1
|
Hu X, Wu H, Yong X, Wang Y, Yang S, Fan D, Xiao Y, Che L, Shi K, Li K, Xiong C, Zhu H, Qian Z. Cyclical endometrial repair and regeneration: Molecular mechanisms, diseases, and therapeutic interventions. MedComm (Beijing) 2023; 4:e425. [PMID: 38045828 PMCID: PMC10691302 DOI: 10.1002/mco2.425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
The endometrium is a unique human tissue with an extraordinary ability to undergo a hormone-regulated cycle encompassing shedding, bleeding, scarless repair, and regeneration throughout the female reproductive cycle. The cyclical repair and regeneration of the endometrium manifest as changes in endometrial epithelialization, glandular regeneration, and vascularization. The mechanisms encompass inflammation, coagulation, and fibrinolytic system balance. However, specific conditions such as endometriosis or TCRA treatment can disrupt the process of cyclical endometrial repair and regeneration. There is uncertainty about traditional clinical treatments' efficacy and side effects, and finding new therapeutic interventions is essential. Researchers have made substantial progress in the perspective of regenerative medicine toward maintaining cyclical endometrial repair and regeneration in recent years. Such progress encompasses the integration of biomaterials, tissue-engineered scaffolds, stem cell therapies, and 3D printing. This review analyzes the mechanisms, diseases, and interventions associated with cyclical endometrial repair and regeneration. The review discusses the advantages and disadvantages of the regenerative interventions currently employed in clinical practice. Additionally, it highlights the significant advantages of regenerative medicine in this domain. Finally, we review stem cells and biologics among the available interventions in regenerative medicine, providing insights into future therapeutic strategies.
Collapse
Affiliation(s)
- Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Haoming Wu
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Xin Yong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of BiotherapySichuan UniversityChengduSichuanChina
| | - Yao Wang
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Shuhao Yang
- Department of OrthopedicsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Diyi Fan
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Yibo Xiao
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Lanyu Che
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Kun Shi
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Kainan Li
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | | | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationWest China Second University Hospital of Sichuan UniversityChengduSichuanChina
| | - Zhiyong Qian
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
2
|
Gheybi F, Khooei A, Hoseinian A, Doagooyan M, Houshangi K, Jaafari MR, Papi A, Khoddamipour Z, Sahebkar A, Alavizadeh SH. Alleviation of acetaminophen-induced liver failure using silibinin nanoliposomes: An in vivo study. Biochem Biophys Res Commun 2023; 676:103-108. [PMID: 37506470 DOI: 10.1016/j.bbrc.2023.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/09/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Acetaminophen (Act) overdose is a known inducer of liver failure in both children and adults. Cell annihilation ensues following acetaminophen overdose and its toxic metabolites by depleting cellular GSH storage and increasing ROS levels. Silymarin extract and its major compound silibinin (SLB) possess robust antioxidant properties by inducing ROS elimination; however, low bioavailability and rapid metabolism limit their applications. Herein, we aimed at using SLB liposomes to combat acetaminophen-induced acute liver toxicity. METHODS We have developed a SLB-lipid complex to improve SLB loading efficiency within nanoliposome by using the lipid film method. Liposomes were characterized by using DLS and TEM analysis, and the release pattern, and toxicity profile on the normal cells as well as histopathological and serum analysis were investigated to reveal relevant enzyme activities in an animal model. RESULTS Data demonstrated that negatively-charged SLB liposomes of 115 nm had homogeneous spherical morphology, and entrapped a considerable quantity of SLB of almost 40%. Liposomes shows a favorable release pattern and were not toxic against NIH3T3 mouse fibroblast cells. The animal study revealed that treatment of mice with SLB nanoliposomes could significantly preserve liver function as revealed by the reduced levels of ALT and AST hepatic enzymes as well as ALP in the serum. Our data indicated that intraperitoneal administration of SLB Lip could significantly reduce ALT enzyme levels (p < 0.05) compared to N-acetylcysteine, while i.v administration resulted in no significant difference compared to control animals with no treatment. CONCLUSION The results of this study support the significant hepatoprotective effect of SLB nanoliposomes against acetaminophen-induced toxicity depending on the route of administration.
Collapse
Affiliation(s)
- Fatemeh Gheybi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Khooei
- Department of Pathology, Imam Reza Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azam Hoseinian
- Department of Pathology, Imam Reza Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maham Doagooyan
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kebria Houshangi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Papi
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoddamipour
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Wintjens AGWE, Simkens GA, Fransen PPKH, Serafras N, Lenaerts K, Franssen GHLM, de Hingh IHJT, Dankers PYW, Bouvy ND, Peeters A. Intraperitoneal drug delivery systems releasing cytostatic agents to target gastro-intestinal peritoneal metastases in laboratory animals: a systematic review. Clin Exp Metastasis 2022; 39:541-579. [PMID: 35737252 PMCID: PMC9338897 DOI: 10.1007/s10585-022-10173-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022]
Abstract
For peritoneal metastases (PM), there are few curative treatment options, and they are only available for a select patient group. Recently, new therapies have been developed to deliver intraperitoneal chemotherapy for a prolonged period, suitable for a larger patient group. These drug delivery systems (DDSs) seem promising in the experimental setting. Many types of DDSs have been explored in a variety of animal models, using different cytostatics. This review aimed to provide an overview of animal studies using DDSs containing cytostatics for the treatment of gastro-intestinal PM and identify the most promising therapeutic combinations. The review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) guidelines. The 35 studies included revealed similar results: using a cytostatic-loaded DDS to treat PM resulted in a higher median survival time (MST) and a lower intraperitoneal tumor load compared to no treatment or treatment with a ‘free’ cytostatic or an unloaded DDS. In 65% of the studies, the MST was significantly longer and in 24% the tumor load was significantly lower in the animals treated with cytostatic-loaded DDS. The large variety of experimental setups made it impossible to identify the most promising DDS-cytostatic combination. In most studies, the risk of bias was unclear due to poor reporting. Future studies should focus more on improving the clinical relevance of the experiments, standardizing the experimental study setup, and improving their methodological quality and reporting.
