1
|
Chau CC, Maffeo CM, Aksimentiev A, Radford SE, Hewitt EW, Actis P. Single molecule delivery into living cells. Nat Commun 2024; 15:4403. [PMID: 38782907 PMCID: PMC11116494 DOI: 10.1038/s41467-024-48608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Controlled manipulation of cultured cells by delivery of exogenous macromolecules is a cornerstone of experimental biology. Here we describe a platform that uses nanopipettes to deliver defined numbers of macromolecules into cultured cell lines and primary cells at single molecule resolution. In the nanoinjection platform, the nanopipette is used as both a scanning ion conductance microscope (SICM) probe and an injection probe. The SICM is used to position the nanopipette above the cell surface before the nanopipette is inserted into the cell into a defined location and to a predefined depth. We demonstrate that the nanoinjection platform enables the quantitative delivery of DNA, globular proteins, and protein fibrils into cells with single molecule resolution and that delivery results in a phenotypic change in the cell that depends on the identity of the molecules introduced. Using experiments and computational modeling, we also show that macromolecular crowding in the cell increases the signal-to-noise ratio for the detection of translocation events, thus the cell itself enhances the detection of the molecules delivered.
Collapse
Affiliation(s)
- Chalmers C Chau
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds, LS2 9JT, UK
- Bragg Centre for Materials Research, University of Leeds, Leeds, UK
| | - Christopher M Maffeo
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sheena E Radford
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Eric W Hewitt
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Paolo Actis
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds, LS2 9JT, UK.
- Bragg Centre for Materials Research, University of Leeds, Leeds, UK.
| |
Collapse
|
2
|
Karimi F, Karimi-Maleh H, Rouhi J, Zare N, Karaman C, Baghayeri M, Fu L, Rostamnia S, Dragoi EN, Ayati A, Krivoshapkin P. Revolutionizing cancer monitoring with carbon-based electrochemical biosensors. ENVIRONMENTAL RESEARCH 2023; 239:117368. [PMID: 37827366 DOI: 10.1016/j.envres.2023.117368] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Cancer monitoring plays a critical role in improving patient outcomes by providing early detection, personalized treatment options, and treatment response tracking. Carbon-based electrochemical biosensors have emerged in recent years as a revolutionary technology with the potential to revolutionize cancer monitoring. These sensors are useful for clinical applications because of their high sensitivity, selectivity, rapid response, and compatibility with miniaturized equipment. This review paper gives an in-depth look at the latest developments and the possibilities of carbon-based electrochemical sensors in cancer surveillance. The essential principles of carbon-based electrochemical sensors are discussed, including their structure, operating mechanisms, and critical qualities that make them suited for cancer surveillance. Furthermore, we investigate their applicability in detecting specific cancer biomarkers, evaluating therapy responses, and detecting cancer recurrence early. Additionally, a comparison of carbon-based electrochemical sensor performance measures, including sensitivity, selectivity, accuracy, and limit of detection, is presented in contrast to existing monitoring methods and upcoming technologies. Finally, we discuss prospective tactics, future initiatives, and commercialization opportunities for improving the capabilities of these sensors and integrating them into normal clinical practice. The review highlights the potential impact of carbon-based electrochemical sensors on cancer diagnosis, treatment, and patient outcomes, as well as the importance of ongoing research, collaboration, and validation studies to fully realize their potential in revolutionizing cancer monitoring.
Collapse
Affiliation(s)
- Fatemeh Karimi
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Jalal Rouhi
- Faculty of Physics, University of Tabriz, Tabriz, 51566, Iran.
