1
|
Basaran MM, Ozgursoy SK, Arslan H, Kocaturk S. The effect of subperichondrial dissection on nasal vascularity in septorhinoplasty operations. Eur Arch Otorhinolaryngol 2024; 281:1827-1833. [PMID: 38052758 DOI: 10.1007/s00405-023-08356-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
PURPOSE Nasal vascularization runs above the superficial musculoaponeurotic system (SMAS). Perichondrium covers the lower and upper lateral cartilages. In this study, nasal vascularization was compared between subperichondrial and supraperichondrial dissection in closed septorhinoplasty. METHODS 95 patients and 41 volunteers were included in this study. Supraperichondrial dissection was performed in 48 patients and subperichondrial dissection was performed in 47 patients. To measure blood stream, laser doppler flowmetry (LDF) was used and measurements were done preoperatively, on the postoperative first week; 3rd month and first year. RESULTS The nasal tip and dorsum measurements were similar between the preoperative and postoperative first year in both groups (p = 1.000). However, in the supraperichondrial dissection group, nasal tip measurements showed a significant increase between the preoperative and third postoperative months (p = 0.011). This increase was accompanied by an increase in the minimal blood stream (p = 0.014). CONCLUSION Both subperichondrial and supraperichondrial dissection techniques are physiological and result in fewer complications with minimal permanent vascular damage. We believe incision plays a critical role but keeping the perichondrium intact is important for short-term angiogenesis, where long-term results showed no difference in vascularization.
Collapse
Affiliation(s)
| | | | - Hande Arslan
- Department of Otorhinolaryngology, Samsun Research and Training Hospital, Samsun, Turkey
| | - Sinan Kocaturk
- Department of Otorhinolaryngology, Losante Hospital, Ankara, Turkey
| |
Collapse
|
2
|
Vág J, Gánti B, Mikecs B, Szabó E, Molnár B, Lohinai Z. Epinephrine penetrates through gingival sulcus unlike keratinized gingiva and evokes remote vasoconstriction in human. BMC Oral Health 2020; 20:305. [PMID: 33148235 PMCID: PMC7640651 DOI: 10.1186/s12903-020-01296-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022] Open
Abstract
Background It has been demonstrated in non-oral tissues that the locally evoked vasoconstriction could elicit remote vasoconstriction. This study aimed to investigate the spreading vasoconstrictor effects of epinephrine in the gingiva. Methods Gingival blood flow (GBF) was measured by laser speckle contrast imager in 21 healthy volunteers. In group A, two wells were fabricated from orthodontic elastic ligature and placed 2 mm apically to the free gingival margin at the mid buccal line of 12 (test side) and 21 (control side) teeth. The GBF was measured in the wells and tightly apical, coronal, distal and mesial to the wells. In group B, the wells were made on the buccal surface of the same teeth, including the gingival sulcus. Four regions were selected for measurement from the gingival margin reaching the mucogingival line (coronal, midway1, midway2 and apical). After the baseline recording, 3 µg epinephrine was applied into the test, and physiological saline into the control well. The GBF was recorded for 14 min. The gingival thickness was measured with a PIROP Ultrasonic Biometer. Results In group A, the GBF did not increase or decrease after the application of epinephrine. In group B, the GBF significantly decreased in all regions of the test side and remained low for the observation period. The vasoconstriction appeared with delays in more apical regions (at min 1 in the coronal and the midway1, at min 2 in the midway2, at min 4 in the apical region). Similarly, the amount of the decrease at 14 min was the largest close to sulcus (− 53 ± 2.9%), followed by the midway1 (− 51 ± 2.8%) and midway2 (− 42 ± 4.2%) and was the lowest in the apical region (− 32 ± 5.8%). No correlation was found between GBF and gingival thickness. Conclusion Epinephrine could evoke intense vasoconstriction propagating to the mucogingival junction, indicating the presence of spreading vasoconstriction in the human gingiva. The attached gingiva is impermeable to epinephrine, unlike the gingival sulcus. This trial was registered in ClinicalTrials.gov titled as Evidence of Spreading Vasoconstriction in Human Gingiva with the reference number of NCT04131283 on 16 October 2019. https://clinicaltrials.gov/show/NCT04131283
Collapse
Affiliation(s)
- János Vág
- Department of Conservative Dentistry, Semmelweis University, Szentkirályi Street 47, 1088, Budapest, Hungary.