Collapse
Affiliation(s)
- Anne G W E Wintjens
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands. .,Department of Surgery, Maastricht University Medical Centre, PO Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Geert A Simkens
- Department of Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | | | - Narcis Serafras
- Department of Surgery, Maastricht University Medical Centre, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Kaatje Lenaerts
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of Surgery, Maastricht University Medical Centre, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Gregor H L M Franssen
- Department of Education, Content & Support, University Library, Maastricht University, Maastricht, The Netherlands
| | - Ignace H J T de Hingh
- Department of Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Nicole D Bouvy
- Department of Surgery, Maastricht University Medical Centre, PO Box 616, 6200 MD, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Andrea Peeters
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
4
|
Waldron MG, Judge C, Farina L, O’Shaughnessy A, O’Halloran M. Barrier materials for prevention of surgical adhesions: systematic review. BJS Open 2022; 6:6602139. [PMID: 35661871 PMCID: PMC9167938 DOI: 10.1093/bjsopen/zrac075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Postoperative surgical adhesions constitute a major health burden internationally. A wide range of materials have been evaluated, but despite constructive efforts and the obvious necessity, there remains no specific barrier widely utilized to prevent postoperative adhesion formation. The aim of this study was to highlight and characterize materials used for prevention of postoperative surgical adhesions in both animal and human studies. METHODS A systematic review was performed of all original research articles presenting data related to the prevention of postoperative adhesions using a barrier agent. All available observational studies and randomized trials using animal models or human participants were included, with no restrictions related to type of surgery. PubMed and Embase databases were searched using key terms from inception to August 2019. Standardized data collection forms were used to extract details for each study and assess desirable characteristics of each barrier and success in animal and/or human studies. RESULTS A total of 185 articles were identified for inclusion in the review, with a total of 67 unique adhesion barrier agents (37 natural and 30 synthetic materials). Desirable barrier characteristics of an ideal barrier were identified on review of the literature. Ten barriers achieved the primary outcome of reducing the incidence of postoperative adhesions in animal studies followed with positive outputs in human participants. A further 48 materials had successful results from animal studies, but with no human study performed to date. DISCUSSION Multiple barriers showed promise in animal studies, with several progressing to success, and fulfilment of desirable qualities, in human trials. No barrier is currently utilized commonly worldwide, but potential barriers have been identified to reduce the burden of postoperative adhesions and associated sequelae.
Collapse
Affiliation(s)
- Michael Gerard Waldron
- Correspondence to: Michael Gerard Waldron, Translational Medical Device Lab, Galway University Hospital, Newcastle Road, Galway, Ireland H91YR71 (e-mail: )
| | - Conor Judge
- Translational Medical Device Laboratory, National University of Ireland Galway, Galway, Ireland
| | - Laura Farina
- Translational Medical Device Laboratory, National University of Ireland Galway, Galway, Ireland
| | - Aoife O’Shaughnessy
- Translational Medical Device Laboratory, National University of Ireland Galway, Galway, Ireland
| | - Martin O’Halloran
- Translational Medical Device Laboratory, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
5
|
Fatehi Hassanabad A, Zarzycki AN, Jeon K, Dundas JA, Vasanthan V, Deniset JF, Fedak PWM. Prevention of Post-Operative Adhesions: A Comprehensive Review of Present and Emerging Strategies. Biomolecules 2021; 11:biom11071027. [PMID: 34356652 PMCID: PMC8301806 DOI: 10.3390/biom11071027] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Post-operative adhesions affect patients undergoing all types of surgeries. They are associated with serious complications, including higher risk of morbidity and mortality. Given increased hospitalization, longer operative times, and longer length of hospital stay, post-surgical adhesions also pose a great financial burden. Although our knowledge of some of the underlying mechanisms driving adhesion formation has significantly improved over the past two decades, literature has yet to fully explain the pathogenesis and etiology of post-surgical adhesions. As a result, finding an ideal preventative strategy and leveraging appropriate tissue engineering strategies has proven to be difficult. Different products have been developed and enjoyed various levels of success along the translational tissue engineering research spectrum, but their clinical translation has been limited. Herein, we comprehensively review the agents and products that have been developed to mitigate post-operative adhesion formation. We also assess emerging strategies that aid in facilitating precision and personalized medicine to improve outcomes for patients and our healthcare system.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
| | - Anna N. Zarzycki
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
| | - Kristina Jeon
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada;
| | - Jameson A. Dundas
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
| | - Vishnu Vasanthan
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
| | - Justin F. Deniset
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Paul W. M. Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
- Correspondence:
| |
Collapse
|
6
|
Wang P, Qu X, Che X, Luo Q, Tang X, Liu Y. Pharmaceutical strategies in improving anti-tumour efficacy and safety of intraperitoneal therapy for peritoneal metastasis. Expert Opin Drug Deliv 2021; 18:1193-1210. [PMID: 33682562 DOI: 10.1080/17425247.2021.1896493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: In selected patients with limited peritoneal metastasis (PM), favorable tumor biology, and a good clinical condition, there is an indication for combination of cytoreductive surgery (CRS) and subsequent intravenous (IV) or intraperitoneal (IP) chemotherapy. Compared with IV injection, IP therapy can achieve a high drug concentration within the peritoneal cavity with low systemic toxicity, however, the clinical application of IP chemotherapy is limited by the related abdominal pain, infection, and intolerance.Areas covered:To improve the anti-tumor efficacy and safety of IP therapy, various pharmaceutical strategies have been developed and show promising potential. This review discusses the specialized modification of traditional drug delivery systems and demonstrates the preparation of customized drug carriers for IP therapy, including chemotherapy and gene therapy. IP therapy has important clinical significance in the treatment of PM using novel anti-tumor agents as well as conventional drugs in new applications.Expert opinion: Although IP therapy exhibits good performance both in mouse models and in patients with PM in clinical trials, its clinical application remains limited due to the serious side effects and low acceptability. Further investigations, including pharmaceutical strategies, are needed to develop potential IP therapy, focusing on the efficacy and safety thereof.