| | - Najmeh Zare
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China
| | - Ceren Karaman
- School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey
| | - Mehdi Baghayeri
- School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. B 397, Sabzevar, Iran
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO Box 16846-13114, Tehran, Iran
| | - Elena Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Bld Mangeron No 73, Iasi, 700050, Romania
| | - Ali Ayati
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| | - Pavel Krivoshapkin
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| |
Collapse
|
3
|
Pandey P, Sesena-Rubfiaro A, Khatri S, He J. Development of multifunctional nanopipettes for controlled intracellular delivery and single-entity detection. Faraday Discuss 2021; 233:315-335. [PMID: 34889345 DOI: 10.1039/d1fd00057h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The intracellular delivery of biomolecules and nanoscale materials to individual cells has gained remarkable attention in recent years owing to its wide applications in drug delivery, clinical diagnostics, bio-imaging and single-cell analysis. It remains a challenge to control and measure the delivered amount in one cell. In this work, we developed a multifunctional nanopipette - containing both a nanopore and nanoelectrode (pyrolytic carbon) at the apex - as a facile, minimally invasive and effective platform for both controllable single-cell intracellular delivery and single-entity counting. While controlled by a micromanipulator, the baseline changes of the nanopore ionic current (I) and nanoelectrode open circuit potential (V) help to guide the nanopipette tip insertion and positioning processes. The delivery from the nanopore barrel can be facilely controlled by the applied nanopore bias. To optimize the intracellular single-entity detection during delivery, we studied the effects of the nanopipette tip geometry and solution salt concentration in controlled experiments. We have successfully delivered gold nanoparticles and biomolecules into the cell, as confirmed by the increased scattering and fluorescence signals, respectively. The delivered entities have also been detected at the single-entity level using either one or both transient I and V signals. We found that the sensitivity of the single-entity electrochemical measurement was greatly affected by the local environment of the cell and varied between cell lines.
Collapse
Affiliation(s)
- Popular Pandey
- Physics Department, Florida International University, Miami, Florida, 33199, USA.
| | | | - Santosh Khatri
- Physics Department, Florida International University, Miami, Florida, 33199, USA.
| | - Jin He
- Physics Department, Florida International University, Miami, Florida, 33199, USA. .,Biomolecular Sciences Institute, Florida International University, Miami, Florida, 33199, USA
| |
Collapse
|
4
|
Methods for protein delivery into cells: from current approaches to future perspectives. Biochem Soc Trans 2020; 48:357-365. [DOI: 10.1042/bst20190039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Abstract
The manipulation of cultured mammalian cells by the delivery of exogenous macromolecules is one of the cornerstones of experimental cell biology. Although the transfection of cells with DNA expressions constructs that encode proteins is routine and simple to perform, the direct delivery of proteins into cells has many advantages. For example, proteins can be chemically modified, assembled into defined complexes and subject to biophysical analyses prior to their delivery into cells. Here, we review new approaches to the injection and electroporation of proteins into cultured cells. In particular, we focus on how recent developments in nanoscale injection probes and localized electroporation devices enable proteins to be delivered whilst minimizing cellular damage. Moreover, we discuss how nanopore sensing may ultimately enable the quantification of protein delivery at single-molecule resolution.
Collapse
|
5
|
Martins NRB, Angelica A, Chakravarthy K, Svidinenko Y, Boehm FJ, Opris I, Lebedev MA, Swan M, Garan SA, Rosenfeld JV, Hogg T, Freitas RA. Human Brain/Cloud Interface. Front Neurosci 2019; 13:112. [PMID: 30983948 PMCID: PMC6450227 DOI: 10.3389/fnins.2019.00112] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/30/2019] [Indexed: 12/25/2022] Open
Abstract
The Internet comprises a decentralized global system that serves humanity's collective effort to generate, process, and store data, most of which is handled by the rapidly expanding cloud. A stable, secure, real-time system may allow for interfacing the cloud with the human brain. One promising strategy for enabling such a system, denoted here as a "human brain/cloud interface" ("B/CI"), would be based on technologies referred to here as "neuralnanorobotics." Future neuralnanorobotics technologies are anticipated to facilitate accurate diagnoses and eventual cures for the ∼400 conditions that affect the human brain. Neuralnanorobotics may also enable a B/CI with controlled connectivity between neural activity and external data storage and processing, via the direct monitoring of the brain's ∼86 × 109 neurons and ∼2 × 1014 synapses. Subsequent to navigating the human vasculature, three species of neuralnanorobots (endoneurobots, gliabots, and synaptobots) could traverse the blood-brain barrier (BBB), enter the brain parenchyma, ingress into individual human brain cells, and autoposition themselves at the axon initial segments of neurons (endoneurobots), within glial cells (gliabots), and in intimate proximity to synapses (synaptobots). They would then wirelessly transmit up to ∼6 × 1016 bits per second of synaptically processed and encoded human-brain electrical information via auxiliary nanorobotic fiber optics (30 cm3) with the capacity to handle up to 1018 bits/sec and provide rapid data transfer to a cloud based supercomputer for real-time brain-state monitoring and data extraction. A neuralnanorobotically enabled human B/CI might serve as a personalized conduit, allowing persons to obtain direct, instantaneous access to virtually any facet of cumulative human knowledge. Other anticipated applications include myriad opportunities to improve education, intelligence, entertainment, traveling, and other interactive experiences. A specialized application might be the capacity to engage in fully immersive experiential/sensory experiences, including what is referred to here as "transparent shadowing" (TS). Through TS, individuals might experience episodic segments of the lives of other willing participants (locally or remote) to, hopefully, encourage and inspire improved understanding and tolerance among all members of the human family.
