1
|
Zieliński R, Puszkarz AK, Piętka T, Sowiński J, Sadowska-Sowińska M, Kołkowska A, Simka W. Comparative Evaluation of Bone-Implant Contact in Various Surface-Treated Dental Implants Using High-Resolution Micro-CT in Rabbits' Bone. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5396. [PMID: 39597220 PMCID: PMC11595991 DOI: 10.3390/ma17225396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
This study evaluated the bone-to-implant contact (BIC) of various surface-treated dental implants using high-resolution micro-CT in rabbit bone, focusing on the effects of different treatments on osseointegration and implant stability before and after bone demineralization. Six male New Zealand White rabbits were used. Four implant types were tested: machined surface with anodizing, only etching, sandblasting with Al2O3 + etching, and sandblasting with TiO2 + etching. Implants were scanned with high-resolution micro-CT before and after demineralization. Parameters like implant volume, surface area, and BIC were determined using specific software tools. During demineralization, the BIC changed about 6% for machined surface with anodizing, 5% for only etching, 4% for sandblasting with Al2O3 + etching, and 10% for sandblasting with TiO2 + etching. Demineralization reduced BIC percentages, notably in the machined surface with anodizing and sandblasting with TiO2 + etching groups. Etching and sandblasting combined with etching showed higher initial BIC compared to anodizing alone. Demineralization negatively impacted the BIC across all treatments. This study underscores the importance of surface modification in implant integration, especially in compromised bone. Further research with larger sample sizes and advanced techniques is recommended.
Collapse
Affiliation(s)
- Rafał Zieliński
- Stomatologia na Ksieżym Młynie, Lodz, 16D Tymienieckiego, 90-365 Lodz, Poland
| | - Adam K. Puszkarz
- Textile Institute, Faculty of Material Technologies and Textile Design, Lodz University of Technology, 116 Żeromskiego Street, 90-924 Lodz, Poland;
| | | | - Jerzy Sowiński
- Private Dental Clinic, Tetmajera 3A Rd, 05-080 Izabelin C, Poland; (J.S.); (M.S.-S.)
| | | | - Agata Kołkowska
- Department of Inorganic Chemistry, Analytical Chemistry, and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego St. 6, 44-100 Gliwice, Poland;
- Chemistry Students Research Society, Faculty of Chemistry, Silesian University of Technology, Strzody 9 St., 44-100 Gliwice, Poland
| | - Wojciech Simka
- Department of Inorganic Chemistry, Analytical Chemistry, and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego St. 6, 44-100 Gliwice, Poland;
| |
Collapse
|
2
|
Rangel-Coelho JP, Gogolla PV, Meyer MD, Simão LC, Costa BC, Casarin RCV, Santamaria MP, Teixeira LN, Peruzzo DC, Lisboa-Filho PN, Nociti-Jr FH, Kantovitz KR. Titanium dioxide nanotubes applied to conventional glass ionomer cement influence the expression of immunoinflammatory markers: An in vitro study. Heliyon 2024; 10:e30834. [PMID: 38784540 PMCID: PMC11112319 DOI: 10.1016/j.heliyon.2024.e30834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/03/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Objectives To assess the impact of different concentrations TiO2-nt incorporated into a glass ionomer cement on the proliferation, mitochondrial metabolism, morphology, and pro- and anti-inflammatory cytokine production of cultured fibroblasts (NIH/3T3), whether or not stimulated by lipopolysaccharides (LPS-2 μg/mL, 24 h). Methods TiO2-nt was added to KM (Ketac Molar EasyMix™, 3 %, 5 %, 7 % in weight); unblended KM was used as the control. The analyses included: Cell proliferation assay (n = 6; 24/48/72h); Mitochondrial metabolism assay (n = 6; 24/48/72h); Confocal laser microscopy (n = 3; 24/48/72h); Determination of biomarkers (IL-1β/IL-6/IL-10/VEGF/TNF) by using both multiplex technology (n = 6; 12/18 h) and the quantitative real-time PCR assay (q-PCR) (n = 3, 24/72/120 h). The data underwent analysis using both the Shapiro-Wilk and Levene tests, and by generalized linear models (α = 0.05). Results It demonstrated that cell proliferation increased over time, regardless of the presence of TiO2-nt or LPS, and displayed a significant increase at 72 h; mitochondrial metabolism increased (p < 0.05), irrespective of exposure to LPS (p = 0.937); no cell morphology changes were observed; TiO2-nt reverted the impact of KM on the secreted levels of the evaluated proteins and the gene expressions in the presence of LPS (p < 0.0001). Conclusions TiO2-nt did not adversely affect the biological behavior of fibroblastic cells cultured on GIC discs.