Collapse
Affiliation(s)
- Puxiu Wang
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China.,Liaoning Province Clinical Research Center for Cancer, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China.,Liaoning Province Clinical Research Center for Cancer, China
| | - Qiuhua Luo
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xing Tang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China.,Liaoning Province Clinical Research Center for Cancer, China
| |
Collapse
|
7
|
Roy P, Mignet N, Pocard M, Boudy V. Drug delivery systems to prevent peritoneal metastasis after surgery of digestives or ovarian carcinoma: A review. Int J Pharm 2021; 592:120041. [DOI: 10.1016/j.ijpharm.2020.120041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023]
|
8
|
Xu L, Mei L, Zhao R, Yi J, Jiang Y, Li R, Zhao Y, Pi L, Li Y. The effects of intro-oral parathyroid hormone on the healing of tooth extraction socket: an experimental study on hyperglycemic rats. J Appl Oral Sci 2020; 28:e20190690. [PMID: 32348445 PMCID: PMC7185986 DOI: 10.1590/1678-7757-2019-0690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/24/2020] [Indexed: 02/05/2023] Open
Abstract
Objective To investigate the effects of intro-oral injection of parathyroid hormone (PTH) on tooth extraction wound healing in hyperglycemic rats. Methodology 60 male Sprague-Dawley rats were randomly divided into the normal group (n=30) and DM group (n=30). Type 1 diabetes mellitus (DM) was induced by streptozotocin. After extracting the left first molar of all rats, each group was further divided into 3 subgroups (n=10 per subgroup), receiving the administration of intermittent PTH, continuous PTH and saline (control), respectively. The intermittent-PTH group received intra-oral injection of PTH three times per week for two weeks. A thermosensitive controlled-release hydrogel was synthesized for continuous-PTH administration. The serum chemistry was determined to evaluate the systemic condition. All animals were sacrificed after 14 days. Micro-computed tomography (Micro-CT) and histological analyses were used to evaluate the healing of extraction sockets. Results The level of serum glucose in the DM groups was significantly higher than that in the non-DM groups (p<0.05); the level of serum calcium was similar in all groups (p>0.05). Micro-CT analysis showed that the DM group had a significantly lower alveolar bone trabecular number (Tb.N) and higher trabecular separation (Tb.Sp) than the normal group (p<0.05). The histological analyses showed that no significant difference in the amount of new bone (hard tissue) formation was found between the PTH and non-PTH groups (p>0.05). Conclusions Bone formation in the extraction socket of the type 1 diabetic rats was reduced. PTH did not improve the healing of hard and soft tissues. The different PTH administration regimes (continuous vs. intermittent) had similar effect on tissue healing. These results demonstrated that the metabolic characteristics of the hyperglycemic rats produced a condition that was unable to respond to PTH treatment.
Collapse
Affiliation(s)
- Lin Xu
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Mei
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, New Zealand
| | - Rui Zhao
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianru Yi
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yixuan Jiang
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruomei Li
- Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Youliang Zhao
- Department of emergency department, West China Second Hospital, Sichuan University, Chengdu, China
| | - Li Pi
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Yu Li
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Cheng F, Wu Y, Li H, Yan T, Wei X, Wu G, He J, Huang Y. Biodegradable N, O-carboxymethyl chitosan/oxidized regenerated cellulose composite gauze as a barrier for preventing postoperative adhesion. Carbohydr Polym 2019; 207:180-190. [DOI: 10.1016/j.carbpol.2018.10.077] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 10/28/2022]
|
10
|
Chen CH, Kuo CY, Chen SH, Mao SH, Chang CY, Shalumon KT, Chen JP. Thermosensitive Injectable Hydrogel for Simultaneous Intraperitoneal Delivery of Doxorubicin and Prevention of Peritoneal Adhesion. Int J Mol Sci 2018; 19:1373. [PMID: 29734717 PMCID: PMC5983626 DOI: 10.3390/ijms19051373] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 01/04/2023] Open
Abstract
To improve intraperitoneal chemotherapy and to prevent postsurgical peritoneal adhesion, we aimed to develop a drug delivery strategy for controlled release of a chemotherapeutic drug from the intraperitoneally injected thermosensitive poly(N-isopropylacrylamide)-based hydrogel (HACPN), which is also endowed with peritoneal anti-adhesion properties. Anticancer drug doxorubicin (DOX) was loaded into the hydrogel (HACPN-DOX) to investigate the chemotherapeutic and adhesion barrier effects in vivo. A burst release followed by sustained release of DOX from HACPN-DOX was found due to gradual degradation of the hydrogel. Cell culture studies demonstrated the cytotoxicity of released DOX toward CT-26 mouse colon carcinoma cells in vitro. Using peritoneal carcinomatosis animal model in BALB/c mice with intraperitoneally injected CT-26 cells, animals treated with HACPN-DOX revealed the best antitumor efficacy judging from tumor weight and volume, survival rate, and bioluminescence signal intensity when compared with treatment with free DOX at the same drug dosage. HACPN (or HACPN-DOX) also significantly reduced the risk of postoperative peritoneal adhesion, which was generated by sidewall defect-cecum abrasion in tumor-bearing BALB/c mice, from gross and histology analyses. This study could create a paradigm to combine controlled drug release with barrier function in a single drug-loaded injectable hydrogel to enhance the intraperitoneal chemotherapeutic efficacy while simultaneously preventing postsurgical adhesion.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan.
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
| | - Shih-Hsien Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
| | - Shih-Hsuan Mao
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan.
| | - Chih-Yen Chang
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
| | - K T Shalumon
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan.
- Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan.
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|
11
|
Wu W, Cheng R, das Neves J, Tang J, Xiao J, Ni Q, Liu X, Pan G, Li D, Cui W, Sarmento B. Advances in biomaterials for preventing tissue adhesion. J Control Release 2017; 261:318-336. [DOI: 10.1016/j.jconrel.2017.06.020] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
|
12
|
Peritoneal adhesion prevention with a biodegradable and injectable N,O-carboxymethyl chitosan-aldehyde hyaluronic acid hydrogel in a rat repeated-injury model. Sci Rep 2016; 6:37600. [PMID: 27869192 PMCID: PMC5116612 DOI: 10.1038/srep37600] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/01/2016] [Indexed: 02/05/2023] Open
Abstract
Postoperative peritoneal adhesion is one of the serious issues because it induces severe clinical disorders. In this study, we prepared biodegradable and injectable hydrogel composed of N,O-carboxymethyl chitosan (NOCC) and aldehyde hyaluronic acid (AHA), and assessed its anti-adhesion effect in a rigorous and severe recurrent adhesion model which is closer to clinical conditions. The flexible hydrogel, which gelated in 66 seconds at 37 °C, was cross-linked by the schiff base derived from the amino groups of NOCC and aldehyde groups in AHA. In vitro cytotoxicity test showed the hydrogel was non-toxic. In vitro and in vivo degradation examinations demonstrated the biodegradable and biocompatibility properties of the hydrogel. The hydrogel discs could prevent the invasion of fibroblasts, whereas fibroblasts encapsulated in the porous 3-dimensional hydrogels could grow and proliferate well. Furthermore, the hydrogel was applied to evaluate the anti-adhesion efficacy in a more rigorous recurrent adhesion model. Compared with normal saline group and commercial hyaluronic acid (HA) hydrogel, the NOCC-AHA hydrogel exhibited significant reduction of peritoneal adhesion. Compared to control group, the blood and abdominal lavage level of tPA was increased in NOCC-AHA hydrogel group. These findings suggested that NOCC-AHA hydrogel had a great potential to serve as an anti-adhesion candidate.
Collapse
|
13
|
Yun Q, Wang SS, Xu S, Yang JP, Fan J, Yang LL, Chen Y, Fu SZ, Wu JB. Use of 5-Fluorouracil Loaded Micelles and Cisplatin in Thermosensitive Chitosan Hydrogel as an Efficient Therapy against Colorectal Peritoneal Carcinomatosis. Macromol Biosci 2016; 17. [PMID: 27762505 DOI: 10.1002/mabi.201600262] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/14/2016] [Indexed: 11/07/2022]
Abstract
Colorectal peritoneal carcinomatosis (CRPC) is a common systemic metastasis of intra-abdominal cancers. Intraperitoneal chemotherapy against CRPC is at present the preferred treatment. The aim of this study is to develop a novel hydrogel drug delivery system through the combination of 5-fluorouracil (5-FU) loaded polymeric micelles and cisplatin (DDP) in biodegradable thermosensitive chitosan (CS) hydrogel. The prepared CS hydrogel drug is a free-flowing solution at room temperature and forms a stationary gel at body temperature. Therefore, a CRPC mouse model is established to investigate the antitumor activity of CS hydrogel drug system. The results suggest that intraperitoneal administration of CS hydrogel drug can inhibit tumor growth and metastasis, and prolong survival time compared with other groups, thus improving the chemotherapeutic effect. Ki-67 immunohistochemical analysis reveals that tumors in the CS hydrogel drug group has lower cell proliferation in contrast to other groups (P < 0.001). Furthermore, hematoxylin-eosin staining of liver and lung tissue indicates that the CS hydrogel drug has also a certain inhibitory effect on colorectal cancer metastasis to the liver and lung. Hence, the work highlights the potential clinical applications of the CS hydrogel drug.
Collapse
Affiliation(s)
- Qin Yun
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Si Song Wang
- Department of Neurosurgery, the Affiliated 363 Hospital of Southwest Medical University, Chengdu, 610041, China
| | - Shan Xu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jin Ping Yang
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Juan Fan
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Ling Lin Yang
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yue Chen
- Department of Nuclear Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Shao Zhi Fu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jing Bo Wu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
14
|
Genipin-crosslinked gelatin microspheres as a strategy to prevent postsurgical peritoneal adhesions: In vitro and in vivo characterization. Biomaterials 2016; 96:33-46. [DOI: 10.1016/j.biomaterials.2016.04.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 01/27/2023]
|
15
|
Sheu C, Shalumon KT, Chen CH, Kuo CY, Fong YT, Chen JP. Dual crosslinked hyaluronic acid nanofibrous membranes for prolonged prevention of post-surgical peritoneal adhesion. J Mater Chem B 2016; 4:6680-6693. [DOI: 10.1039/c6tb01376g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A HA NFM crosslinked with FeCl3and BDDE shows prolonged degradation to prevent peritoneal adhesion.
