1
|
Liu S, Chen X, Yu M, Li J, Liu J, Xie Z, Gao F, Liu Y. Applications of Titanium Dioxide Nanostructure in Stomatology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123881. [PMID: 35745007 PMCID: PMC9229536 DOI: 10.3390/molecules27123881] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Breakthroughs in the field of nanotechnology, especially in nanochemistry and nanofabrication technologies, have been attracting much attention, and various nanomaterials have recently been developed for biomedical applications. Among these nanomaterials, nanoscale titanium dioxide (nano-TiO2) has been widely valued in stomatology due to the fact of its excellent biocompatibility, antibacterial activity, and photocatalytic activity as well as its potential use for applications such as dental implant surface modification, tissue engineering and regenerative medicine, drug delivery carrier, dental material additives, and oral tumor diagnosis and treatment. However, the biosafety of nano-TiO2 is controversial and has become a key constraint in the development of nano-TiO2 applications in stomatology. Therefore, in this review, we summarize recent research regarding the applications of nano-TiO2 in stomatology, with an emphasis on its performance characteristics in different fields, and evaluations of the biological security of nano-TiO2 applications. In addition, we discuss the challenges, prospects, and future research directions regarding applications of nano-TiO2 in stomatology that are significant and worthy of further exploration.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Xingzhu Chen
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Mingyue Yu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Jianing Li
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Jinyao Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Zunxuan Xie
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Fengxiang Gao
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130000, China
- Correspondence: (F.G.); (Y.L.); Tel.: +86-13756189633 (F.G.); +86-13756466950 (Y.L.)
| | - Yuyan Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
- Correspondence: (F.G.); (Y.L.); Tel.: +86-13756189633 (F.G.); +86-13756466950 (Y.L.)
| |
Collapse
|
2
|
Ebrahimi M, Botelho M, Lu W, Monmaturapoj N. Development of nanocomposite collagen/
HA
/
β‐TCP
scaffolds with tailored gradient porosity and permeability using vitamin E. J Biomed Mater Res A 2020; 108:2379-2394. [DOI: 10.1002/jbm.a.36990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/28/2020] [Accepted: 04/04/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Mehdi Ebrahimi
- Restorative Dental Sciences, Prince Philip Dental Hospital The University of Hong Kong Hong Kong
| | - Michael Botelho
- Restorative Dental Sciences, Prince Philip Dental Hospital The University of Hong Kong Hong Kong
| | - William Lu
- Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong
| | | |
Collapse
|
3
|
Amiryaghoubi N, Fathi M, Pesyan NN, Samiei M, Barar J, Omidi Y. Bioactive polymeric scaffolds for osteogenic repair and bone regenerative medicine. Med Res Rev 2020; 40:1833-1870. [PMID: 32301138 DOI: 10.1002/med.21672] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/12/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022]
Abstract
The loss of bone tissue is a striking challenge in orthopedic surgery. Tissue engineering using various advanced biofunctional materials is considered a promising approach for the regeneration and substitution of impaired bone tissues. Recently, polymeric supportive scaffolds and biomaterials have been used to rationally promote the generation of new bone tissues. To restore the bone tissue in this context, biofunctional polymeric materials with significant mechanical robustness together with embedded materials can act as a supportive matrix for cellular proliferation, adhesion, and osteogenic differentiation. The osteogenic regeneration to replace defective tissues demands greater calcium deposits, high alkaline phosphatase activity, and profound upregulation of osteocalcin as a late osteogenic marker. Ideally, the bioactive polymeric scaffolds (BPSs) utilized for bone tissue engineering should impose no detrimental impacts and function as a carrier for the controlled delivery and release of the loaded molecules necessary for the bone tissue regeneration. In this review, we provide comprehensive insights into different synthetic and natural polymers used for the regeneration of bone tissue and discuss various technologies applied for the engineering of BPSs and their physicomechanical properties and biological effects.
Collapse
Affiliation(s)
- Nazanin Amiryaghoubi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Noroozi Pesyan
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Mohammad Samiei
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Santos-Rosales V, Iglesias-Mejuto A, García-González CA. Solvent-Free Approaches for the Processing of Scaffolds in Regenerative Medicine. Polymers (Basel) 2020; 12:E533. [PMID: 32131405 PMCID: PMC7182956 DOI: 10.3390/polym12030533] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 01/12/2023] Open
Abstract
The regenerative medicine field is seeking novel strategies for the production of synthetic scaffolds that are able to promote the in vivo regeneration of a fully functional tissue. The choices of the scaffold formulation and the manufacturing method are crucial to determine the rate of success of the graft for the intended tissue regeneration process. On one hand, the incorporation of bioactive compounds such as growth factors and drugs in the scaffolds can efficiently guide and promote the spreading, differentiation, growth, and proliferation of cells as well as alleviate post-surgical complications such as foreign body responses and infections. On the other hand, the manufacturing method will determine the feasible morphological properties of the scaffolds and, in certain cases, it can compromise their biocompatibility. In the case of medicated scaffolds, the manufacturing method has also a key effect in the incorporation yield and retained activity of the loaded bioactive agents. In this work, solvent-free methods for scaffolds production, i.e., technological approaches leading to the processing of the porous material with no use of solvents, are presented as advantageous solutions for the processing of medicated scaffolds in terms of efficiency and versatility. The principles of these solvent-free technologies (melt molding, 3D printing by fused deposition modeling, sintering of solid microspheres, gas foaming, and compressed CO2 and supercritical CO2-assisted foaming), a critical discussion of advantages and limitations, as well as selected examples for regenerative medicine purposes are herein presented.