Collapse
Affiliation(s)
- João Pedro Rangel-Coelho
- Faculdade São Leopoldo Mandic (SLMANDIC), Rua José Rocha Junqueira 13, Swift, Campinas, SP, 13045-755, Brazil
| | - Pedro Viel Gogolla
- Faculdade São Leopoldo Mandic (SLMANDIC), Rua José Rocha Junqueira 13, Swift, Campinas, SP, 13045-755, Brazil
| | - Maria Davoli Meyer
- Faculdade São Leopoldo Mandic (SLMANDIC), Rua José Rocha Junqueira 13, Swift, Campinas, SP, 13045-755, Brazil
| | - Lucas Carvalho Simão
- Faculdade São Leopoldo Mandic (SLMANDIC), Rua José Rocha Junqueira 13, Swift, Campinas, SP, 13045-755, Brazil
| | - Bruna Carolina Costa
- Department of Physics, School of Science, State University Júlio de Mesquita (UNESP), Av. Engenheiro Luís Edmundo Carrijo Coube 2085, Bauru, SP, 17033-360, Brazil
| | - Renato Côrrea Viana Casarin
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, State University of Campinas (FOP-UNICAMP), Av. Limeira 901, Areião, Piracicaba, SP, 13414-903, Brazil
| | | | - Lucas Novaes Teixeira
- Faculdade São Leopoldo Mandic (SLMANDIC), Rua José Rocha Junqueira 13, Swift, Campinas, SP, 13045-755, Brazil
| | - Daiane Cristina Peruzzo
- Faculdade São Leopoldo Mandic (SLMANDIC), Rua José Rocha Junqueira 13, Swift, Campinas, SP, 13045-755, Brazil
| | - Paulo Noronha Lisboa-Filho
- Department of Physics, School of Science, State University Júlio de Mesquita (UNESP), Av. Engenheiro Luís Edmundo Carrijo Coube 2085, Bauru, SP, 17033-360, Brazil
| | - Francisco Humberto Nociti-Jr
- Faculdade São Leopoldo Mandic (SLMANDIC), Rua José Rocha Junqueira 13, Swift, Campinas, SP, 13045-755, Brazil
- American Dental Association Science and Research Institute - ADASRI, Cellular and Molecular Biology Research Group, Innovation and Technology Research, 100 Bureau Dr, Gaithersburg, MD, 20899, USA
| | - Kamila Rosamilia Kantovitz
- Faculdade São Leopoldo Mandic (SLMANDIC), Rua José Rocha Junqueira 13, Swift, Campinas, SP, 13045-755, Brazil
| |
Collapse
|
3
|
Sellin ML, Seyfarth-Sehlke A, Aziz M, Fabry C, Wenke K, Høl PJ, Rios-Mondragon I, Cimpan MR, Frank M, Bader R, Jonitz-Heincke A. Isolation of TiNbN wear particles from a coated metal-on-metal bearing: Morphological characterization and in vitro evaluation of cytotoxicity in human osteoblasts. J Biomed Mater Res B Appl Biomater 2024; 112:e35357. [PMID: 38247242 DOI: 10.1002/jbm.b.35357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/18/2023] [Accepted: 11/15/2023] [Indexed: 01/23/2024]
Abstract
To improve the wear resistance of articulating metallic joint endoprostheses, the surfaces can be coated with titanium niobium nitride (TiNbN). Under poor tribological conditions or malalignment, wear can occur on these implant surfaces in situ. This study investigated the biological response of human osteoblasts to wear particles generated from TiNbN-coated hip implants. Abrasive particles were generated in a hip simulator according to ISO 14242-1/-2 and extracted with Proteinase K. Particle characteristics were evaluated by electron microscopy and energy dispersive x-ray spectroscopy (EDS), inductively coupled plasma mass spectrometry (ICP-MS) and dynamic light scattering (DLS) measurements. Human osteoblasts were exposed to different particle dilutions (1:20, 1:50, and 1:100), and cell viability and gene expression levels of osteogenic markers and inflammatory mediators were analyzed after 4 and 7 days. Using ICP-MS, EDS, and DLS measurements, ~70% of the particles were identified as TiNbN, ranging from 39 to 94 nm. The particles exhibited a flat and subangular morphology. Exposure to particles did not influence cell viability and osteoblastic differentiation capacity. Protein levels of collagen type 1, osteoprotegerin, and receptor activator of nuclear factor κB ligand were almost unaffected. Moreover, the pro-inflammatory response via interleukins 6 and 8 was minor induced after particle contact. A high number of TiNbN wear particles only slightly affected osteoblasts' differentiation ability and inflammatory response compared to metallic particles. Nevertheless, further studies should investigate the role of these particles in peri-implant bone tissue, especially concerning other cell types.
Collapse
Affiliation(s)
- Marie-Luise Sellin
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, Rostock, Germany
| | - Anika Seyfarth-Sehlke
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, Rostock, Germany
| | - Mahammad Aziz
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, Rostock, Germany
| | | | | | - Paul Johan Høl
- Department of Orthopaedic Surgery, Biomatlab, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, Biomaterials, University of Bergen, Bergen, Norway
| | - Ivan Rios-Mondragon
- Department for Clinical Dentistry Biomaterials, University of Bergen, Bergen, Norway
| | - Mihaela Roxana Cimpan
- Department for Clinical Dentistry Biomaterials, University of Bergen, Bergen, Norway
| | - Marcus Frank
- Medical Biology and Electron Microscopy Center, Rostock University Medical Center, Rostock, Germany
- Department Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Rainer Bader
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, Rostock, Germany
- Department Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Anika Jonitz-Heincke
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
4
|
Aluminum Nanoparticles Affect Human Platelet Function In Vitro. Int J Mol Sci 2023; 24:ijms24032547. [PMID: 36768869 PMCID: PMC9916829 DOI: 10.3390/ijms24032547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Endoprostheses are prone to tribological wear and biological processes that lead to the release of particles, including aluminum nanoparticles (Al NPs). Those particles can diffuse into circulation. However, the toxic effects of NPs on platelets have not been comprehensively analyzed. The aim of our work was to investigate the impact of Al NPs on human platelet function using a novel quartz crystal microbalance with dissipation (QCM-D) methodology. Moreover, a suite of assays, including light transmission aggregometry, flow cytometry, optical microscopy and transmission electron microscopy, were utilized. All Al NPs caused a significant increase in dissipation (D) and frequency (F), indicating platelet aggregation even at the lowest tested concentration (0.5 µg/mL), except for the largest (80 nm) Al NPs. A size-dependent effect on platelet aggregation was observed for the 5-20 nm NPs and the 30-50 nm NPs, with the larger Al NPs causing smaller increases in D and F; however, this was not observed for the 20-30 nm NPs. In conclusion, our study showed that small (5-50 nm) Al NPs caused platelet aggregation, and larger (80 nm) caused a bridging-penetrating effect in entering platelets, resulting in the formation of heterologous platelet-Al NPs structures. Therefore, physicians should consider monitoring NP serum levels and platelet activation indices in patients with orthopedic implants.