| | - Bernadett Gánti
- Department of Conservative Dentistry, Semmelweis University, Szentkirályi Street 47, 1088, Budapest, Hungary
| | - Barbara Mikecs
- Department of Conservative Dentistry, Semmelweis University, Szentkirályi Street 47, 1088, Budapest, Hungary
| | - Enikő Szabó
- Department of Conservative Dentistry, Semmelweis University, Szentkirályi Street 47, 1088, Budapest, Hungary
| | - Bálint Molnár
- Department of Periodontology, Semmelweis University, Szentkirályi Street 47, 1088, Budapest, Hungary
| | - Zsolt Lohinai
- Department of Conservative Dentistry, Semmelweis University, Szentkirályi Street 47, 1088, Budapest, Hungary
| |
Collapse
|
3
|
Sun N, Ning B, Bruce AC, Cao R, Seaman SA, Wang T, Fritsche-Danielson R, Carlsson LG, Peirce SM, Hu S. In vivo imaging of hemodynamic redistribution and arteriogenesis across microvascular network. Microcirculation 2019; 27:e12598. [PMID: 31660674 DOI: 10.1111/micc.12598] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Arteriogenesis is an important mechanism that contributes to restoration of oxygen supply in chronically ischemic tissues, but remains incompletely understood due to technical limitations. This study presents a novel approach for comprehensive assessment of the remodeling pattern in a complex microvascular network containing multiple collateral microvessels. METHODS We have developed a hardware-software integrated platform for quantitative, longitudinal, and label-free imaging of network-wide hemodynamic changes and arteriogenesis at the single-vessel level. By ligating feeding arteries in the mouse ear, we induced network-wide hemodynamic redistribution and localized arteriogenesis. The utility of this technology was demonstrated by studying the influence of obesity on microvascular arteriogenesis. RESULTS Simultaneously monitoring the remodeling of competing collateral arterioles revealed a new, inverse relationship between initial vascular resistance and extent of arteriogenesis. Obese mice exhibited similar remodeling responses to lean mice through the first week, including diameter increase and flow upregulation in collateral arterioles. However, these gains were subsequently lost in obese mice. CONCLUSIONS Capable of label-free, comprehensive, and dynamic quantification of structural and functional changes in the microvascular network in vivo, this platform opens up new opportunities to study the mechanisms of microvascular arteriogenesis, its implications in diseases, and approaches to pharmacologically rectify microvascular dysfunction.