Collapse
Affiliation(s)
- Chialin Sheu
- Department of Chemical and Materials Engineering
- Chang Gung University
- Taoyuan 33302
- Republic of China
| | - K. T. Shalumon
- Department of Chemical and Materials Engineering
- Chang Gung University
- Taoyuan 33302
- Republic of China
| | - Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center
- Chang Gung Memorial Hospital
- Taoyuan 33305
- Republic of China
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering
- Chang Gung University
- Taoyuan 33302
- Republic of China
| | - Yi Teng Fong
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center
- Chang Gung Memorial Hospital
- Taoyuan 33305
- Republic of China
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering
- Chang Gung University
- Taoyuan 33302
- Republic of China
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center
| |
Collapse
|
16
|
Wu Q, Wang N, He T, Shang J, Li L, Song L, Yang X, Li X, Luo N, Zhang W, Gong C. Thermosensitive hydrogel containing dexamethasone micelles for preventing postsurgical adhesion in a repeated-injury model. Sci Rep 2015; 5:13553. [PMID: 26324090 PMCID: PMC4555101 DOI: 10.1038/srep13553] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/30/2015] [Indexed: 02/05/2023] Open
Abstract
Tissue adhesion is a common complication after surgery. In this work, a dexamethasone loaded polymeric micelles in thermosensitive hydrogel composite (Dex hydrogel) was prepared, which combined the anti-adhesion barrier with controlled release of anti-adhesion drug. Dexamethasone (Dex) was encapsulated in polymeric micelles (Dex micelles), and then the Dex micelles were loaded into biodegradable and thermosensitive hydrogel. The obtained Dex hydrogel showed a temperature-dependent sol-gel-sol phase transition behavior. The Dex hydrogel could form a non-flowing gel in situ upon subcutaneous injection and gradually degrade in about 20 days. In addition, Dex hydrogel was assigned for anti-adhesion studies in a more rigorous recurrent adhesion animal model. Compared with normal saline (NS) and Dex micelles group, tissue adhesions in hydrogel and Dex hydrogel group were significantly alleviated. In Dex hydrogel group, the media adhesion score is 0, which was dramatically lower than that in blank hydrogel group (2.50, P < 0.001). In histopathological examination and scanning electron microscopy (SEM) analysis, an integral neo-mesothelial cell layer with microvilli on their surface was observed, which revealed that the injured parietal and visceral peritoneum were fully recovered without the concerns of adhesion formation. Our results suggested that Dex hydrogel may serve as a potential anti-adhesion candidate.
Collapse
Affiliation(s)
- Qinjie Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Ning Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Tao He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Jinfeng Shang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Ling Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Linjiang Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Xi Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Xia Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Na Luo
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Wenli Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| |
Collapse
|
17
|
|
18
|
Singh NK, Nguyen QV, Kim BS, Lee DS. Nanostructure controlled sustained delivery of human growth hormone using injectable, biodegradable, pH/temperature responsive nanobiohybrid hydrogel. NANOSCALE 2015; 7:3043-3054. [PMID: 25603888 DOI: 10.1039/c4nr05897f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The clinical efficacy of a therapeutic protein, the human growth hormone (hGH), is limited by its short plasma half-life and premature degradation. To overcome this limitation, we proposed a new protein delivery system by the self-assembly and intercalation of a negatively charged hGH onto a positively charged 2D-layered double hydroxide nanoparticle (LDH). The LDH-hGH ionic complex, with an average particle size of approximately 100 nm, retards hGH diffusion. Nanobiohybrid hydrogels (PAEU/LDH-hGH) were prepared by dispersing the LDH-hGH complex into a cationic pH- and temperature-sensitive injectable PAEU copolymer hydrogel to enhance sustained hGH release by dual ionic interactions. Biodegradable copolymer hydrogels comprising poly(β-amino ester urethane) and triblock poly(ε-caprolactone-lactide)-poly(ethylene glycol)-poly-(ε-caprolactone-lactide) (PCLA-PEG-PCLA) were synthesized and characterized. hGH was self-assembled and intercalated onto layered LDH nanoparticles through an anion exchange technique. X-ray diffraction and zeta potential results showed that the LDH-hGH complex was prepared successfully and that the PAEU/LDH-hGH nanobiohybrid hydrogel had a disordered intercalated nanostructure. The biocompatibility of the nanobiohybrid hydrogel was confirmed by an in vitro cytotoxicity test. The in vivo degradation of pure PAEU and its nanobiohybrid hydrogels was investigated and it showed a controlled degradation of the PAEU/LDH nanobiohybrids compared with the pristine PAEU copolymer hydrogel. The LDH-hGH loaded injectable hydrogels suppressed the initial burst release of hGH and extended the release period for 13 days in vitro and 5 days in vivo. The developed nanohybrid hydrogel has the potential for application as a protein carrier to improve patient compliance.
Collapse
Affiliation(s)
- Narendra K Singh
- Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Korea.
| | | | | | | |
Collapse
|
19
|
Li R, Liu N, Li B, Wang Y, Wu G, Ma J. Synthesis and properties of temperature-sensitive and chemically crosslinkable poly(ether-urethane) hydrogel. Polym Chem 2015. [DOI: 10.1039/c5py00181a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The PEU-MA solutions can gelate at physiological temperature, and be further crosslinked by UV light.
Collapse
Affiliation(s)
- Ruizhi Li
- Key Laboratory of Functional Polymer Materials of MOE
- Institute of Polymers
- Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
| | - Na Liu
- Key Laboratory of Functional Polymer Materials of MOE
- Institute of Polymers
- Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
| | - Bingqiang Li
- Key Laboratory of Functional Polymer Materials of MOE
- Institute of Polymers
- Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
| | - Yinong Wang
- Key Laboratory of Functional Polymer Materials of MOE
- Institute of Polymers
- Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
| | - Guolin Wu
- Key Laboratory of Functional Polymer Materials of MOE
- Institute of Polymers
- Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
| | - Jianbiao Ma
- School of Chemistry and Chemical Engineering
- Tianjin University of Technology
- Tianjin 300191
- PR China
| |
Collapse
|
20
|
Engelberth SA, Hempel N, Bergkvist M. Development of nanoscale approaches for ovarian cancer therapeutics and diagnostics. Crit Rev Oncog 2014; 19:281-315. [PMID: 25271436 DOI: 10.1615/critrevoncog.2014011455] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ovarian cancer is the deadliest of all gynecological cancers and the fifth leading cause of death due to cancer in women. This is largely due to late-stage diagnosis, poor prognosis related to advanced-stage disease, and the high recurrence rate associated with development of chemoresistance. Survival statistics have not improved significantly over the last three decades, highlighting the fact that improved therapeutic strategies and early detection require substantial improvements. Here, we review and highlight nanotechnology-based approaches that seek to address this need. The success of Doxil, a PEGylated liposomal nanoencapsulation of doxorubicin, which was approved by the FDA for use on recurrent ovarian cancer, has paved the way for the current wave of nanoparticle formulations in drug discovery and clinical trials. We discuss and summarize new nanoformulations that are currently moving into clinical trials and highlight novel nanotherapeutic strategies that have shown promising results in preclinical in vivo studies. Further, the potential for nanomaterials in diagnostic imaging techniques and the ability to leverage nanotechnology for early detection of ovarian cancer are also discussed.
