellent cascade peroxidase- and glutathione-oxidase-like activities that efficiently catalyze hydrogen peroxide conversion to hydroxyl radicals and convert reduced glutathione to oxidized glutathione disulfide. The loaded GOx starves the tumors and aggravates tumor oxidative stress through glucose decomposition, while GAP19 peptides block the hemichannels by inducing degradation of Cx43, thus increasing the accumulation of intracellular ROS, and decreasing the transport of intracellular glucose. Furthermore, the ROS reacts with primary amines of heat shock proteins to destroy their structure and function, enabling tumor photothermal therapy at the widely sought-after mild temperature (mildPTT, ≤45 °C). In vivo experiments demonstrate the significant antitumor effectof FePGOGA on cal27 xenograft tumors under near-infrared light irradiation. This study demonstrates the successful ablation of gap junction proteins to overcome resistance to ROS-mediated therapy, providing a regulator to suppress tumor self-preservation during tumor starvation, catalytic therapy, and mildPTT.
Collapse
Affiliation(s)
- Yongjuan Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yu Zhang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Ya Dong
- Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Ozioma Udochukwu Akakuru
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Xiaohan Yao
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jinmeng Yi
- Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xinyan Li
- Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Linlin Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaohan Lou
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Baoyu Zhu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Kelong Fan
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
13
|
Ming H, Zhang K, Ge S, Shi Y, Du C, Guo X, Zhang L. A Mini Review of S-Nitrosoglutathione Loaded Nano/Micro-Formulation Strategies. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:224. [PMID: 36677977 PMCID: PMC9863240 DOI: 10.3390/nano13020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
As a potential therapeutic agent, the clinical application of S-nitrosoglutathione (GSNO) is limited because of its instability. Therefore, different formulations have been developed to protect GSNO from degradation, delivery and the release of GSNO at a physiological concentration in the active position. Due to the high water-solubility and small molecular-size of GSNO, the biggest challenges in the encapsulation step are low encapsulation efficiency and burst release. This review summarizes the different nano/micro-formulation strategies of a GSNO related delivery system to provide references for subsequent researchers interested in GSNO encapsulation.
Collapse
Affiliation(s)
- Hui Ming
- State Key Laboratory of Heavy Oil Processing, College of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Kunpeng Zhang
- State Key Laboratory of Heavy Oil Processing, College of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Shengbo Ge
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Shi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunan Du
- Faculty of Chemical Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying 257000, China
| | - Xuqiang Guo
- State Key Laboratory of Heavy Oil Processing, College of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Libo Zhang
- State Key Laboratory of Heavy Oil Processing, College of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| |
Collapse
|
14
|
Zhu W, Mei J, Zhang X, Zhou J, Xu D, Su Z, Fang S, Wang J, Zhang X, Zhu C. Photothermal Nanozyme-Based Microneedle Patch against Refractory Bacterial Biofilm Infection via Iron-Actuated Janus Ion Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207961. [PMID: 36239263 DOI: 10.1002/adma.202207961] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Owing to high antibiotic resistance and thermotolerance, bacterial biofilm infections (BBIs) are refractory to elimination. Iron is essential for bacterial growth and metabolism, and bacteria can thus accumulate iron from surrounding cells to maintain biofilm formation and survival. Consequently, iron deficiency in the biofilm microenvironment (BME) leads to the functional failure of innate immune cells. Herein, a novel antibiofilm strategy of iron-actuated Janus ion therapy (IJIT) is proposed to regulate iron metabolism in both bacterial biofilm and immune cells. A BME-responsive photothermal microneedle patch (FGO@MN) is synthesized by the growth of Fe3 O4 nanoparticles on graphene oxide nanosheets and then encapsulated in methacrylated hyaluronic acid needle tips. The catalytic product of ·OH by FGO@MN in BME disrupts the bacterial heat-shock proteins, coercing biofilm thermal sensitization. As synergistic mild photothermal treatment triggers iron uptake, the intracellular iron overload further induces ferroptosis-like death. Moreover, iron-nourished neutrophils around BME can be rejuvenated for reactivating the suppressed antibiofilm function. Thus, more than 95% BBIs elimination can be achieved by combining heat stress-triggered iron interference with iron-nutrient immune reactivation. Furthermore, in vivo experiments validate the scavenging of refractory BBI after 15 days, suggesting the promising perspective of IJIT in future clinical application.