Collapse
Affiliation(s)
- Naidi Sun
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Bo Ning
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Anthony C Bruce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Rui Cao
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Scott A Seaman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Tianxiong Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | | | - Leif G Carlsson
- Bioscience Heart Failure, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Song Hu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
4
|
Gánti B, Molnár E, Fazekas R, Mikecs B, Lohinai Z, Mikó S, Vág J. Evidence of spreading vasodilation in the human gingiva evoked by nitric oxide. J Periodontal Res 2019; 54:499-505. [PMID: 30865289 DOI: 10.1111/jre.12650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/18/2018] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Spreading vasodilation is an important means of increasing local blood flow effectively during increased metabolic demands or in case of vascular injury. Our aim was to develop a technique proving the presence of spreading vasodilation in the human keratinized gingiva. METHODS Local vasodilation was evoked by the application of nitric oxide (NO) donor nitroglycerin into a well, fixed 2 mm above the marginal gingiva, in 20 subjects with healthy periodontal tissue. Either 1 or 8 mg/mL nitroglycerin solutions were dropped into the test well at the upper right second incisor, and saline was applied into the control well at the upper left first incisor. The gingival blood flow (GBF) was recorded for 15 minutes by a laser speckle contrast imager below the well and in the surrounding area in the mesial, distal, apical and coronal directions. Gingival thickness was measured by an ultrasonic biometer. RESULTS Peak GBF increase was similar after 1 mg/mL and after 8 mg/mL nitroglycerin application in the well (51% ± 12% vs 42% ± 8%) and in the apical region (33 ± 9% vs 55% ± 13%). While the lower dose of nitroglycerin increased GBF only in the apical region around the well, the higher dose induced significant elevations in all surrounding regions, with apical prominence. Hyperaemia lasted 10-14 minutes in the low-dose group whereas it extended beyond the observation period in the high-dose group. Neither the baseline nor the NO-induced peak GBF were correlated with gingival thickness. CONCLUSION The role of the direct effect of NO in the regulation of perfusion was demonstrated in the human gingiva as well as the propagation of local vasodilation to distant, especially apical areas, probably by the mechanism of flow-mediated dilation. This mechanism may have a clinical importance for flap survival or wound healing.
Collapse
Affiliation(s)
- Bernadett Gánti
- Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| | - Eszter Molnár
- Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| | - Réka Fazekas
- Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| | - Barbara Mikecs
- Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| | - Zsolt Lohinai
- Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| | - Sándor Mikó
- Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| | - János Vág
- Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Evaluation of Laser Speckle Contrast Imaging for the Assessment of Oral Mucosal Blood Flow following Periodontal Plastic Surgery: An Exploratory Study. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4042902. [PMID: 28232940 PMCID: PMC5292366 DOI: 10.1155/2017/4042902] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 01/04/2017] [Indexed: 01/25/2023]
Abstract
The laser speckle contrast imaging (LSCI) is proved to be a reliable tool in flap monitoring in general surgery; however, it has not been evaluated in oral surgery yet. We applied the LSCI to compare the effect of a xenogeneic collagen matrix (Geistlich Mucograft®) to connective tissue grafts (CTG) on the microcirculation of the modified coronally advanced tunnel technique (MCAT) for gingival recession coverage. Gingival microcirculation and wound fluid were measured before and after surgery for six months at twenty-seven treated teeth. In males, the flap microcirculation was restored within 3 days for both grafts followed by a hyperemic response. During the first 8 days the blood flow was higher at xenogeneic graft comparing to the CTG. In females, the ischemic period lasted for 7–12 days depending on the graft and no hyperemic response was observed. Females had more intense and prolonged wound fluid production. The LSCI method is suitable to capture the microcirculatory effect of the surgical intervention in human oral mucosa. The application of xenogeneic collagen matrices as a CTG substitute does not seem to restrain the recovery of graft bed circulation. Gender may have an effect on postoperative circulation and inflammation.
Collapse
|
6
|
Stanger K, Horch RE, Dragu A. Severe mutilating injuries with complex macroamputations of the upper extremity - is it worth the effort? World J Emerg Surg 2015; 10:30. [PMID: 26170897 PMCID: PMC4499889 DOI: 10.1186/s13017-015-0025-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/30/2015] [Indexed: 01/05/2023] Open
Abstract
Introduction An amputation of the upper extremity and the following replantation is still one of the most challenging operations in the field of reconstructive surgery, especially in extremely severe cases of combined mutilating macroamputations including avulsion and multilevel injuries. Specialists agree that macroamputations with sharp wound edges are an absolute indication for replantation. However, there is no agreement in disastrous cases including avulsion and multilevel injuries. The outcome of the operation is depending on several factors, including the type of accident, age and pre-existing disease of the patient, as well as time of ischemia and appropriate physical therapy. Methods Between January 1st 2003 and December 31st 2011 six patients underwent a macroreplantation with disastrous combined and complex injuries of the upper extremity in our department. We performed a follow up and evaluated the functional outcome of the upper extremity function using the DASH questionnaire (average follow up of 3.1 years). Results The mean time of ischemia was 04:50 h (02:46 h–06:17 h). The mean time for the operation was 05:30 h (01:55 h–08:20 h). The mean operations needed per patient were 7 (2–16). The average hospital stay was 29d (16–59d). According to the DASH-Score from five out of six patients the functional outcome of the replanted extremity has a mean score of 71 points. The versatility of the replanted extremity in the field of work had 95, and sport, music was assessed with a mean score of 96 points. Conclusions Severe and disastrous combined and complex macroamputations of the upper extremity may also have an absolute indication for replantation even though the functional outcome is poor. Not only the feeling of physical integrity can be restored, but the replantation of an amputated upper extremity enables complete or partial recovery of function and sensibility of the arm which is important for the individual. Although our results show a very high DASH-Score, those achievements justify time and person consuming operations. In most cases a replanted extremity is still superior to a secondary allotransplantation. Usually the use of prosthesis is not favored by the treated patients.