Collapse
Affiliation(s)
| | | | - Carlos A. García-González
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma group (GI-1645), Faculty of Pharmacy, Health Research Institute of Santiago de Compostela (IDIS), Agrupación Estratégica de Materiales (AeMAT), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain; (V.S.-R.); (A.I.-M.)
| |
Collapse
|
5
|
Sardelli L, Pacheco DP, Zorzetto L, Rinoldi C, Święszkowski W, Petrini P. Engineering biological gradients. J Appl Biomater Funct Mater 2019; 17:2280800019829023. [PMID: 30803308 DOI: 10.1177/2280800019829023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Biological gradients profoundly influence many cellular activities, such as adhesion, migration, and differentiation, which are the key to biological processes, such as inflammation, remodeling, and tissue regeneration. Thus, engineered structures containing bioinspired gradients can not only support a better understanding of these phenomena, but also guide and improve the current limits of regenerative medicine. In this review, we outline the challenges behind the engineering of devices containing chemical-physical and biomolecular gradients, classifying them according to gradient-making methods and the finalities of the systems. Different manufacturing processes can generate gradients in either in-vitro systems or scaffolds, which are suitable tools for the study of cellular behavior and for regenerative medicine; within these, rapid prototyping techniques may have a huge impact on the controlled production of gradients. The parallel need to develop characterization techniques is addressed, underlining advantages and weaknesses in the analysis of both chemical and physical gradients.
Collapse
Affiliation(s)
- L Sardelli
- 1 Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - D P Pacheco
- 1 Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - L Zorzetto
- 2 Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium
| | - C Rinoldi
- 3 Faculty of Materials Science and Engineering, Warsaw University of Technology, Poland
| | - W Święszkowski
- 3 Faculty of Materials Science and Engineering, Warsaw University of Technology, Poland
| | - P Petrini
- 1 Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
6
|
Rasoulianboroujeni M, Fahimipour F, Shah P, Khoshroo K, Tahriri M, Eslami H, Yadegari A, Dashtimoghadam E, Tayebi L. Development of 3D-printed PLGA/TiO 2 nanocomposite scaffolds for bone tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:105-113. [PMID: 30606516 PMCID: PMC6388694 DOI: 10.1016/j.msec.2018.10.077] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 09/01/2018] [Accepted: 10/22/2018] [Indexed: 01/20/2023]
Abstract
Porous scaffolds were 3D-printed using poly lactic-co-glycolic acid (PLGA)/TiO2 composite (10:1 weight ratio) for bone tissue engineering applications. Addition of TiO2 nanoparticles improved the compressive modulus of scaffolds. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) revealed an increase in both glass transition temperature and thermal decomposition onset of the composite compared to pure PLGA. Furthermore, addition of TiO2 was found to enhance the wettability of the surface evidenced by reducing the contact angle from 90.5 ± 3.2 to 79.8 ± 2.4 which is in favor of cellular attachment and activity. The obtained results revealed that PLGA/TiO2 scaffolds significantly improved osteoblast proliferation compared to pure PLGA (p < 0.05). Furthermore, osteoblasts cultured on PLGA/TiO2 nanocomposite showed significantly higher ALP activity and improved calcium secretion compared to pure PLGA scaffolds (p < 0.05).
Collapse
Affiliation(s)
| | - F Fahimipour
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - P Shah
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - K Khoshroo
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - M Tahriri
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - H Eslami
- Department of Biomedical Engineering, Haeri University, Yazd, Iran
| | - A Yadegari
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - E Dashtimoghadam
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - L Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA.
| |
Collapse
|
7
|
Rasoulianboroujeni M, Kiaie N, Tabatabaei FS, Yadegari A, Fahimipour F, Khoshroo K, Tayebi L. Dual Porosity Protein-based Scaffolds with Enhanced Cell Infiltration and Proliferation. Sci Rep 2018; 8:14889. [PMID: 30291271 PMCID: PMC6173780 DOI: 10.1038/s41598-018-33245-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/20/2018] [Indexed: 11/09/2022] Open
Abstract
3D dual porosity protein-based scaffolds have been developed using the combination of foaming and freeze-drying. The suggested approach leads to the production of large, highly porous scaffolds with negligible shrinkage and deformation compared to the conventional freeze-drying method. Scanning electron microscopy, standard histological processing and mercury intrusion porosimetry confirmed the formation of a dual network in the form of big primary pores (243 ± 14 µm) embracing smaller secondary pores (42 ± 3 µm) opened onto their surface, resembling a vascular network. High interconnectivity of the pores, confirmed by micro-CT, is shown to improve diffusion kinetics and support a relatively uniform distribution of isolated human dental pulp stem cells within the scaffold compared to conventional scaffolds. Dual network scaffolds indicate more than three times as high cell proliferation capability as conventional scaffolds in 14 days.