Collapse
Affiliation(s)
| | - Nadine Hempel
- SUNY College of Nanoscale Science and Engineering, Albany NY 12203
| | - Magnus Bergkvist
- SUNY College of Nanoscale Science and Engineering, Albany NY 12203
| |
Collapse
|
21
|
Zhang W, Wu Q, Li L, Cui T, Sun L, Wang N, Liu L, Li X, Gong C. Prevention of desiccation induced postsurgical adhesion by thermosensitive micelles. Colloids Surf B Biointerfaces 2014; 122:309-315. [DOI: 10.1016/j.colsurfb.2014.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/05/2014] [Accepted: 06/09/2014] [Indexed: 12/08/2022]
|
22
|
Liu J, Jiang Y, Cui Y, Xu C, Ji X, Luan Y. Cytarabine-AOT catanionic vesicle-loaded biodegradable thermosensitive hydrogel as an efficient cytarabine delivery system. Int J Pharm 2014; 473:560-71. [DOI: 10.1016/j.ijpharm.2014.07.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/16/2014] [Accepted: 07/23/2014] [Indexed: 10/25/2022]
|
23
|
He ZY, Chu BY, Wei XW, Li J, Edwards CK, Song XR, He G, Xie YM, Wei YQ, Qian ZY. Recent development of poly(ethylene glycol)-cholesterol conjugates as drug delivery systems. Int J Pharm 2014; 469:168-78. [DOI: 10.1016/j.ijpharm.2014.04.056] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/15/2014] [Accepted: 04/23/2014] [Indexed: 11/28/2022]
|
24
|
Li Y, Jin M, Shao S, Huang W, Yang F, Chen W, Zhang S, Xia G, Gao Z. Small-sized polymeric micelles incorporating docetaxel suppress distant metastases in the clinically-relevant 4T1 mouse breast cancer model. BMC Cancer 2014; 14:329. [PMID: 24885518 PMCID: PMC4023534 DOI: 10.1186/1471-2407-14-329] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 05/02/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The small size of ultra-small nanoparticles makes them suitable for lymphatic delivery, and many recent studies have examined their role in anti-metastasis therapy. However, the anti-metastatic efficacy of small-sized nanocarriers loaded with taxanes such as docetaxel has not yet been investigated in malignant breast cancer. METHODS We encapsulated docetaxel using poly(D,L-lactide)1300-b-(polyethylene glycol-methoxy)2000 (mPEG2000-b-PDLLA1300) to construct polymeric micelles with a mean diameter of 16.76 nm (SPM). Patient-like 4T1/4T1luc breast cancer models in Balb/c mice, with resected and unresected primary tumors, were used to compare the therapeutic efficacies of SPM and free docetaxel (Duopafei) against breast cancer metastasis using bioluminescent imaging, lung nodule examination, and histological examination. RESULT SPM showed similar efficacy to Duopafei in terms of growth suppression of primary tumors, but greater chemotherapeutic efficacy against breast cancer metastasis. In addition, lung tissue inflammation was decreased in the SPM-treated group, while many tumor cells and neutrophils were found in the Duopafei-treated group. CONCLUSION Small-sized mPEG2000-b-PDLLA1300 micelles could provide an enhanced method of docetaxel delivery in breast cancer metastasis, and may represent a valid chemotherapeutic strategy in breast cancer patients with resected primary tumors.
Collapse
Affiliation(s)
- Yunfei Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xiannongtan Street, Beijing 100050, PR China
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, PR China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xiannongtan Street, Beijing 100050, PR China
| | - Shuai Shao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xiannongtan Street, Beijing 100050, PR China
- Pharmacy School, Yanbian University, Yanji 133000, PR China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xiannongtan Street, Beijing 100050, PR China
| | - Feifei Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xiannongtan Street, Beijing 100050, PR China
| | - Wei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xiannongtan Street, Beijing 100050, PR China
| | - Shenghua Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, PR China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, PR China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xiannongtan Street, Beijing 100050, PR China
| |
Collapse
|
25
|
Li L, Wang N, Jin X, Deng R, Nie S, Sun L, Wu Q, Wei Y, Gong C. Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention. Biomaterials 2014; 35:3903-17. [DOI: 10.1016/j.biomaterials.2014.01.050] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 01/21/2014] [Indexed: 12/22/2022]
|
26
|
Wu Q, Li L, Wang N, Gao X, Wang B, Liu X, Qian Z, Wei Y, Gong C. Biodegradable and thermosensitive micelles inhibit ischemia-induced postoperative peritoneal adhesion. Int J Nanomedicine 2014; 9:727-34. [PMID: 24523585 PMCID: PMC3921091 DOI: 10.2147/ijn.s55497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ischemia-induced adhesion is very common after surgery, and leads to severe abdominal adhesions. Unfortunately, many existing barrier agents used for adhesion prevention have only limited success. The objective of this study is to evaluate the efficacy of biodegradable and thermosensitive poly(ε-caprolactone)–poly(ethylene glycol)–poly(ε-caprolactone) (PCL–PEG–PCL) micelles for the prevention of postoperative ischemia-induced adhesion. We found that the synthesized PCL–PEG–PCL copolymer could self-assemble in an aqueous solution to form micelles with a mean size of 40.1±2.7 nm at 10°C, and the self-assembled micelles could instantly turn into a nonflowing gel at body temperature. In vitro cytotoxicity tests suggested that the copolymer showed little toxicity on NIH-3T3 cells even at amounts up to 1,000 μg/mL. In the in vivo test, the postsurgical ischemic-induced peritoneal adhesion model was established and then treated with the biodegradable and thermosensitive micelles. In the control group (n=12), all animals developed adhesions (mean score, 3.58±0.51), whereas three rats in the micelles-treated group (n=12) did not develop any adhesions (mean score, 0.67±0.78; P<0.001, Mann–Whitney U-test). Both hematoxylin and eosin and Masson trichrome staining of the ischemic tissues indicated that the micelles demonstrated excellent therapeutic effects on ischemia-induced adhesion. On Day 7 after micelle treatment, a layer of neo-mesothelial cells emerged on the injured tissues, which confirmed the antiadhesion effect of the micelles. The thermosensitive micelles had no significant side effects in the in vivo experiments. These results suggested that biodegradable and thermosensitive PCL–PEG–PCL micelles could serve as a potential barrier agent to reduce the severity of and even prevent the formation of ischemia-induced adhesions.