Collapse
Affiliation(s)
- Nuno R. B. Martins
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Center for Research and Education on Aging (CREA), University of California, Berkeley and LBNL, Berkeley, CA, United States
| | | | - Krishnan Chakravarthy
- UC San Diego Health Science, San Diego, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| | | | | | - Ioan Opris
- Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Mikhail A. Lebedev
- Center for Neuroengineering, Duke University, Durham, NC, United States
- Center for Bioelectric Interfaces of the Institute for Cognitive Neuroscience of the National Research University Higher School of Economics, Moscow, Russia
- Department of Information and Internet Technologies of Digital Health Institute, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Melanie Swan
- Department of Philosophy, Purdue University, West Lafayette, IN, United States
| | - Steven A. Garan
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Center for Research and Education on Aging (CREA), University of California, Berkeley and LBNL, Berkeley, CA, United States
| | - Jeffrey V. Rosenfeld
- Monash Institute of Medical Engineering, Monash University, Clayton, VIC, Australia
- Department of Neurosurgery, Alfred Hospital, Melbourne, VIC, Australia
- Department of Surgery, Monash University, Clayton, VIC, Australia
- Department of Surgery, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Tad Hogg
- Institute for Molecular Manufacturing, Palo Alto, CA, United States
| | | |
Collapse
|
6
|
Abstract
Analysis of individual cells at the subcellular level is important for understanding diseases and accelerating drug discovery. Nanoscale endoscopes allow minimally invasive probing of individual cell interiors. Several such instruments have been presented previously, but they are either too complex to fabricate or require sophisticated external detectors because of low signal collection efficiency. Here we present a nanoendoscope that can locally excite fluorescence in labelled cell organelles and collect the emitted signal for spectral analysis. Finite Difference Time Domain (FDTD) simulations have shown that with an optimized nanoendoscope taper profile, the light emission and collection was localized within ~100 nm. This allows signal detection to be used for nano-photonic sensing of the proximity of fluorophores. Upon insertion into the individual organelles of living cells, the nanoendoscope was fabricated and resultant fluorescent signals collected. This included the signal collection from the nucleus of Acridine orange labelled human fibroblast cells, the nucleus of Hoechst stained live liver cells and the mitochondria of MitoTracker Red labelled MDA-MB-231 cells. The endoscope was also inserted into a live organism, the yellow fluorescent protein producing nematode Caenorhabditis elegans, and a fluorescent signal was collected. To our knowledge this is the first demonstration of in vivo, local fluorescence signal collection on the sub-organelle level.
Collapse
|
7
|
Golshadi M, Wright LK, Dickerson IM, Schrlau MG. High-Efficiency Gene Transfection of Cells through Carbon Nanotube Arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3014-3020. [PMID: 27059518 DOI: 10.1002/smll.201503878] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/04/2016] [Indexed: 06/05/2023]
Abstract
Introducing nucleic acids into mammalian cells is a crucial step to elucidate biochemical pathways, and to modify gene expression and cellular development in immortalized cells, primary cells, and stem cells. Current transfection technologies are time consuming and limited by the size of genetic cargo, the inefficient introduction of test molecules into large populations of target cells, and the cytotoxicity of the techniques. A novel method of introducing genes and biomolecules into tens of thousands of mammalian cells has been developed through an array of aligned hollow carbon nanotubes, manufactured by template-based nanofabrication processes, to achieve rapid high-efficiency transfer with low cytotoxicity. The utilization of carbon nanotube arrays for gene transfection overcomes molecular weight limits of current technologies and can be adapted to deliver drugs or proteins in addition to nucleic acids.
