1
|
Yang F, Wang J, Qu K, Wei H, Song Z, Xu H, Wang Z, Chen Y. Responses of INS-1 cells to glucose stimulation patterns. BIOMATERIALS ADVANCES 2023; 144:213199. [PMID: 36424275 DOI: 10.1016/j.bioadv.2022.213199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 10/30/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Diabetes has become a major public health problem in the world for many years, and it is driving us to probe into its complex mechanism of insulin secretion in pancreatic β cells. The nanoscale resolution characterization of pancreatic β cells in response to glucose led to insights into diverse mechanical and functional processes at the single cell level. Recent advances allowed the direct observations of cytoskeleton dynamics which were quantitatively determined. Here, we firstly performed the glucose stimulation with multiple physiologically relevant glucose patterns. Atomic force microscopy (AFM) produced high spatial resolution mechanical images together with the insulin secretions linking the physical interactions to the biochemical process of INS-1 cells. Altered material properties of the INS-1 cells revealed the regulation of multiple glucose stimulation patterns. Rapidly responded to high glucose (HG), INS-1 cells presented the unique meshing networks of elasticities. The decreases of Young's modulus (YM) and insulin secretion suggested that mechanical changes affected the insulin release. Furthermore, the frequency and gradient of glucose patterns induced nanomechanical and secreting changes of the INS-1 cells and gained the knowledge on the potential controllability of glucose. The relationships between the cellular mechanics and insulin secretion of INS-1 cells could contribute to establish a mechanical cell model for the study of β cells in diabetes. The results also indicated the cell mechanics as promising mechanical biomarkers for β cells, and promoted the understanding of specific mechanical mechanism of glucose regulation, which lighted on the further application of functional glucose regulation in therapy.
Collapse
Affiliation(s)
- Fan Yang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; Jilin Provincial Key Laboratory for Multi-information Nano Detection & Handling of Single Cells, Changchun University of Science and Technology, Changchun 130022, China
| | - Jiajia Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; Jilin Provincial Key Laboratory for Multi-information Nano Detection & Handling of Single Cells, Changchun University of Science and Technology, Changchun 130022, China
| | - Kaige Qu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; Jilin Provincial Key Laboratory for Multi-information Nano Detection & Handling of Single Cells, Changchun University of Science and Technology, Changchun 130022, China
| | - Huimiao Wei
- Changli Nano Biotechnology Ltd, Changchun 130022, China
| | - Zhengxun Song
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; Jilin Provincial Key Laboratory for Multi-information Nano Detection & Handling of Single Cells, Changchun University of Science and Technology, Changchun 130022, China
| | - Hongmei Xu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; Jilin Provincial Key Laboratory for Multi-information Nano Detection & Handling of Single Cells, Changchun University of Science and Technology, Changchun 130022, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; Jilin Provincial Key Laboratory for Multi-information Nano Detection & Handling of Single Cells, Changchun University of Science and Technology, Changchun 130022, China; JR3CN & IRAC, University of Bedfordshire, Luton LU1 3JU, UK.
| | - Yujuan Chen
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; Jilin Provincial Key Laboratory for Multi-information Nano Detection & Handling of Single Cells, Changchun University of Science and Technology, Changchun 130022, China.
| |
Collapse
|
2
|
Creating a Novel Mathematical Model of the Kv10.1 Ion Channel and Controlling Channel Activity with Nanoelectromechanical Systems. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The use of nanoelectromechanical systems or nanorobots offers a new concept for sensing and controlling subcellular structures, such as ion channels. We present here a novel method for mathematical modeling of ion channels based on control system theory and system identification. We investigated the use of nanoelectromechanical devices to control the activity of ion channels, particularly the activity of the voltage-gated ion channel Kv10.1, an important channel in cancer development and progression. A mathematical model of the dynamic behavior of the selected ion channel Kv10.1 in the Laplace (s) domain was developed, which is given in the representation of a transfer function. In addition, we addressed the possibilities of controlling ion channel activity by nanoelectromechanical devices and nanorobots and finally presented a control algorithm for the Kv10.1 as a control object. A use case demonstrates the potential of a Kv10.1 controlled nanorobot for cancer treatment at a single-cell level.