Collapse
|
5
|
Yin Z, Gong G, Wang X, Liu W, Wang B, Yin J. The dual role of autophagy in periprosthetic osteolysis. Front Cell Dev Biol 2023; 11:1123753. [PMID: 37035243 PMCID: PMC10080036 DOI: 10.3389/fcell.2023.1123753] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/16/2023] [Indexed: 04/11/2023] Open
Abstract
Periprosthetic osteolysis (PPO) induced by wear particles is an important cause of aseptic loosening after artificial joint replacement, among which the imbalance of osteogenesis and osteoclastic processes occupies a central position. The cells involved in PPO mainly include osteoclasts (macrophages), osteoblasts, osteocytes, and fibroblasts. RANKL/RANK/OGP axis is a typical way for osteolysis. Autophagy, a mode of regulatory cell death and maintenance of cellular homeostasis, has a dual role in PPO. Although autophagy is activated in various periprosthetic cells and regulates the release of inflammatory cytokines, osteoclast activation, and osteoblast differentiation, its beneficial or detrimental role remains controversy. In particular, differences in the temporal control and intensity of autophagy may have different effects. This article focuses on the role of autophagy in PPO, and expects the regulation of autophagy to become a powerful target for clinical treatment of PPO.
Collapse
Affiliation(s)
- Zhaoyang Yin
- Department of Orthopedics, The First People’s Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiang Wang
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Wei Liu
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Bin Wang
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
- *Correspondence: Jian Yin, ; Bin Wang,
| | - Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
- *Correspondence: Jian Yin, ; Bin Wang,
| |
Collapse
|
6
|
Sharma AR, Lee YH, Gankhuyag B, Chakraborty C, Lee SS. Effect of Alumina Particles on the Osteogenic Ability of Osteoblasts. J Funct Biomater 2022; 13:jfb13030105. [PMID: 35997443 PMCID: PMC9397023 DOI: 10.3390/jfb13030105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Biomaterials are used as implants for bone and dental disabilities. However, wear particles from the implants cause osteolysis following total joint arthroplasty (TJA). Ceramic implants are considered safe and elicit a minimal response to cause periprosthetic osteolysis. However, few reports have highlighted the adverse effect of ceramic particles such as alumina (Al2O3) on various cell types. Hence, we aimed to investigate the effect of Al2O3 particles on osteoprogenitors. A comparative treatment of Al2O3, Ti, and UHMWPE particles to osteoprogenitors at a similar concentration of 200 μg/mL showed that only Al2O3 particles were able to suppress the early and late differentiation markers of osteoprogenitors, including collagen synthesis, alkaline phosphatase (ALP) activity and mRNA expression of Runx2, OSX, Col1α, and OCN. Al2O3 particles even induced inflammation and activated the NFkB signaling pathway in osteoprogenitors. Moreover, bone-forming signals such as the WNT/β-catenin signaling pathway were inhibited by the Al2O3 particles. Al2O3 particles were found to induce the mRNA expression of WNT/β-catenin signaling antagonists such as DKK2, WIF, and sFRP1 several times in osteoprogenitors. Taken together, this study highlights a mechanistic view of the effect of Al2O3 particles on osteoprogenitors and suggests therapeutic targets such as NFĸB and WNT signaling pathways for ceramic particle-induced osteolysis.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 24252, Korea; (A.R.S.); (Y.-H.L.); (B.G.)
| | - Yeon-Hee Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 24252, Korea; (A.R.S.); (Y.-H.L.); (B.G.)
| | - Buyankhishig Gankhuyag
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 24252, Korea; (A.R.S.); (Y.-H.L.); (B.G.)
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Rd, Kolkata 700126, India;
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 24252, Korea; (A.R.S.); (Y.-H.L.); (B.G.)
- Correspondence:
| |
Collapse
|
7
|
Zhang F, Spies BC, Willems E, Inokoshi M, Wesemann C, Cokic SM, Hache B, Kohal RJ, Altmann B, Vleugels J, Van Meerbeek B, Rabel K. 3D printed zirconia dental implants with integrated directional surface pores combine mechanical strength with favorable osteoblast response. Acta Biomater 2022; 150:427-441. [PMID: 35902036 DOI: 10.1016/j.actbio.2022.07.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/25/2022] [Accepted: 07/19/2022] [Indexed: 11/01/2022]
Abstract
Dental implants need to combine mechanical strength with promoted osseointegration. Currently used subtractive manufacturing techniques require a multi-step process to obtain a rough surface topography that stimulates osseointegration. Advantageously, additive manufacturing (AM) enables direct implant shaping with unique geometries and surface topographies. In this study, zirconia implants with integrated lamellar surface topography were additively manufactured by nano-particle ink-jetting. The ISO-14801 fracture load of as-sintered implants (516±39 N) resisted fatigue in 5-55°C water thermo-cycling (631±134 N). Remarkably, simultaneous mechanical fatigue and hydrothermal aging at 90°C significantly increased the implant strength to 909±280 N due to compressive stress generated at the seamless transition of the 30-40 µm thick, rough and porous surface layer to the dense implant core. This unique surface structure induced an elongated osteoblast morphology with uniform cell orientation and allowed for osteoblast proliferation, long-term attachment and matrix mineralization. In conclusion, the developed AM zirconia implants not only provided high long-term mechanical resistance thanks to the dense core along with compressive stress induced at the transition zone, but also generated a favorable osteoblast response owing to the integrated directional surface pores. STATEMENT OF SIGNIFICANCE: : Zirconia ceramics are becoming the material of choice for metal-free dental implants, however significant efforts are required to obtain a rough/porous surface for enhanced osseointegration, along with the risk of surface delamination and/or microstructure variation. In this study, we addressed the challenge by additively manufacturing implants that seamlessly combine dense core with a porous surface layer. For the first time, a unique surface with a directional lamellar pore morphology was additively obtained. This AM implant also provided strength as strong as conventionally manufactured zirconia implants before and after long-term fatigue. Favorable osteoblast response was proved by in-vitro cell investigation. This work demonstrated the opportunity to AM fabricate novel ceramic implants that can simultaneously meet the mechanical and biological functionality requirements.