Collapse
Affiliation(s)
- Masoud Golshadi
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Leslie K Wright
- School of Life Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Ian M Dickerson
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Michael G Schrlau
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| |
Collapse
|
8
|
Chang L, Hu J, Chen F, Chen Z, Shi J, Yang Z, Li Y, Lee LJ. Nanoscale bio-platforms for living cell interrogation: current status and future perspectives. NANOSCALE 2016; 8:3181-3206. [PMID: 26745513 DOI: 10.1039/c5nr06694h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The living cell is a complex entity that dynamically responds to both intracellular and extracellular environments. Extensive efforts have been devoted to the understanding intracellular functions orchestrated with mRNAs and proteins in investigation of the fate of a single-cell, including proliferation, apoptosis, motility, differentiation and mutations. The rapid development of modern cellular analysis techniques (e.g. PCR, western blotting, immunochemistry, etc.) offers new opportunities in quantitative analysis of RNA/protein expression up to a single cell level. The recent entries of nanoscale platforms that include kinds of methodologies with high spatial and temporal resolution have been widely employed to probe the living cells. In this tutorial review paper, we give insight into background introduction and technical innovation of currently reported nanoscale platforms for living cell interrogation. These highlighted technologies are documented in details within four categories, including nano-biosensors for label-free detection of living cells, nanodevices for living cell probing by intracellular marker delivery, high-throughput platforms towards clinical current, and the progress of microscopic imaging platforms for cell/tissue tracking in vitro and in vivo. Perspectives for system improvement were also discussed to solve the limitations remains in current techniques, for the purpose of clinical use in future.
Collapse
Affiliation(s)
- Lingqian Chang
- NSF Nanoscale Science and Engineering Center (NSEC), The Ohio State University, Columbus, OH 43212, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Shen Y, Zhang Z, Fukuda T. Bending spring rate investigation of nanopipette for cell injection. NANOTECHNOLOGY 2015; 26:155702. [PMID: 25797950 DOI: 10.1088/0957-4484/26/15/155702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bending of nanopipette tips during cell penetration is a major cause of cell injection failure. However, the flexural rigidity of nanopipettes is little known due to their irregular structure. In this paper, we report a quantitative method to estimate the flexural rigidity of a nanopipette by investigating its bending spring rate. First nanopipettes with a tip size of 300 nm are fabricated from various glass tubes by laser pulling followed by focused ion beam (FIB) milling. Then the bending spring rate of the nanopipettes is investigated inside a scanning electron microscope (SEM). Finally, a yeast cell penetration test is performed on these nanopipettes, which have different bending spring rates. The results show that nanopipettes with a higher bending spring rate have better cell penetration capability, which confirms that the bending spring rate may well reflect the flexural rigidity of a nanopipette. This method provides a quantitative parameter for characterizing the mechanical property of a nanopipette that can be potentially taken as a standard specification in the future. This general method can also be used to estimate other one-dimensional structures for cell injection, which will greatly benefit basic cell biology research and clinical applications.
Collapse
Affiliation(s)
- Yajing Shen
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, People's Republic of China
| | | | | |
Collapse
|
10
|
Tan X, Zhao S, Lei Q, Lu X, He G, Ostrikov K. Single-cell-precision microplasma-induced cancer cell apoptosis. PLoS One 2014; 9:e101299. [PMID: 24971517 PMCID: PMC4074162 DOI: 10.1371/journal.pone.0101299] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 06/05/2014] [Indexed: 01/11/2023] Open
Abstract
The issue of single-cell control has recently attracted enormous interest. However, in spite of the presently achievable intracellular-level physiological probing through bio-photonics, nano-probe-based, and some other techniques, the issue of inducing selective, single-cell-precision apoptosis, without affecting neighbouring cells remains essentially open. Here we resolve this issue and report on the effective single-cell-precision cancer cell treatment using the reactive chemistry of the localized corona-type plasma discharge around a needle-like electrode with the spot size ∼1 µm. When the electrode is positioned with the micrometer precision against a selected cell, a focused and highly-localized micro-plasma discharge induces apoptosis in the selected individual HepG2 and HeLa cancer cells only, without affecting any surrounding cells, even in small cell clusters. This is confirmed by the real-time monitoring of the morphological and structural changes at the cellular and cell nucleus levels after the plasma exposure.