Collapse
Affiliation(s)
- Katrin Stanger
- Department of Plastic and Hand Surgery, OKM Orthopädische Klinik Markgröningen gGmbH, Markgröningen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Adrian Dragu
- Department of Plastic and Hand Surgery, Klinikum St. Georg gGmbH, Leipzig, Germany
| |
Collapse
|
7
|
Robinson NE, Williams KJ, Stack A, Jackson WF, Derksen FJ. Exercise-induced pulmonary haemorrhage: A progressive disease affecting performance? Equine Vet J 2015; 47:339-40. [PMID: 25712624 DOI: 10.1111/evj.12412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- N E Robinson
- Large Animal Clinical Sciences, Michigan State University, East Lansing, USA
| | | | | | | | | |
Collapse
|
8
|
Bone marrow-derived mesenchymal stromal cells improve vascular regeneration and reduce leukocyte-endothelium activation in critical ischemic murine skin in a dose-dependent manner. Cytotherapy 2014; 16:1345-60. [PMID: 24972742 DOI: 10.1016/j.jcyt.2014.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/26/2014] [Accepted: 05/08/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND AIMS Stem cells participate in vascular regeneration following critical ischemia. However, their angiogenic and remodeling properties, as well as their role in ischemia-related endothelial leukocyte activation, need to be further elucidated. Herein, we investigated the effect of bone marrow-derived mesenchymal stromal cells (BM-MSCs) in a critically ischemic murine skin flap model. METHODS Groups received either 1 × 10(5), 5 × 10(5), or 1 × 10(6) BM-MSCs or cell-free conditioned medium (CM). Controls received sodium chloride. Intravital fluorescence microscopy was performed for morphological and quantitative assessment of micro-hemodynamic parameters over 12 days. RESULTS Tortuosity and diameter of conduit-arterioles were pronounced in the MSC groups (P < 0.01), whereas vasodilation was shifted to the end arteriolar level in the CM group (P < 0.01). These effects were accompanied by angiopoietin-2 expression. Functional capillary density and red blood cell velocity were enhanced in all treatment groups (P < 0.01). Although a significant reduction of rolling and sticking leukocytes was observed in the MSC groups with a reduction of diameter in postcapillary venules (P < 0.01), animals receiving CM exhibited a leukocyte-endothelium interaction similar to controls. This correlated with leukocyte common antigen expression in tissue sections (P < 0.01) and p38 mitogen-activated protein kinase expression from tissue samples. Cytokine analysis from BM-MSC culture medium revealed a 50% reduction of pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, IL-12, tumor necrosis factor-α, interferon-γ) and chemokines (keratinocyte chemoattractant, granulocyte colony-stimulating factor) under hypoxic conditions. DISCUSSION We demonstrated positive effects of BM-MSCs on vascular regeneration and modulation of endothelial leukocyte adhesion in critical ischemic skin. The improvements after MSC application were dose-dependent and superior to the use of CM alone.
Collapse
|