Collapse
Affiliation(s)
- Fei Zhang
- KU Leuven (University of Leuven), Department of Materials Engineering, Leuven, Belgium; KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium.
| | - Benedikt C Spies
- University of Freiburg, Faculty of Medicine, Center for Dental Medicine, Department of Prosthetic Dentistry, Freiburg, Germany
| | - Evita Willems
- KU Leuven (University of Leuven), Department of Materials Engineering, Leuven, Belgium; KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| | - Masanao Inokoshi
- Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Department of Gerodontology and Oral Rehabilitation, Tokyo, Japan
| | - Christian Wesemann
- University of Freiburg, Faculty of Medicine, Center for Dental Medicine, Department of Prosthetic Dentistry, Freiburg, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Berlin, Germany
| | - Stevan M Cokic
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| | - Benedikt Hache
- University of Freiburg, Faculty of Medicine, Center for Dental Medicine, Department of Prosthetic Dentistry, Freiburg, Germany; University of Freiburg, Faculty of Medicine, Research Center for Tissue Replacement, Regeneration and Neogenesis, Section of Cell biology-inspired Bone Regeneration, G.E.R.N. Freiburg, Germany
| | - Ralf J Kohal
- University of Freiburg, Faculty of Medicine, Center for Dental Medicine, Department of Prosthetic Dentistry, Freiburg, Germany
| | - Brigitte Altmann
- University of Freiburg, Faculty of Medicine, Center for Dental Medicine, Department of Prosthetic Dentistry, Freiburg, Germany; University of Freiburg, Faculty of Medicine, Research Center for Tissue Replacement, Regeneration and Neogenesis, Section of Cell biology-inspired Bone Regeneration, G.E.R.N. Freiburg, Germany
| | - Jef Vleugels
- KU Leuven (University of Leuven), Department of Materials Engineering, Leuven, Belgium
| | - Bart Van Meerbeek
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| | - Kerstin Rabel
- University of Freiburg, Faculty of Medicine, Center for Dental Medicine, Department of Prosthetic Dentistry, Freiburg, Germany
| |
Collapse
|
8
|
Kniha K, Rink L, Wolf J, Möhlhenrich SC, Peters F, Heitzer M, Hölzle F, Modabber A. Host inflammatory response and clinical parameters around implants in a rat model using systemic alendronate and zoledronate acid drug administrations. Sci Rep 2022; 12:4431. [PMID: 35292688 PMCID: PMC8924183 DOI: 10.1038/s41598-022-08308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Implant outcomes in comparison to a natural tooth in a rat model using systemic alendronate and zoledronate acid drug administrations were assessed. Fifty-four Sprague–Dawley rats were randomly allocated into two experimental groups (drug application of zoledronic acid; 0.04 mg/kg intravenously once a week and alendronic acid; 0.2 mg/kg subcutaneously five times a week) and one control group with 18 animals in each group. Drug delivery was conducted for a period of 4 months. After 4 weeks either a zirconia or a titanium implant was immediately inserted in the socket of the first molar of the upper jaw. In vivo investigations included host inflammatory parameters and the implant survival and success rates for up to 3 months. Material incompatibilities against titanium and zirconia nanoparticles were evaluated in vitro after stimulation of rat spleen cells. In vivo, IL-6 release around titanium implants demonstrated significantly higher values in the control group (p = 0.02) when compared to the zoledronic acid group. Around the natural tooth without drug administration, the control group showed higher IL-6 values compared with the alendronic acid group (p = 0.01). In vitro, only lipopolysaccharide and not the implant’s nanoparticles stimulated significant IL-6 and TNFα production. In terms of the primary aim of in vivo and in vitro IL-6 and TNFα measurements, no implant material was superior to the other. No significant in vitro stimulation of rat spleen cells was detected with respect to titanium oxide and zirconium oxide nanoparticles.
Collapse
Affiliation(s)
- Kristian Kniha
- Department of Oral and Cranio-Maxillofacial Surgery, University Hospital RWTH Aachen, University Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Lothar Rink
- Institute of Immunology, University Hospital RWTH Aachen, Pauwelsstraße 30, Aachen, Germany
| | - Jana Wolf
- Institute of Immunology, University Hospital RWTH Aachen, Pauwelsstraße 30, Aachen, Germany
| | | | - Florian Peters
- Department of Oral and Cranio-Maxillofacial Surgery, University Hospital RWTH Aachen, University Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Marius Heitzer
- Department of Oral and Cranio-Maxillofacial Surgery, University Hospital RWTH Aachen, University Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Frank Hölzle
- Department of Oral and Cranio-Maxillofacial Surgery, University Hospital RWTH Aachen, University Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Ali Modabber
- Department of Oral and Cranio-Maxillofacial Surgery, University Hospital RWTH Aachen, University Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
9
|
Beketova A, Theocharidou A, Tsamesidis I, Rigos AE, Pouroutzidou GK, Tzanakakis EGC, Kourtidou D, Liverani L, Ospina MA, Anastasiou A, Tzoutzas IG, Kontonasaki E. Sol-Gel Synthesis and Characterization of YSZ Nanofillers for Dental Cements at Different Temperatures. Dent J (Basel) 2021; 9:dj9110128. [PMID: 34821592 PMCID: PMC8619532 DOI: 10.3390/dj9110128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Yttria-stabilized zirconia nanoparticles can be applied as fillers to improve the mechanical and antibacterial properties of luting cement. The aim of this study was to synthesize yttria-stabilized zirconia nanoparticles by the sol-gel method and to investigate their composition, structure, morphology and biological properties. METHODS Nanopowders of ZrO2 7 wt% Y2O3 (nY-ZrO) were synthesized by the sol-gel method and were sintered at three different temperatures: 800, 1000 and 1200 °C, and their composition, size and morphology were investigated. The biocompatibility was investigated with human gingival fibroblasts (hGFs), while reactive oxygen species (ROS) production was evaluated through fluorescence analysis. RESULTS All synthesized materials were composed of tetragonal zirconia, while nanopowders sintered at 800 °C and 1000 °C additionally contained 5 and 20 wt% of the cubic phase. By increasing the calcination temperature, the crystalline size of the nanoparticles increased from 12.1 nm for nY-ZrO800 to 47.2 nm for nY-ZrO1200. Nano-sized particles with good dispersion and low agglomeration were received. Cell culture studies with human gingival fibroblasts verified the nanopowders' biocompatibility and their ROS scavenging activity. CONCLUSIONS the obtained sol-gel derived nanopowders showed suitable properties to be potentially used as nanofillers for dental luting cement.
