1
|
Rogova VV, Peev S, Yotsova R, Gerova-Vatsova T, Parushev I. Histomorphometric Assessment of Non-Decalcified Plastic-Embedded Specimens for Evaluation of Bone Regeneration Using Bone Substitute Materials-A Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2024; 18:119. [PMID: 39795764 PMCID: PMC11722015 DOI: 10.3390/ma18010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
With the implementation of bone substitute materials, regeneration strategies have inevitably evolved over the years. Histomorphometry is the optimal means of quantitative evaluation of bone structure and morphology. This systematic review focuses on determining study models, staining methods and histomorphometric parameters used for bone regeneration research on non-decalcified plastic-embedded specimens over the last 10 years. After being subjected to the inclusion and exclusion criteria, 118 studies were included in this review. The results establish the most commonly selected animal model is rat, followed by rabbit, sheep and dog. Strong preference for staining samples with toluidine blue was noted. With regard to histomorphometric parameters, terms related to bone were most frequently assessed, amounting to almost half of recorded parameters. New bone formation was the main descriptor of this category. Residual bone graft and non-bone tissue parameters were also often evaluated. With regard to dynamic histomorphometry, mineral apposition rate (MAR) was the parameter of choice for most researchers, with calcein green being the preferred dye for fluorochrome labelling. An overview of the contemporary literature, as well as weaknesses in the current research protocols have been discussed.
Collapse
Affiliation(s)
- Varvara-Velika Rogova
- Department of Oral Surgery, Faculty of Dental Medicine, Medical University of Varna, 9002 Varna, Bulgaria;
| | - Stefan Peev
- Department of Periodontology and Dental Implantology, Faculty of Dental Medicine, Medical University of Varna, 9002 Varna, Bulgaria; (S.P.); (T.G.-V.)
| | - Ralitsa Yotsova
- Department of Oral Surgery, Faculty of Dental Medicine, Medical University of Varna, 9002 Varna, Bulgaria;
| | - Tsvetalina Gerova-Vatsova
- Department of Periodontology and Dental Implantology, Faculty of Dental Medicine, Medical University of Varna, 9002 Varna, Bulgaria; (S.P.); (T.G.-V.)
| | - Ivaylo Parushev
- Department of Clinical Medical Sciences, Faculty of Dental Medicine, Medical University of Varna, 9002 Varna, Bulgaria;
| |
Collapse
|
2
|
Farjaminejad S, Farjaminejad R, Garcia-Godoy F. Nanoparticles in Bone Regeneration: A Narrative Review of Current Advances and Future Directions in Tissue Engineering. J Funct Biomater 2024; 15:241. [PMID: 39330217 PMCID: PMC11432802 DOI: 10.3390/jfb15090241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/28/2024] Open
Abstract
The rising demand for effective bone regeneration has underscored the limitations of traditional methods like autografts and allografts, including donor site morbidity and insufficient biological signaling. This review examines nanoparticles (NPs) in tissue engineering (TE) to address these challenges, evaluating polymers, metals, ceramics, and composites for their potential to enhance osteogenesis and angiogenesis by mimicking the extracellular matrix (ECM) nanostructure. The methods involved synthesizing and characterizing nanoparticle-based scaffoldsand integrating hydroxyapatite (HAp) with polymers to enhance mechanical properties and osteogenic potential. The results showed that these NPs significantly promote cell growth, differentiation, and bone formation, with carbon-based NPs like graphene and carbon nanotubes showing promise. NPs offer versatile, biocompatible, and customizable scaffolds that enhance drug delivery and support bone repair. Despite promising results, challenges with cytotoxicity, biodistribution, and immune responses remain. Addressing these issues through surface modifications and biocompatible molecules can improve the biocompatibility and efficacy of nanomaterials. Future research should focus on long-term in vivo studies to assess the safety and efficacy of NP-based scaffolds and explore synergistic effects with other bioactive molecules or growth factors. This review underscores the transformative potential of NPs in advancing BTE and calls for further research to optimize these technologies for clinical applications.