Collapse
|
3
|
Zhang W, Zhang S, Zhang W, Yue Y, Qian W, Wang Z. Matrix stiffness and its influence on pancreatic diseases. Biochim Biophys Acta Rev Cancer 2021; 1876:188583. [PMID: 34139274 DOI: 10.1016/j.bbcan.2021.188583] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 01/12/2023]
Abstract
The matrix stiffness of the extracellular matrix(ECM), which is the slow elastic force on cells, has gradually become investigated. And a higher stiffness could induce changes in cell biological behaviors and activation of internal signaling pathways. Imbalanced stiffness of ECM is associated with a number of diseases, including pancreatic disease. In this review, we discuss the components of the ECM and the increased stiffness caused by unbalanced ECM changes. Next, we describe how matrix stiffness transmits mechanical signals and what signaling pathways are altered within the cell in detail. Finally, we discuss the effect of ECM on the behavior of pancreatic diseases from the perspective of matrix stiffness.
Collapse
Affiliation(s)
- Weifan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi Province, China
| | - Simei Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi Province, China
| | - Wunai Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi Province, China
| | - Yangyang Yue
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi Province, China
| | - Weikun Qian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi Province, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi Province, China.
| |
Collapse
|
4
|
Preedy EC, Perni S, Prokopovich P. Cobalt and titanium nanoparticles influence on mesenchymal stem cell elasticity and turgidity. Colloids Surf B Biointerfaces 2017; 157:146-156. [PMID: 28586727 DOI: 10.1016/j.colsurfb.2017.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/07/2017] [Indexed: 12/13/2022]
Abstract
Bone cells are damaged by wear particles originating from total joint replacement implants. We investigated Mesenchymal stem cells (MSCs) nanomechanical properties when exposed to cobalt and titanium nanoparticles (resembling wear debris) of different sizes for up to 3days using AFM nanoindentation; along with flow-cytometry and MTT assay. The results demonstrated that cells exposed to increasing concentrations of nanoparticles had a lower value of elasticity and spring constant without significant effect on cell metabolic activity and viability but some morphological alteration (bleeping). Cobalt induced greater effects than titanium and this is consistent with the general knowledge of cyto-compatibility of the later. This work demonstrates for the first time that metal nanoparticles do not only influence MSCs enzymes activity but also cell structure; however, they do not result in full membrane damage. Furthermore, the mechanical changes are concentration and particles composition dependent but little influenced by the particle size.
Collapse
Affiliation(s)
| | - Stefano Perni
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Polina Prokopovich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
5
|
Kung ML, Hsieh CW, Tai MH, Weng CH, Wu DC, Wu WJ, Yeh BW, Hsieh SL, Kuo CH, Hung HS, Hsieh S. Nanoscale characterization illustrates the cisplatin-mediated biomechanical changes of B16-F10 melanoma cells. Phys Chem Chem Phys 2016; 18:7124-31. [PMID: 26886764 DOI: 10.1039/c5cp07971c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cells reorganize their membrane biomechanical dynamics in response to environmental stimuli or inhibitors associated with their physiological/pathological processes, and disease therapeutics. To validate the biophysical dynamics during cell exposure to anti-cancer drugs, we investigate the nanoscale biological characterization in melanoma cells undergoing cisplatin treatment. Using atomic force microscopy, we demonstrate that the cellular morphology and membrane ultrastructure are altered after exposure to cisplatin. In contrast to their normal spindle-like shape, cisplatin causes cell deformation rendering cells flat and enlarged, which increases the cell area by 3-4 fold. Additionally, cisplatin decreases the topography height values for both the cytoplasmic and nuclear regions (by 40-80% and 60%, respectively). Furthermore, cisplatin increases the cytoplasmic root mean square roughness by 110-240% in correlation with the drug concentration and attenuates the nuclear RMS by 60%. Moreover, the cellular adhesion force was enhanced, while the Young's modulus elasticity was attenuated by ∼2 and ∼2.3 fold, respectively. F-actin phalloidin staining revealed that cisplatin enlarges the cell size through enhanced stress fiber formation and promotes cytoskeletal reorganization. Immunoblot analyses further revealed that the activities of focal adhesion proteins, such as FAK and c-Src, are upregulated by cisplatin through phosphorylation at tyrosine 397 and 530, respectively. Collectively, these results show that cisplatin-treated melanoma cells not only exhibit the upregulation of FAK-mediated signaling to enhance the cytoskeleton mechanical stretch, but also promote the cytoskeletal rearrangement resulting in 43% decrease in the cell modulus. These mechanisms thus promote the malignancy and invasiveness of the melanoma cells.