Collapse
Affiliation(s)
- Anastasia Beketova
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.B.); (A.T.); (I.T.); (A.E.R.)
| | - Anna Theocharidou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.B.); (A.T.); (I.T.); (A.E.R.)
| | - Ioannis Tsamesidis
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.B.); (A.T.); (I.T.); (A.E.R.)
| | - Athanasios E. Rigos
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.B.); (A.T.); (I.T.); (A.E.R.)
| | - Georgia K. Pouroutzidou
- School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.P.); (D.K.)
| | | | - Dimitra Kourtidou
- School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.P.); (D.K.)
| | - Liliana Liverani
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (L.L.); (M.A.O.)
| | - Marcela Arango Ospina
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (L.L.); (M.A.O.)
| | - Antonios Anastasiou
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13AL, UK;
| | - Ioannis G. Tzoutzas
- School of Dentistry, National and Kapodistrian University, 10679 Athens, Greece; (E.-G.C.T.); (I.G.T.)
| | - Eleana Kontonasaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.B.); (A.T.); (I.T.); (A.E.R.)
- Correspondence: ; Tel.: +30-2310-999517
| |
Collapse
|
10
|
Zhang L, Haddouti EM, Welle K, Burger C, Kabir K, Schildberg FA. Local Cellular Responses to Metallic and Ceramic Nanoparticles from Orthopedic Joint Arthroplasty Implants. Int J Nanomedicine 2020; 15:6705-6720. [PMID: 32982228 PMCID: PMC7494401 DOI: 10.2147/ijn.s248848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/08/2020] [Indexed: 12/27/2022] Open
Abstract
Over the last decades, joint arthroplasty has become a successful treatment for joint disease. Nowadays, with a growing demand and increasingly younger and active patients accepting these approaches, orthopedic surgeons are seeking implants with improved mechanical behavior and longer life span. However, aseptic loosening as a result of wear debris from implants is considered to be the main cause of long-term implant failure. Previous studies have neatly illustrated the role of micrometric wear particles in the pathological mechanisms underlying aseptic loosening. Recent osteoimmunologic insights into aseptic loosening highlight the important and heretofore underrepresented contribution of nanometric orthopedic wear particles. The present review updates the characteristics of metallic and ceramic nanoparticles generated after prosthesis implantation and summarizes the current understanding of their hazardous effects on peri-prosthetic cells.
Collapse
Affiliation(s)
- Li Zhang
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - El-Mustapha Haddouti
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Kristian Welle
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Christof Burger
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Koroush Kabir
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Frank A Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| |
Collapse
|
11
|
Li D, Wang C, Li Z, Wang H, He J, Zhu J, Zhang Y, Shen C, Xiao F, Gao Y, Zhang X, Li Y, Wang P, Peng J, Cai G, Zuo B, Yang Y, Shen Y, Song W, Zhang X, Shen L, Chen X. Nano-sized Al 2O 3 particle-induced autophagy reduces osteolysis in aseptic loosening of total hip arthroplasty by negative feedback regulation of RANKL expression in fibroblasts. Cell Death Dis 2018; 9:840. [PMID: 30082761 PMCID: PMC6079072 DOI: 10.1038/s41419-018-0862-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/30/2018] [Accepted: 07/06/2018] [Indexed: 12/25/2022]
Abstract
Aseptic loosening is mainly caused by wear debris generated by friction that can increase the expression of receptor activation of nuclear factor (NF)-κB (RANKL). RANKL has been shown to support the differentiation and maturation of osteoclasts. Although autophagy is a key metabolic pathway for maintaining the metabolic homeostasis of cells, no study has determined whether autophagy induced by Al2O3 particles is involved in the pathogenesis of aseptic loosening. The aim of this study was to evaluate RANKL levels in patients experiencing aseptic loosening after total hip arthroplasty (THA) and hip osteoarthritis (hOA) and to consequently clarify the relationship between RANKL and LC3II expression. We determined the levels of RANKL and autophagy in fibroblasts treated with Al2O3 particles in vitro while using shBECN-1 interference lentivirus vectors to block the autophagy pathway and BECN-1 overexpression lentivirus vectors to promote autophagy. We established a novel rat model of femoral head replacement and analyzed the effects of Al2O3 particles on autophagy levels and RANKL expression in synovial tissues in vivo. The RANKL levels in the revision total hip arthroplasty (rTHA) group were higher than those in the hOA group. In patients with rTHA with a ceramic interface, LC3II expression was high, whereas RANKL expression was low. The in vitro results showed that Al2O3 particles promoted fibroblast autophagy in a time- and dose-dependent manner and that RANKL expression was negatively correlated with autophagy. The in vivo results further confirmed these findings. Al2O3 particles induced fibroblast autophagy, which reduced RANKL expression. Decreasing the autophagy level promoted osteolysis and aseptic prosthetic loosening, whereas increasing the autophagy level reversed this trend.