Collapse
Affiliation(s)
- Samira Farjaminejad
- School of Health and Psychological Sciences, Department of Health Services Research and Management, City University of London, London WC1E 7HU, UK
| | - Rosana Farjaminejad
- School of Health and Psychological Sciences, Department of Health Services Research and Management, City University of London, London WC1E 7HU, UK
| | - Franklin Garcia-Godoy
- Department of Bioscience Research, Bioscience Research Center, College of Dentistry, University of Tennessee Health Science Center, 875 Union Avenue, Memphis, TN 38163, USA
| |
Collapse
|
3
|
Santos-Beato P, Midha S, Pitsillides AA, Miller A, Torii R, Kalaskar DM. Biofabrication of the osteochondral unit and its applications: Current and future directions for 3D bioprinting. J Tissue Eng 2022; 13:20417314221133480. [PMID: 36386465 PMCID: PMC9643769 DOI: 10.1177/20417314221133480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/30/2022] [Indexed: 07/20/2023] Open
Abstract
Multiple prevalent diseases, such as osteoarthritis (OA), for which there is no cure or full understanding, affect the osteochondral unit; a complex interface tissue whose architecture, mechanical nature and physiological characteristics are still yet to be successfully reproduced in vitro. Although there have been multiple tissue engineering-based approaches to recapitulate the three dimensional (3D) structural complexity of the osteochondral unit, there are various aspects that still need to be improved. This review presents the different pre-requisites necessary to develop a human osteochondral unit construct and focuses on 3D bioprinting as a promising manufacturing technique. Examples of 3D bioprinted osteochondral tissues are reviewed, focusing on the most used bioinks, chosen cell types and growth factors. Further information regarding the applications of these 3D bioprinted tissues in the fields of disease modelling, drug testing and implantation is presented. Finally, special attention is given to the limitations that currently hold back these 3D bioprinted tissues from being used as models to investigate diseases such as OA. Information regarding improvements needed in bioink development, bioreactor use, vascularisation and inclusion of additional tissues to further complete an OA disease model, are presented. Overall, this review gives an overview of the evolution in 3D bioprinting of the osteochondral unit and its applications, as well as further illustrating limitations and improvements that could be performed explicitly for disease modelling.
Collapse
Affiliation(s)
| | - Swati Midha
- Kennedy Institute of Rheumatology,
University of Oxford, Oxford, UK
| | | | - Aline Miller
- Department of Chemical Engineering,
University of Manchester, Manchester, UK
| | - Ryo Torii
- Department of Mechanical Engineering,
University College London, London, UK
| | - Deepak M Kalaskar
- Institute of Orthopaedics and
Musculoskeletal Science, Division of Surgery & Interventional Science,
University College London (UCL), UK
| |
Collapse
|
4
|
Erezuma I, Eufrasio‐da‐Silva T, Golafshan N, Deo K, Mishra YK, Castilho M, Gaharwar AK, Leeuwenburgh S, Dolatshahi‐Pirouz A, Orive G. Nanoclay Reinforced Biomaterials for Mending Musculoskeletal Tissue Disorders. Adv Healthc Mater 2021; 10:e2100217. [PMID: 34185438 DOI: 10.1002/adhm.202100217] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/10/2021] [Indexed: 12/11/2022]
Abstract
Nanoclay-reinforced biomaterials have sparked a new avenue in advanced healthcare materials that can potentially revolutionize treatment of musculoskeletal defects. Native tissues display many important chemical, mechanical, biological, and physical properties that engineered biomaterials need to mimic for optimal tissue integration and regeneration. However, it is time-consuming and difficult to endow such combinatorial properties on materials via feasible and nontoxic procedures. Fortunately, a number of nanomaterials such as graphene, carbon nanotubes, MXenes, and nanoclays already display a plethora of material properties that can be transferred to biomaterials through a simple incorporation procedure. In this direction, the members of the nanoclay family are easy to functionalize chemically, they can significantly reinforce the mechanical performance of biomaterials, and can provide bioactive properties by ionic dissolution products to upregulate cartilage and bone tissue formation. For this reason, nanoclays can become a key component for future orthopedic biomaterials. In this review, we specifically focus on the rapidly decreasing gap between clinic and laboratory by highlighting their application in a number of promising in vivo studies.