Collapse
Affiliation(s)
- Mei-Lang Kung
- Department of Chemistry, National Sun Yat-sen University, 70 Lien-hai Rd., Kaohsiung 80424, Taiwan.
| | - Chiung-Wen Hsieh
- Department of Chemistry, National Sun Yat-sen University, 70 Lien-hai Rd., Kaohsiung 80424, Taiwan.
| | - Ming-Hong Tai
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan and Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan and Center for Neuroscience, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan and Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chien-Hui Weng
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Deng-Chyang Wu
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan and Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80708, Taiwan
| | - Wen-Jeng Wu
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Bi-Wen Yeh
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung 80811, Taiwan
| | - Chao-Hung Kuo
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan and Department of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Huey-Shan Hung
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan and Center for Neuropsychiatry, China Medical University Hospital, Taichung 40402, Taiwan
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-sen University, 70 Lien-hai Rd., Kaohsiung 80424, Taiwan. and Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
6
|
Park S, Bastatas L, Matthews J, Lee YJ. Mechanical responses of cancer cells on nanoscaffolds for adhesion size control. Macromol Biosci 2015; 15:851-60. [PMID: 25761154 DOI: 10.1002/mabi.201400504] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/03/2015] [Indexed: 01/15/2023]
Abstract
A mechano-reciprocal interaction plays a critical role for cancer cells searching for favorable metastasis sites. For this study, we utilized nanoscaffolds that can control the maturation of focal adhesions in order to investigate how cancer cells mechanically respond to their nanoenvironments. We found that prostate cancer cells showed linearly decreasing proliferation rate and mechanical stiffness as the size of nanoislands on nanoscaffolds where the cells were grown decreases. This mechanical signature was exacerbated for less metastatic prostate cancer cells. However, there was no dependence of mechanical responses on the geometric properties of nanoscaffolds for breast cancer cells, despite the acute inhibition of adhesion and the abrupt mechanical changes. We believe that our holistic approach that utilizes atomic force microscopy (AFM) and nanoscaffolds can reveal which mechano-reciprocal interactions are crucial for metastasis and, thus, provide useful information for anti-cancer drug development targeting integrin-associated signaling.
Collapse
Affiliation(s)
- Soyeun Park
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu, 704-701, Republic of Korea.
| | - Lyndon Bastatas
- Department of Physics, Texas Tech University, Box 41051, Lubbock, Texas, 79409, USA
| | - James Matthews
- Department of Physics, Texas Tech University, Box 41051, Lubbock, Texas, 79409, USA
| | - Yong Joong Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu, 704-701, Republic of Korea. .,School of Mechanical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 702-701, Republic of Korea.
| |
Collapse
|
7
|
Haghi M, Traini D, Wood LG, Oliver B, Young PM, Chrzanowski W. A 'soft spot' for drug transport: modulation of cell stiffness using fatty acids and its impact on drug transport in lung model. J Mater Chem B 2015; 3:2583-2589. [PMID: 32262905 DOI: 10.1039/c4tb01928h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The impact of a polyunsaturated fatty acid, arachidonic acid (AA), on membrane fluidity of epithelial cells and subsequent modulation of the drug transport was investigated. Membrane fluidity was assessed using molecular force microscopy. Calu-3 human bronchial epithelial cells were cultured on Transwell® inserts and the cell stiffness was assessed in the absence of fatty acids or in the presence of 30 μM AA. The morphology of the epithelial cells was distinctly different when AA was present, with the cell monolayer becoming more uniform. Furthermore the cell stiffness and variation in stiffness was lower in the presence of AA. In the fat-free medium, the median cell stiffness was 9.1 kPa which dropped to 2.1 kPa following exposure to AA. To further study this, transport of a common β2-agonist, salbutamol sulphate (SS) was measured in the presence of AA and in a fat free medium. The transport of SS was significantly higher when AA was present (0.61 ± 0.09 μg versus 0.11 ± 0.003 μg with and without AA respectively). It was evidenced that AA play a vital role in cell membrane fluidity and drug transport. This finding highlights the significance of the dietary fatty acids in transport and consequentially effectiveness of medications used to treat pulmonary diseases such as asthma.