Collapse
Affiliation(s)
- De Li
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenglong Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuokai Li
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiye He
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junfeng Zhu
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuehui Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Shen
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Xiao
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Gao
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Li
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianping Peng
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guiquan Cai
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Zuo
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuehua Yang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Shen
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weidong Song
- Department of Orthopedic Surgery, Sun Yat-Sen memorial hospital affiliated to Sun Yat-Sen university, Guangzhou, China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lei Shen
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaodong Chen
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Lal S, Caseley EA, Hall RM, Tipper JL. Biological Impact of Silicon Nitride for Orthopaedic Applications: Role of Particle Size, Surface Composition and Donor Variation. Sci Rep 2018; 8:9109. [PMID: 29904079 PMCID: PMC6002550 DOI: 10.1038/s41598-018-27494-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/23/2018] [Indexed: 01/29/2023] Open
Abstract
The adverse biological impact of orthopaedic wear debris currently limits the long-term safety of human joint replacement devices. We investigated the role of particle size, surface composition and donor variation in influencing the biological impact of silicon nitride as a bioceramic for orthopaedic applications. Silicon nitride particles were compared to the other commonly used orthopaedic biomaterials (e.g. cobalt-chromium and Ti-6Al-4V alloys). A novel biological evaluation platform was developed to simultaneously evaluate cytotoxicity, inflammatory cytokine release, oxidative stress, and genotoxicity potential of particles using peripheral blood mononuclear cells (PBMNCs) from individual human donors. Irrespective of the particle size, silicon nitride did not cause any adverse responses whereas cobalt-chromium wear particles caused donor-dependent cytotoxicity, TNF-α cytokine release, oxidative stress, and DNA damage in PBMNCs after 24 h. Despite being similar in size and morphology, silicon dioxide nanoparticles caused the release of significantly higher levels of TNF-α compared to silicon nitride nanoparticles, suggesting that surface composition influences the inflammatory response in PBMNCs. Ti-6Al-4V wear particles also released significantly elevated levels of TNF-α cytokine in one of the donors. This study demonstrated that silicon nitride is an attractive orthopaedic biomaterial due to its minimal biological impact on human PBMNCs.
Collapse
Affiliation(s)
- Saurabh Lal
- School of Biomedical Sciences, University of Leeds, LS2 9JT, Leeds, UK.
- School of Mechanical Engineering, University of Leeds, LS2 9JT, Leeds, UK.
| | - Emily A Caseley
- School of Biomedical Sciences, University of Leeds, LS2 9JT, Leeds, UK
- School of Mechanical Engineering, University of Leeds, LS2 9JT, Leeds, UK
| | - Richard M Hall
- School of Mechanical Engineering, University of Leeds, LS2 9JT, Leeds, UK
| | - Joanne L Tipper
- School of Biomedical Sciences, University of Leeds, LS2 9JT, Leeds, UK
- School of Mechanical Engineering, University of Leeds, LS2 9JT, Leeds, UK
| |
Collapse
|
13
|
Le TDH, Liaudanskaya V, Bonani W, Migliaresi C, Motta A. Enhancing bioactive properties of silk fibroin with diatom particles for bone tissue engineering applications. J Tissue Eng Regen Med 2017; 12:89-97. [DOI: 10.1002/term.2373] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 10/01/2016] [Accepted: 11/26/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Thi Duy Hanh Le
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering; University of Trento; Trento Italy
| | - Volha Liaudanskaya
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering; University of Trento; Trento Italy
- Department of Biomedical Engineering; Tufts University; Medford MA USA
| | - Walter Bonani
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering; University of Trento; Trento Italy
- INSTM, Trento Research Unit; Interuniversity Consortium for Science and Technology of Materials; Trento Italy
| | - Claudio Migliaresi
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering; University of Trento; Trento Italy
- INSTM, Trento Research Unit; Interuniversity Consortium for Science and Technology of Materials; Trento Italy
| | - Antonella Motta
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering; University of Trento; Trento Italy
- INSTM, Trento Research Unit; Interuniversity Consortium for Science and Technology of Materials; Trento Italy
| |
Collapse
|
14
|
Bunderson-Schelvan M, Holian A, Hamilton RF. Engineered nanomaterial-induced lysosomal membrane permeabilization and anti-cathepsin agents. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:230-248. [PMID: 28632040 PMCID: PMC6127079 DOI: 10.1080/10937404.2017.1305924] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Engineered nanomaterials (ENMs), or small anthropogenic particles approximately < 100 nm in size and of various shapes and compositions, are increasingly incorporated into commercial products and used for industrial and medical purposes. There is an exposure risk to both the population at large and individuals in the workplace with inhalation exposures to ENMs being a primary concern. Further, there is increasing evidence to suggest that certain ENMs may represent a significant health risk, and many of these ENMs exhibit distinct similarities with other particles and fibers that are known to induce adverse health effects, such as asbestos, silica, and particulate matter (PM). Evidence regarding the importance of lysosomal membrane permeabilization (LMP) and release of cathepsins in ENM toxicity has been accumulating. The aim of this review was to describe our current understanding of the mechanisms leading to ENM-associated pathologies, including LMP and the role of cathepsins with a focus on inflammation. In addition, anti-cathepsin agents, some of which have been tested in clinical trials and may prove useful for ameliorating the harmful effects of ENM exposure, are examined.