Collapse
Affiliation(s)
- Itsasne Erezuma
- NanoBioCel Group Laboratory of Pharmaceutics School of Pharmacy University of the Basque Country (UPV/EHU) Paseo de la Universidad 7 Vitoria‐Gasteiz 01006 Spain
- Bioaraba NanoBioCel Research Group Vitoria‐Gasteiz 01009 Spain
| | - Tatiane Eufrasio‐da‐Silva
- Department of Dentistry – Regenerative Biomaterials Radboud University Medical Center Radboud Institute for Molecular Life Sciences Nijmegen 6525 The Netherlands
| | - Nasim Golafshan
- Department of Orthopedics University Medical Center Utrecht Utrecht GA 3584 the Netherlands
- Regenerative Medicine Utrecht Utrecht 3584 the Netherlands
| | - Kaivalya Deo
- Department of Biomedical Engineering College of Engineering Texas A&M University College Station TX‐77843 USA
| | - Yogendra Kumar Mishra
- Mads Clausen Institute NanoSYD University of Southern Denmark Alsion 2 Sønderborg 6400 Denmark
| | - Miguel Castilho
- Department of Orthopedics University Medical Center Utrecht Utrecht GA 3584 the Netherlands
- Regenerative Medicine Utrecht Utrecht 3584 the Netherlands
- Department of Biomedical Engineering Eindhoven University of Technology Eindhoven MB 5600 The Netherlands
| | - Akhilesh K. Gaharwar
- Department of Biomedical Engineering College of Engineering Texas A&M University College Station TX‐77843 USA
- Material Science and Engineering College of Engineering Texas A&M University College Station TX 77843 USA
- Center for Remote Health Technologies and Systems Texas A&M University College Station TX 77843 USA
- Interdisciplinary Graduate Program in Genetics Texas A&M University College Station TX‐77843 USA
| | - Sander Leeuwenburgh
- Department of Biomaterials Radboud University Medical Center Philips van Leydenlaan 25 Nijmegen 6525 EX the Netherlands
| | - Alireza Dolatshahi‐Pirouz
- Department of Dentistry – Regenerative Biomaterials Radboud University Medical Center Radboud Institute for Molecular Life Sciences Nijmegen 6525 The Netherlands
- Department of Health Technology Center for Intestinal Absorption and Transport of Biopharmaceuticals Technical University of Denmark Sønderborg 2800 Kgs Denmark
| | - Gorka Orive
- NanoBioCel Group Laboratory of Pharmaceutics School of Pharmacy University of the Basque Country (UPV/EHU) Paseo de la Universidad 7 Vitoria‐Gasteiz 01006 Spain
- Bioaraba NanoBioCel Research Group Vitoria‐Gasteiz 01009 Spain
- Biomedical Research Networking Centre in Bioengineering Biomaterials and Nanomedicine (CIBER‐BBN) Vitoria‐Gasteiz 01006 Spain
- University Institute for Regenerative Medicine and Oral Implantology – UIRMI (UPV/EHU‐Fundación Eduardo Anitua) Vitoria 01007 Spain
- Singapore Eye Research Institute The Academia, 20 College Road, Discovery Tower Singapore 169856 Singapore
| |
Collapse
|
5
|
Pazarçeviren AE, Dikmen T, Altunbaş K, Yaprakçı V, Erdemli Ö, Keskin D, Tezcaner A. Composite clinoptilolite/PCL‐PEG‐PCL scaffolds for bone regeneration: In vitro and in vivo evaluation. J Tissue Eng Regen Med 2019; 14:3-15. [DOI: 10.1002/term.2938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/24/2019] [Accepted: 07/09/2019] [Indexed: 11/09/2022]
Affiliation(s)
| | - Tayfun Dikmen
- Department of Histology and EmbryologyAfyon Kocatepe University Afyon Turkey
| | - Korhan Altunbaş
- Department of Histology and EmbryologyAfyon Kocatepe University Afyon Turkey
| | | | - Özge Erdemli
- Department of Molecular Biology and GeneticsBaşkent University Ankara Turkey
| | - Dilek Keskin
- Department of Engineering SciencesMiddle East Technical University Ankara Turkey
- Center of Excellence in Biomaterials and Tissue EngineeringMiddle East Technical University Ankara Turkey
| | - Ayşen Tezcaner
- Department of Engineering SciencesMiddle East Technical University Ankara Turkey
- Center of Excellence in Biomaterials and Tissue EngineeringMiddle East Technical University Ankara Turkey
| |
Collapse
|
6
|
Zidek J, Vojtova L, Abdel-Mohsen AM, Chmelik J, Zikmund T, Brtnikova J, Jakubicek R, Zubal L, Jan J, Kaiser J. Accurate micro-computed tomography imaging of pore spaces in collagen-based scaffold. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:110. [PMID: 27153826 DOI: 10.1007/s10856-016-5717-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/09/2016] [Indexed: 06/05/2023]
Abstract