Collapse
Affiliation(s)
- Qinjie Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China
| | - Ling Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China
| | - Ning Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China
| | - Bilan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China
| | - Xinyu Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
27
|
Sun L, Deng X, Yang X, Li Z, Wang Z, Li L, Wu Q, Peng F, Liu L, Gong C. Co-delivery of doxorubicin and curcumin by polymeric micelles for improving antitumor efficacy on breast carcinoma. RSC Adv 2014. [DOI: 10.1039/c4ra07453j] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Polymeric micelles co-delivered hydrophilic doxorubicin and hydrophobic curcumin improved cytotoxicity, apoptosis, and cellular uptakein vitroand enhanced antitumor and anti-metastasis activityin vivoon breast carcinoma.
Collapse
|
28
|
Wu Q, Deng S, Li L, Sun L, Yang X, Liu X, Liu L, Qian Z, Wei Y, Gong C. Biodegradable polymeric micelle-encapsulated quercetin suppresses tumor growth and metastasis in both transgenic zebrafish and mouse models. NANOSCALE 2013; 5:12480-12493. [PMID: 24165931 DOI: 10.1039/c3nr04651f] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Quercetin (Que) loaded polymeric micelles were prepared to obtain an aqueous formulation of Que with enhanced anti-tumor and anti-metastasis activities. A simple solid dispersion method was used, and the obtained Que micelles had a small particle size (about 31 nm), high drug loading, and high encapsulation efficiency. Que micelles showed improved cellular uptake, an enhanced apoptosis induction effect, and stronger inhibitory effects on proliferation, migration, and invasion of 4T1 cells than free Que. The enhanced in vitro antiangiogenesis effects of Que micelles were proved by the results that Que micelles significantly suppressed proliferation, migration, invasion, and tube formation of human umbilical vein endothelial cells (HUVECs). Subsequently, transgenic zebrafish models were employed to investigate anti-tumor and anti-metastasis effects of Que micelles, in which stronger inhibitory effects of Que micelles were observed on embryonic angiogenesis, tumor-induced angiogenesis, tumor growth, and tumor metastasis. Furthermore, in a subcutaneous 4T1 tumor model, Que micelles were more effective in suppressing tumor growth and spontaneous pulmonary metastasis, and prolonging the survival of tumor-bearing mice. Besides, immunohistochemical and immunofluorescent assays suggested that tumors in the Que micelle-treated group showed more apoptosis, fewer microvessels, and fewer proliferation-positive cells. In conclusion, Que micelles, which are synthesized as an aqueous formulation of Que, possess enhanced anti-tumor and anti-metastasis activity, which can serve as potential candidates for cancer therapy.
Collapse
Affiliation(s)
- Qinjie Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gao X, Deng X, Wei X, Shi H, Wang F, Ye T, Shao B, Nie W, Li Y, Luo M, Gong C, Huang N. Novel thermosensitive hydrogel for preventing formation of abdominal adhesions. Int J Nanomedicine 2013; 8:2453-63. [PMID: 23885172 PMCID: PMC3716558 DOI: 10.2147/ijn.s46357] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Adhesions can form after almost any type of abdominal surgery. Postoperative adhesions can be prevented by improved surgical techniques, such as reducing surgical trauma, preventing ischemia, and avoiding exposure of the peritoneal cavity to foreign materials. Although improved surgical techniques can potentially reduce formation of adhesions, they cannot be eliminated completely. Therefore, finding more effective methods to prevent postoperative adhesions is imperative. Recently, we found that a novel thermosensitive hydrogel, ie, poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCEC) had the potential to prevent postoperative adhesions. Using the ring-opening polymerization method we prepared a PCEC copolymer which could be dissolved and assembled at 55°C into PCEC micelles with mean size of 25 nm. At body temperature, a solution containing PCEC micelles could convert into a hydrogel. The PCEC copolymer was biodegradable and had low toxicity in vitro and in vivo. We found that most animals in a hydrogel-treated group (n = 10) did not develop adhesions. In contrast, 10 untreated animals developed adhesions that could only be separated by sharp dissection (P < 0.001). The hydrogel could adhere to peritoneal wounds and degraded gradually over 7-9 days, transforming into a viscous fuid that was completely absorbed within 12 days. The injured parietal and visceral peritoneum remesothelialized over about seven and nine days, respectively. This study confirms that PCEC hydrogel has potential application in the prevention of postoperative adhesions.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Pathophysiology, College of Preclinical and Forensic Medical Sciences, Sichuan University, Chengdu, People’s Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wei X, Lv X, Zhao Q, Qiu L. Thermosensitive β-cyclodextrin modified poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) micelles prolong the anti-inflammatory effect of indomethacin following local injection. Acta Biomater 2013; 9:6953-63. [PMID: 23416577 DOI: 10.1016/j.actbio.2013.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 01/31/2013] [Accepted: 02/05/2013] [Indexed: 10/27/2022]
Abstract
A novel biodegradable and injectable in situ gel-forming controlled drug delivery system based on thermosensitive β-cyclodextrin-modified poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) co-polymer (PCEC-β-CD) was studied in this work. The drug encapsulating capacity has been improved by introducing β-CD bound to the PCEC co-polymer. The prepared PCEC-β-CD co-polymers self-assembled in water to form micelles, and underwent a temperature-dependent gel-sol transition, which was in the form of a flowing injectable solution at low temperatures but became a non-flowing gel at around physiological body temperature. Furthermore, a small hydrophobic drug molecule indomethacin (IND) was successfully encapsulated in PCEC-β-CD micelles by dialysis at a high encapsulation efficiency and drug loading capacity. The IND-loaded micelles (IND-M) exhibited controlled release in vitro. Additionally, a pharmacodynamic study in vivo based on both the carrageenan-induced acute and complete Freund's adjuvant-induced adjuvant arthritis models indicated that sustained therapeutic efficacy could be achieved through subcutaneous injection of IND-loaded micelles. A significant improvement in the anti-inflammatory effect of IND in rats occurred on encapsulation in PCEC-β-CD micelles.