Collapse
Affiliation(s)
| | - Andrij Holian
- Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, USA
| | - Raymond F. Hamilton
- Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
15
|
Pettersson M, Skjöldebrand C, Filho L, Engqvist H, Persson C. Morphology and Dissolution Rate of Wear Debris from Silicon Nitride Coatings. ACS Biomater Sci Eng 2016; 2:998-1004. [DOI: 10.1021/acsbiomaterials.6b00133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Maria Pettersson
- Materials in Medicine Group,
Division of Applied Materials Science, Department of Engineering Sciences, Uppsala University, Lägerhyddsvägen 1, 752
37 Uppsala, Sweden
| | - Charlotte Skjöldebrand
- Materials in Medicine Group,
Division of Applied Materials Science, Department of Engineering Sciences, Uppsala University, Lägerhyddsvägen 1, 752
37 Uppsala, Sweden
| | - Luimar Filho
- Materials in Medicine Group,
Division of Applied Materials Science, Department of Engineering Sciences, Uppsala University, Lägerhyddsvägen 1, 752
37 Uppsala, Sweden
| | - Håkan Engqvist
- Materials in Medicine Group,
Division of Applied Materials Science, Department of Engineering Sciences, Uppsala University, Lägerhyddsvägen 1, 752
37 Uppsala, Sweden
| | - Cecilia Persson
- Materials in Medicine Group,
Division of Applied Materials Science, Department of Engineering Sciences, Uppsala University, Lägerhyddsvägen 1, 752
37 Uppsala, Sweden
| |
Collapse
|
16
|
Wang S, Liu F, Zeng Z, Yang H, Jiang H. The Protective Effect of Bafilomycin A1 Against Cobalt Nanoparticle-Induced Cytotoxicity and Aseptic Inflammation in Macrophages In Vitro. Biol Trace Elem Res 2016; 169:94-105. [PMID: 26054709 DOI: 10.1007/s12011-015-0381-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/21/2015] [Indexed: 01/08/2023]
Abstract
Co ions released due to corrosion of Co nanoparticles (CoNPs) in the lysosomes of macrophages may be a factor in the particle-induced cytotoxicity and aseptic inflammation accompanying metal-on-metal (MOM) hip prosthesis failure. Here, we show that CoNPs are easily dissolved under a low pH, simulating the acidic lysosomal environment. We then used bafilomycin A1 to change the pH inside the lysosome to inhibit intracellular corrosion of CoNPs and then investigated its protective effects against CoNP-induced cytotoxicity and aseptic inflammation on murine macrophage RAW264.7 cells. XTT {2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide} assays revealed that bafilomycin A1 can significantly decrease CoNP-induced cytotoxicity in RAW264.7 cells. Enzyme-linked immunosorbent assays showed that bafilomycin A1 can significantly decrease the subtoxic concentration of CoNP-induced levels of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-1β, and interleukin-6), but has no effect on anti-inflammatory cytokines (transforming growth factor-β and interleukin-10) in RAW264.7 cells. We studied the protective mechanism of bafilomycin A1 against CoNP-induced effects in RAW264.7 cells by measuring glutathione/oxidized glutathione (GSH/GSSG), superoxide dismutase, catalase, and glutathione peroxidase levels and employed scanning electron microscopy, transmission electron microscopy, and energy dispersive spectrometer assays to observe the ultrastructural cellular changes. The changes associated with apoptosis were assessed by examining the pAKT and cleaved caspase-3 levels using Western blotting. These data strongly suggested that bafilomycin A1 can potentially suppress CoNP-induced cytotoxicity and aseptic inflammation by inhibiting intracellular corrosion of CoNPs and that the reduction in Co ions released from CoNPs may play an important role in downregulating oxidative stress in RAW264.7 cells.
Collapse
Affiliation(s)
- Songhua Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street, Suzhou, 215006, Jiangsu Province, People's Republic of China
| | - Fan Liu
- Department of Orthopedics, The Affiliated Hospital of Nantong University, 20 West Temple Road, Nantong, 226001, Jiangsu Province, People's Republic of China.
| | - Zhaoxun Zeng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street, Suzhou, 215006, Jiangsu Province, People's Republic of China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street, Suzhou, 215006, Jiangsu Province, People's Republic of China
| | - Haitao Jiang
- Department of Orthopedics, The First People's Hospital of Taizhou City, Taizhou, Jiangsu Province, People's Republic of China
| |
Collapse
|
17
|
Le TDH, Bonani W, Speranza G, Sglavo V, Ceccato R, Maniglio D, Motta A, Migliaresi C. Processing and characterization of diatom nanoparticles and microparticles as potential source of silicon for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 59:471-479. [PMID: 26652398 DOI: 10.1016/j.msec.2015.10.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/30/2015] [Accepted: 10/14/2015] [Indexed: 12/22/2022]
Abstract
Silicon plays an important role in bone formation and maintenance, improving osteoblast cell function and inducing mineralization. Often, bone deformation and long bone abnormalities have been associated with silica/silicon deficiency. Diatomite, a natural deposit of diatom skeleton, is a cheap and abundant source of biogenic silica. The aim of the present study is to validate the potential of diatom particles derived from diatom skeletons as silicon-donor materials for bone tissue engineering applications. Raw diatomite (RD) and calcined diatomite (CD) powders were purified by acid treatments, and diatom microparticles (MPs) and nanoparticles (NPs) were produced by fragmentation of purified diatoms under alkaline conditions. The influence of processing on the surface chemical composition of purified diatomites was evaluated by X-ray photoelectron spectroscopy (XPS). Diatoms NPs were also characterized in terms of morphology and size distribution by transmission electron microscopy (TEM) and Dynamic light scattering (DLS), while diatom MPs morphology was analyzed by scanning electron microscopy (SEM). Surface area and microporosity of the diatom particles were evaluated by nitrogen physisorption methods. Release of silicon ions from diatom-derived particles was demonstrated using inductively coupled plasma optical emission spectrometry (ICP/OES); furthermore, silicon release kinetic was found to be influenced by diatomite purification method and particle size. Diatom-derived microparticles (MPs) and nanoparticles (NPs) showed limited or no cytotoxic effect in vitro depending on the administration conditions.