In this work we have used X-ray micro-computed tomography (μCT) as a method to observe the morphology of 3D porous pure collagen and collagen-composite scaffolds useful in tissue engineering. Two aspects of visualizations were taken into consideration: improvement of the scan and investigation of its sensitivity to the scan parameters. Due to the low material density some parts of collagen scaffolds are invisible in a μCT scan. Therefore, here we present different contrast agents, which increase the contrast of the scanned biopolymeric sample for μCT visualization. The increase of contrast of collagenous scaffolds was performed with ceramic hydroxyapatite microparticles (HAp), silver ions (Ag(+)) and silver nanoparticles (Ag-NPs). Since a relatively small change in imaging parameters (e.g. in 3D volume rendering, threshold value and μCT acquisition conditions) leads to a completely different visualized pattern, we have optimized these parameters to obtain the most realistic picture for visual and qualitative evaluation of the biopolymeric scaffold. Moreover, scaffold images were stereoscopically visualized in order to better see the 3D biopolymer composite scaffold morphology. However, the optimized visualization has some discontinuities in zoomed view, which can be problematic for further analysis of interconnected pores by commonly used numerical methods. Therefore, we applied the locally adaptive method to solve discontinuities issue. The combination of contrast agent and imaging techniques presented in this paper help us to better understand the structure and morphology of the biopolymeric scaffold that is crucial in the design of new biomaterials useful in tissue engineering.
Collapse
Affiliation(s)
- Jan Zidek
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200, Brno, Czech Republic.
| | - Lucy Vojtova
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200, Brno, Czech Republic
- SCITEG, a.s., Brno, Czech Republic
| | - A M Abdel-Mohsen
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200, Brno, Czech Republic
- Textile Research Division, National Research Centre, El-Buhouth St, P.O. Box 12311, Cairo, Egypt
| | - Jiri Chmelik
- Institute of Biomedical Engineering, FEEC, Brno University of Technology, Technicka 12, 61600, Brno, Czech Republic
| | - Tomas Zikmund
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200, Brno, Czech Republic
| | - Jana Brtnikova
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200, Brno, Czech Republic
| | - Roman Jakubicek
- Institute of Biomedical Engineering, FEEC, Brno University of Technology, Technicka 12, 61600, Brno, Czech Republic
| | - Lukas Zubal
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200, Brno, Czech Republic
| | - Jiri Jan
- Institute of Biomedical Engineering, FEEC, Brno University of Technology, Technicka 12, 61600, Brno, Czech Republic
| | - Jozef Kaiser
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200, Brno, Czech Republic
| |
Collapse
|
7
|
Osteoconductive composite graft based on bacterial synthesized hydroxyapatite nanoparticles doped with different ions: From synthesis to in vivo studies. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1387-95. [PMID: 26956413 DOI: 10.1016/j.nano.2016.01.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 11/22/2022]
Abstract
To repair damaged bone tissues, osteoconductive bone graft substitutes are required for enhancement of the regenerative potential of osteoblast cells. Nanostructured hydroxyapatite is a bioactive ceramic used for bone tissue engineering purposes. In this study, carbonate hydroxyapatite (cHA) and zinc-magnesium substituted hydroxyapatite (Zn-Mg-HA) nanoparticles were synthesized via biomineralization method using Enterobacter aerogenes. The structural phase composition and the morphology of the samples were analyzed using appropriate powder characterization methods. Next, a composite graft was fabricated by using polyvinyl alcohol and both cHA and Zn-Mg-HA samples. In vivo osteogenic potential of the graft was then investigated in a rabbit tibial osteotomy model. Histological, radiological and morphological studies showed that the graft was mineralized by the newly formed bone tissue without signs of inflammation or infection after 4 weeks of implantation. These histomorphometric results suggest that the fabricated graft can function as a potent osteoconductive bone tissue substitute.
Collapse
|