Collapse
Affiliation(s)
- Mehra Haghi
- Woolcock Institute of Medical Research, The University of Sydney, NSW 2037, Australia
| | | | | | | | | | | |
Collapse
|
8
|
Fang Y, Iu CYY, Lui CNP, Zou Y, Fung CKM, Li HW, Xi N, Yung KKL, Lai KWC. Investigating dynamic structural and mechanical changes of neuroblastoma cells associated with glutamate-mediated neurodegeneration. Sci Rep 2014; 4:7074. [PMID: 25399549 PMCID: PMC4233341 DOI: 10.1038/srep07074] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/29/2014] [Indexed: 12/22/2022] Open
Abstract
Glutamate-mediated neurodegeneration resulting from excessive activation of glutamate receptors is recognized as one of the major causes of various neurological disorders such as Alzheimer's and Huntington's diseases. However, the underlying mechanisms in the neurodegenerative process remain unidentified. Here, we investigate the real-time dynamic structural and mechanical changes associated with the neurodegeneration induced by the activation of N-methyl-D-aspartate (NMDA) receptors (a subtype of glutamate receptors) at the nanoscale. Atomic force microscopy (AFM) is employed to measure the three-dimensional (3-D) topography and mechanical properties of live SH-SY5Y cells under stimulus of NMDA receptors. A significant increase in surface roughness and stiffness of the cell is observed after NMDA treatment, which indicates the time-dependent neuronal cell behavior under NMDA-mediated neurodegeneration. The present AFM based study further advance our understanding of the neurodegenerative process to elucidate the pathways and mechanisms that govern NMDA induced neurodegeneration, so as to facilitate the development of novel therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuqiang Fang
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | | | - Cathy N. P. Lui
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Yukai Zou
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
| | | | - Hung Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Ning Xi
- Michigan State University, East Lansing, USA
| | - Ken K. L. Yung
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
| | - King W. C. Lai
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
9
|
Probing for chemotherapy-induced peripheral neuropathy in live dorsal root ganglion neurons with atomic force microscopy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1323-33. [DOI: 10.1016/j.nano.2014.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 02/21/2014] [Accepted: 03/02/2014] [Indexed: 12/18/2022]
|
10
|
Patterson K, Yang R, Zeng B, Song B, Wang S, Xi N, Basson M. Measurement of cationic and intracellular modulation of integrin binding affinity by AFM-based nanorobot. Biophys J 2013; 105:40-47. [PMID: 23823222 PMCID: PMC3699737 DOI: 10.1016/j.bpj.2013.05.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/12/2013] [Accepted: 05/30/2013] [Indexed: 11/23/2022] Open
Abstract
Integrins are dynamic transmembrane cation-dependent heterodimers that both anchor cells in position and transduce signals into and out of cells. We used an atomic force microscope (AFM)-based nanorobotic system to measure integrin-binding forces in intact human intestinal epithelial Caco-2 cells. The AFM-based nanorobot enables human-directed, high-accuracy probe positioning and site-specific investigations. Functionalizing the AFM probe with an arginine-glycine-aspartate (RGD)-containing sequence (consensus binding sequence for integrins) allowed us to detect a series of peptide-cell membrane interactions with a median binding force of 115.1 ± 4.9 pN that were not detected in control interactions. Chelating divalent cations from the culture medium abolished these interactions, as did inhibiting intracellular focal adhesion kinase (FAK) using Y15. Adding 1 mM Mg(2+) to the medium caused a rightward shift in the force-binding curve. Adding 1 mM Ca(2+) virtually abolished the RGD-membrane specific interactions and blocked the Mg(2+) effects. Cell adhesion assays demonstrated parallel effects of divalent cations and the FAK inhibitor on cell adhesion. These results demonstrate direct modulation of integrin-binding affinity by both divalent cations and intracellular signal inhibition. Additionally, three binding states (nonspecific, specific inactivated, and specific activated) were delineated from affinity measurements. Although other research has assumed that this process of integrin conformational change causes altered ligand binding, in this work we directly measured these three states in individual integrins in a physiologically based study.
Collapse
Affiliation(s)
- Kevin C. Patterson
- College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Ruiguo Yang
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan
| | - Bixi Zeng
- College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Bo Song
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan
| | - Shouye Wang
- Department of Surgery, Michigan State University, East Lansing, Michigan
| | - Ning Xi
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan
| | - Marc D. Basson
- Department of Surgery, Michigan State University, East Lansing, Michigan
| |
Collapse
|