Collapse
Affiliation(s)
- Thi Duy Hanh Le
- Department of Industrial Engineering, University of Trento, Trento, Italy; BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento, Italy
| | - Walter Bonani
- Department of Industrial Engineering, University of Trento, Trento, Italy; BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento, Italy; Interuniversity Consortium for Science and Technology of Materials, Trento Research Unit, Trento, Italy
| | - Giorgio Speranza
- Center for Materials and Microsystems, PAM-SE, Fondazione Bruno Kessler, Trento, Italy
| | - Vincenzo Sglavo
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Riccardo Ceccato
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Devid Maniglio
- Department of Industrial Engineering, University of Trento, Trento, Italy; BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento, Italy; Interuniversity Consortium for Science and Technology of Materials, Trento Research Unit, Trento, Italy
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Trento, Italy; BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento, Italy; Interuniversity Consortium for Science and Technology of Materials, Trento Research Unit, Trento, Italy
| | - Claudio Migliaresi
- Department of Industrial Engineering, University of Trento, Trento, Italy; BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento, Italy; Interuniversity Consortium for Science and Technology of Materials, Trento Research Unit, Trento, Italy.
| |
Collapse
|
18
|
How has the introduction of new bearing surfaces altered the biological reactions to byproducts of wear and modularity? Clin Orthop Relat Res 2014; 472:3699-708. [PMID: 24942963 PMCID: PMC4397759 DOI: 10.1007/s11999-014-3725-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Biological responses to wear debris were largely elucidated in studies focused on conventional ultrahigh-molecular-weight polyethylene (UHMWPE) and some investigations of polymethymethacrylate cement and orthopaedic metals. However, newer bearing couples, in particular metal-on-metal but also ceramic-on-ceramic bearings, may induce different biological reactions. QUESTIONS/PURPOSES Does wear debris from the newer bearing surfaces result in different biological responses compared with the known responses observed with conventional metal-on-UHMWPE bearings? METHODS A Medline search of articles published after 1996 supplemented by a hand search of reference lists of included studies and relevant conference proceedings was conducted to identify the biological responses to orthopaedic wear debris with a focus on biological responses to wear generated from metal-on-highly crosslinked polyethylene, metal-on-metal, ceramic-on-ceramic, and ceramic-on-polyethylene bearings. Articles were selected using criteria designed to identify reports of wear debris particles and biological responses contributing to prosthesis failure. Case reports and articles focused on either clinical outcomes or tribology were excluded. A total of 83 papers met the criteria and were reviewed in detail. RESULTS Biological response to conventional UHMWPE is regulated by the innate immune response. It is clear that the physical properties of debris (size, shape, surface topography) influence biological responses in addition to the chemical composition of the biomaterials. Highly crosslinked UHMWPE particles have the potential to alter, rather than eliminate, the biological response to conventional UHMWPE. Metal wear debris can generate elevated plasma levels of cobalt and chromium ions. These entities can provoke responses that extend to the elicitation of an acquired immune response. Wear generated from ceramic devices is significantly reduced in volume and may provide the impression of an "inert" response, but clinically relevant biological reactions do occur, including granulomatous responses in periprosthetic tissues. CONCLUSIONS The material composition of the device, the physical form of the debris, and disease pathophysiology contribute to complex interactions that determine the outcome to all wear debris. Metal debris does appear to increase the complexity of the biological response with the addition of immunological responses (and possibly direct cellular cytotoxicity) to the inflammatory reaction provoked by wear debris in some patients. However, the introduction of highly crosslinked polyethylene and ceramic bearing surfaces shows promising signs of reducing key biological mechanisms in osteolysis.
Collapse
|
19
|
Nine MJ, Choudhury D, Hee AC, Mootanah R, Osman NAA. Wear Debris Characterization and Corresponding Biological Response: Artificial Hip and Knee Joints. MATERIALS (BASEL, SWITZERLAND) 2014; 7:980-1016. [PMID: 28788496 PMCID: PMC5453097 DOI: 10.3390/ma7020980] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/03/2013] [Accepted: 12/10/2013] [Indexed: 12/12/2022]
Abstract
Wear debris, of deferent sizes, shapes and quantities, generated in artificial hip and knees is largely confined to the bone and joint interface. This debris interacts with periprosthetic tissue and may cause aseptic loosening. The purpose of this review is to summarize and collate findings of the recent demonstrations on debris characterization and their biological response that influences the occurrence in implant migration. A systematic review of peer-reviewed literature is performed, based on inclusion and exclusion criteria addressing mainly debris isolation, characterization, and biologic responses. Results show that debris characterization largely depends on their appropriate and accurate isolation protocol. The particles are found to be non-uniform in size and non-homogeneously distributed into the periprosthetic tissues. In addition, the sizes, shapes, and volumes of the particles are influenced by the types of joints, bearing geometry, material combination, and lubricant. Phagocytosis of wear debris is size dependent; high doses of submicron-sized particles induce significant level of secretion of bone resorbing factors. However, articles on wear debris from engineered surfaces (patterned and coated) are lacking. The findings suggest considering debris morphology as an important parameter to evaluate joint simulator and newly developed implant materials.
Collapse
Affiliation(s)
- Md J Nine
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Dipankar Choudhury
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
- Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, Brno 61669, Czech Republic.
| | - Ay Ching Hee
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Rajshree Mootanah
- Medical Engineering Research Group, Department of Engineering and the Built Environment, Faculty of Science and Technology, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK.
| | - Noor Azuan Abu Osman
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
20
|
Orts-Gil G, Natte K, Österle W. Multi-parametric reference nanomaterials for toxicology: state of the art, future challenges and potential candidates. RSC Adv 2013. [DOI: 10.1039/c3ra42112k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|