Collapse
Affiliation(s)
- Morteza Rasoulianboroujeni
- Marquette University School of Dentistry, Milwaukee, WI, USA.
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
| | - Nasim Kiaie
- Department of Tissue Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Fahimeh Sadat Tabatabaei
- Marquette University School of Dentistry, Milwaukee, WI, USA
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Yadegari
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | | | - Kimia Khoshroo
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA.
| |
Collapse
|
8
|
Monico MD, Tahriri M, Fahmy MD, Ghassemi H, Vashaee D, Tayebi L. Cartilage and facial muscle tissue engineering and regeneration: a mini review. Biodes Manuf 2018. [DOI: 10.1007/s42242-018-0011-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Tayebi L, Rasoulianboroujeni M, Moharamzadeh K, Almela TKD, Cui Z, Ye H. 3D-printed membrane for guided tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 29519424 DOI: 10.1016/j.msec.2017.11.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Three-dimensional (3D) printing is currently being intensely studied for a diverse set of applications, including the development of bioengineered tissues, as well as the production of functional biomedical materials and devices for dental and orthopedic applications. The aim of this study was to develop and characterize a 3D-printed hybrid construct that can be potentially suitable for guided tissue regeneration (GTR). For this purpose, the rheology analyses have been performed on different bioinks and a specific solution comprising 8% gelatin, 2% elastin and 0.5% sodium hyaluronate has been selected as the most suitable composition for printing a structured membrane for GTR application. Each membrane is composed of 6 layers with strand angles from the first layer to the last layer of 45, 135, 0, 90, 0 and 90°. Confirmed by 3D Laser Measuring imaging, the membrane has small pores on one side and large pores on the other to be able to accommodate different cells like osteoblasts, fibroblasts and keratinocytes on different sides. The ultimate cross-linked product is a 150μm thick flexible and bendable membrane with easy surgical handling. Static and dynamic mechanical testing revealed static tensile modules of 1.95±0.55MPa and a dynamic tensile storage modulus of 314±50kPa. Through seeding the membranes with fibroblast and keratinocyte cells, the results of in vitro tests, including histological analysis, tissue viability examinations and DAPI staining, indicated that the membrane has desirable in vitro biocompatibility. The membrane has demonstrated the barrier function of a GTR membrane by thorough separation of the oral epithelial layer from the underlying tissues. In conclusion, we have characterized a biocompatible and bio-resorbable 3D-printed structured gelatin/elastin/sodium hyaluronate membrane with optimal biostability, mechanical strength and surgical handling characteristics in terms of suturability for potential application in GTR procedures.
Collapse
Affiliation(s)
- Lobat Tayebi
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK; Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | | | - Keyvan Moharamzadeh
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| | - Thafar K D Almela
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
10
|
Shin K, Acri T, Geary S, Salem AK. Biomimetic Mineralization of Biomaterials Using Simulated Body Fluids for Bone Tissue Engineering and Regenerative Medicine<sup/>. Tissue Eng Part A 2017; 23:1169-1180. [PMID: 28463603 DOI: 10.1089/ten.tea.2016.0556] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Development of synthetic biomaterials imbued with inorganic and organic characteristics of natural bone that are capable of promoting effective bone tissue regeneration is an ongoing goal of regenerative medicine. Calcium phosphate (CaP) has been predominantly utilized to mimic the inorganic components of bone, such as calcium hydroxyapatite, due to its intrinsic bioactivity and osteoconductivity. CaP-based materials can be further engineered to promote osteoinductivity through the incorporation of osteogenic biomolecules. In this study, we briefly describe the microstructure and the process of natural bone mineralization and introduce various methods for coating CaP onto biomaterial surfaces. In particular, we summarize the advantages and current progress of biomimetic surface-mineralizing processes using simulated body fluids for coating bone-like carbonated apatite onto various material surfaces such as metals, ceramics, and polymers. The osteoinductive effects of integrating biomolecules such as proteins, growth factors, and genes into the mineral coatings are also discussed.
Collapse
Affiliation(s)
- Kyungsup Shin
- 1 Department of Orthodontics, College of Dentistry and Dental Clinics, University of Iowa , Iowa City, Iowa
| | - Timothy Acri
- 2 Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa , Iowa City, Iowa
| | - Sean Geary
- 2 Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa , Iowa City, Iowa
| | - Aliasger K Salem
- 2 Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa , Iowa City, Iowa
| |
Collapse
|