Collapse
Affiliation(s)
- Wanbo Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Jiawei Mei
- Department of Orthopedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Xianzuo Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Jun Zhou
- Department of Orthopedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Dongdong Xu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Zheng Su
- Department of Orthopedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Shiyuan Fang
- Department of Orthopedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Jiaxing Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Xianlong Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| |
Collapse
|
15
|
Sun P, Qu F, Zhang C, Cheng P, Li X, Shen Q, Li D, Fan Q. NIR-II Excitation Phototheranostic Platform for Synergistic Photothermal Therapy/Chemotherapy/Chemodynamic Therapy of Breast Cancer Bone Metastases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204718. [PMID: 36216756 PMCID: PMC9685450 DOI: 10.1002/advs.202204718] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2022] [Indexed: 05/23/2023]
Abstract
To improve bone metastases treatment efficacy, current strategies are focused on the integration of chemotherapy with phototheranostic. However, the success of phototheranostic approaches is hampered by the limited tissue penetration depth of near-infrared-I (NIR-I) light (700-900 nm). In this study, a NIR-II (1000-1700 nm) excitation phototheranostic (BTZ/Fe2+ @BTF/ALD) is presented for NIR-II fluorescence imaging and NIR-II photoacoustic imaging-guided NIR-II photothermal therapy (PTT), chemotherapy, and chemodynamic therapy (CDT) of breast cancer bone metastases. This phototheranostic is developed by integrating a dopamine-modified NIR-II absorbing donor-acceptor-donor small molecule (BBT-FT-DA), the boronate anticancer drug bortezomib (BTZ), and Fe2+ ions, as CDT catalysts, into an amphiphilic PEGylated phospholipid modified with the bone-targeting ligand alendronate. In acidic and hydrogen peroxide (H2 O2 ) over expression tumor microenvironment, the boronate-catechol linkage is cleaved and BTZ and Fe2+ ions are released to initiate the Fenton reaction, that is, chemotherapy and CDT, respectively, are initialized. It is confirmed using the murine 4T1 bone metastasis model that BTZ/Fe2+ @BTF/ALD significantly suppresses the progression of tumor cells in the bone tissue via a synergistic NIR-II PTT/chemotherapy/CDT effect. Overall, this work provides fresh insights to guide the development of NIR-II phototheranostics for breast cancer bone metastases.
Collapse
Affiliation(s)
- Pengfei Sun
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced MaterialsJiangsu Key Laboratory for BiosensorsNanjing University of Posts & TelecommunicationsNanjing210023China
| | - Fan Qu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced MaterialsJiangsu Key Laboratory for BiosensorsNanjing University of Posts & TelecommunicationsNanjing210023China
| | - Chi Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| | - Pengfei Cheng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced MaterialsJiangsu Key Laboratory for BiosensorsNanjing University of Posts & TelecommunicationsNanjing210023China
| | - Xiangyu Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced MaterialsJiangsu Key Laboratory for BiosensorsNanjing University of Posts & TelecommunicationsNanjing210023China
| | - Qingming Shen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced MaterialsJiangsu Key Laboratory for BiosensorsNanjing University of Posts & TelecommunicationsNanjing210023China
| | - Daifeng Li
- Department of OrthopedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced MaterialsJiangsu Key Laboratory for BiosensorsNanjing University of Posts & TelecommunicationsNanjing210023China
| |
Collapse
|