Collapse
Affiliation(s)
- Xiao Tan
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Shasha Zhao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, P. R. China
| | - Qian Lei
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, P. R. China
| | - Xinpei Lu
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
- * E-mail:
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, P. R. China
| | - Kostya Ostrikov
- CSIRO Materials Science & Engineering, Lindfield, New South Wales, Australia
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
11
|
Gao Y, Longenbach T, Vitol EA, Orynbayeva Z, Friedman G, Gogotsi Y. One-dimensional nanoprobes for single-cell studies. Nanomedicine (Lond) 2014; 9:153-68. [DOI: 10.2217/nnm.13.196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Owing to variation of individual cells within a population, single-cell studies are of great interest to researchers. Recent developments in nanofabrication technology have made this area increasingly attractive as one-dimensional (1D) nanoscale probes can be manufactured with increasing accuracy. Here, we provide an overview and description of the major designs that have been reported to date. For more details of what applications could be realized and how, based on the probe shapes and designs, we summarize the most recently reported performances of 1D single-cell probes with their advantages and limitations. Minimally invasive probes are required for long-term experiments on single cells. Carbon nanotubes with their unique properties and structure are excellent candidates for multitask robotic intracellular probes. Carbon nanotube-tipped cellular endoscopes are less invasive compared with pipettes or cantilever tips. Advances in nanofabrication techniques have made it possible to produce more consistent nanoscale cellular probes that can capture a variety of information from optical, electrical and chemical signals. In addition, these tools can transfer tiny amounts of fluids and molecular materials in a highly localized fashion for the purpose of analyzing or stimulating a variety of responses at the level of individual cells and even cellular organelles. We conclude with a critical analysis of the current state of the field as well as the major obstacles for further probe development of minimally invasive probes and their widespread use in cell biology.
Collapse
Affiliation(s)
- Yang Gao
- Department of Electrical & Computer Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Travis Longenbach
- Department of Materials Science & Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Elina A Vitol
- Department of Materials Science & Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Zulfiya Orynbayeva
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- AJ Drexel Nanotechnology Institute, Drexel University, Philadelphia, PA 19104, USA
| | - Gary Friedman
- Department of Electrical & Computer Engineering, Drexel University, Philadelphia, PA 19104, USA
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- AJ Drexel Nanotechnology Institute, Drexel University, Philadelphia, PA 19104, USA
| | - Yury Gogotsi
- Department of Materials Science & Engineering, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Ladanov M, Cheemalapati S, Pyayt A. Optimization of light delivery by a nanowire-based single cell optical endoscope. OPTICS EXPRESS 2013; 21:28001-28009. [PMID: 24514313 DOI: 10.1364/oe.21.028001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Here we present a new design and FDTD simulations of light delivery by a nanowire-based intracellular endoscope. Nanowires can be used for minimally invasive and very local light delivery inside cells. One of the main challenges is coupling of light into the nanowire. We propose a new plasmonic coupler interface between cleaved optical fiber and a nanowire, and optimize light coupling efficiency and contrast.
Collapse
|
13
|
Hu K, Gao Y, Wang Y, Yu Y, Zhao X, Rotenberg SA, Gökmeşe E, Mirkin MV, Friedman G, Gogotsi Y. Platinized carbon nanoelectrodes as potentiometric and amperometric SECM probes. J Solid State Electrochem 2013. [DOI: 10.1007/s10008-013-2173-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Vitol EA, Novosad V, Rozhkova EA. Multifunctional ferromagnetic disks for modulating cell function. IEEE TRANSACTIONS ON MAGNETICS 2012; 48:3269-3274. [PMID: 23766544 PMCID: PMC3678572 DOI: 10.1109/tmag.2012.2198209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this work, we focus on the methods for controlling cell function with ferromagnetic disk-shaped particles. We will first review the history of magnetically assisted modulation of cell behavior and applications of magnetic particles for studying physical properties of a cell. Then, we consider the biological applications of the microdisks such as the method for induction of cancer cell apoptosis, controlled drug release, hyperthermia and MRI imaging.
Collapse
Affiliation(s)
- Elina A Vitol
- Materials Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA ; The Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA
| | | | | |
Collapse
|
15
|
Park S, Kim HC, Chung TD. Electrochemical analysis based on nanoporous structures. Analyst 2012; 137:3891-903. [DOI: 10.1039/c2an35294j] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|