Collapse
|
31
|
Gong C, Wu Q, Wang Y, Zhang D, Luo F, Zhao X, Wei Y, Qian Z. A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials 2013; 34:6377-87. [PMID: 23726229 DOI: 10.1016/j.biomaterials.2013.05.005] [Citation(s) in RCA: 365] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/07/2013] [Indexed: 02/05/2023]
Abstract
A biodegradable in situ gel-forming controlled drug delivery system composed of curcumin loaded micelles and thermosensitive hydrogel was prepared and applied for cutaneous wound repair. Curcumin is believed to be a potent antioxidant and anti-inflammatory agent. Due to its high hydrophobicity, curcumin was encapsulated in polymeric micelles (Cur-M) with high drug loading and encapsulation efficiency. Cur-M loaded thermosensitive hydrogel (Cur-M-H) was prepared and applied as wound dressing to enhance the cutaneous wound healing. Cur-M-H was a free-flowing sol at ambient temperature and instantly converted into a non-flowing gel at body temperature. In vitro studies suggested that Cur-M-H exhibited well tissue adhesiveness and could release curcumin in an extended period. Furthermore, linear incision and full-thickness excision wound models were employed to evaluate the in vivo wound healing activity of Cur-M-H. In incision model, Cur-M-H-treated group showed higher tensile strength and thicker epidermis. In excision model, Cur-M-H group exhibited enhancement of wound closure. Besides, in both models, Cur-M-H-treated groups showed higher collagen content, better granulation, higher wound maturity, dramatic decrease in superoxide dismutase, and slight increase in catalase. Histopathologic examination also implied that Cur-M-H could enhance cutaneous wound repair. In conclusion, biodegradable Cur-M-H composite might have great application for wound healing.
Collapse
Affiliation(s)
- ChangYang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Niwa D, Koide M, Fujie T, Goda N, Takeoka S. Application of nanosheets as an anti-adhesion barrier in partial hepatectomy. J Biomed Mater Res B Appl Biomater 2013; 101:1251-8. [DOI: 10.1002/jbm.b.32937] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 12/08/2012] [Accepted: 01/15/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Daisuke Niwa
- Department of Life Sciences and Medical Biosciences; Graduate School of Advanced Science and Engineering; Waseda University; 2-2, Wakamatsu-cho Shinjuku-ku Tokyo 162-8480 Japan
| | - Masatsugu Koide
- Department of Life Sciences and Medical Biosciences; Graduate School of Advanced Science and Engineering; Waseda University; 2-2, Wakamatsu-cho Shinjuku-ku Tokyo 162-8480 Japan
| | - Toshinori Fujie
- Department of Life Sciences and Medical Biosciences; Graduate School of Advanced Science and Engineering; Waseda University; 2-2, Wakamatsu-cho Shinjuku-ku Tokyo 162-8480 Japan
| | - Nobuhito Goda
- Department of Life Sciences and Medical Biosciences; Graduate School of Advanced Science and Engineering; Waseda University; 2-2, Wakamatsu-cho Shinjuku-ku Tokyo 162-8480 Japan
| | - Shinji Takeoka
- Department of Life Sciences and Medical Biosciences; Graduate School of Advanced Science and Engineering; Waseda University; 2-2, Wakamatsu-cho Shinjuku-ku Tokyo 162-8480 Japan
| |
Collapse
|
33
|
Optimization of drug delivery systems for intraperitoneal therapy to extend the residence time of the chemotherapeutic agent. ScientificWorldJournal 2013; 2013:720858. [PMID: 23589707 PMCID: PMC3621299 DOI: 10.1155/2013/720858] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/26/2013] [Indexed: 12/11/2022] Open
Abstract
Intraperitoneal (IP) chemotherapy is an effective way of treating peritoneal carcinomatosis of colorectal origin after complete cytoreduction. Although IP therapy has been already performed for many years, no standardized treatment design has been developed in terms of schedule, residence time, drug, or carrier solution. Because of the fast clearance of the conventional intravenous (IV) drug delivery systems used for IP therapy, a lot of research is performed to optimize IP drug delivery and extend the residence time of the cytotoxic agent in the peritoneal cavity. This paper reviews the recent advances made in drug delivery systems for IP chemotherapy, discussing the use of microparticles, nanoparticles, liposomes, micelles, implants, and injectable depots for IP delivery.
Collapse
|
34
|
Curcumin loaded polymeric micelles inhibit breast tumor growth and spontaneous pulmonary metastasis. Int J Pharm 2013; 443:175-82. [DOI: 10.1016/j.ijpharm.2012.12.032] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/20/2012] [Accepted: 12/21/2012] [Indexed: 01/27/2023]
|