1
|
Moudgil A, Salve R, Gajbhiye V, Chaudhari BP. Challenges and emerging strategies for next generation liposomal based drug delivery: An account of the breast cancer conundrum. Chem Phys Lipids 2023; 250:105258. [PMID: 36375540 DOI: 10.1016/j.chemphyslip.2022.105258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
The global cancer burden is witnessing an upsurge with breast cancer surpassing other cancers worldwide. Furthermore, an escalation in the breast cancer caseload is also expected in the coming years. The conventional therapeutic regimens practiced routinely are associated with many drawbacks to which nanotechnological interventions offer a great advantage. But how eminent could liposomes and their advantages be in superseding these existing therapeutic modalities? A solution is reflected in this review that draws attention to a decade-long journey embarked upon by researchers in this wake. This text is a comprehensive discussion of liposomes, the front runners of the drug delivery systems, and their active and passive targeting approaches for breast cancer management. Active targeting has been studied over the decade by many receptors overexpressed on the breast cancer cells and passive targeting with many drug combinations. The results converge on the fact that the actively targeted formulations exhibit a superior efficacy over their non-targeted counterparts and the all liposomal formulations are efficacious over the free drugs. This undoubtedly underlines the dominion of liposomal formulations over conventional chemotherapy. These investigations have led to the development of different liposomal formulations with active and passive targeting capacities that could be explored in depth. Acknowledging and getting a deeper insight into the liposomal evolution through time also unveiled many imperfections and unchartered territories that can be explored to deliver dexterous liposomal formulations against breast cancer and more in the clinical trial pipeline.
Collapse
Affiliation(s)
- Aliesha Moudgil
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pashan, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Rajesh Salve
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India.
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India.
| | - Bhushan P Chaudhari
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pashan, Pune 411008, India.
| |
Collapse
|
2
|
Farooq MA, Trevaskis NL. TPGS Decorated Liposomes as Multifunctional Nano-Delivery Systems. Pharm Res 2023; 40:245-263. [PMID: 36376604 PMCID: PMC9663195 DOI: 10.1007/s11095-022-03424-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/23/2022] [Indexed: 11/16/2022]
Abstract
Liposomes are sphere-shaped vesicles that can capture therapeutics either in the outer phospholipid bilayer or inner aqueous core. Liposomes, especially when surface-modified with functional materials, have been used to achieve many benefits in drug delivery, including improving drug solubility, oral bioavailability, pharmacokinetics, and delivery to disease target sites such as cancers. Among the functional materials used to modify the surface of liposomes, the FDA-approved non-ionic surfactant D-alpha-tocopheryl polyethylene glycol succinate (TPGS) is increasingly being applied due to its biocompatibility, lack of toxicity, applicability to various administration routes and ability to enhance solubilization, stability, penetration and overall pharmacokinetics. TPGS decorated liposomes are emerging as a promising drug delivery system for various diseases and are expected to enter the market in the coming years. In this review article, we focus on the multifunctional properties of TPGS-coated liposomes and their beneficial therapeutic applications, including for oral drug delivery, vaccine delivery, ocular administration, and the treatment of various cancers. We also suggest future directions to optimise the manufacture and performance of TPGS liposomes and, thus, the delivery and effect of encapsulated diagnostics and therapeutics.
Collapse
Affiliation(s)
- Muhammad Asim Farooq
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC, 3052, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
3
|
Shen L, Lv X, Yang X, Deng S, Liu L, Zhou J, Zhu Y, Ma H. Bufotenines-loaded liposome exerts anti-inflammatory, analgesic effects and reduce gastrointestinal toxicity through altering lipid and bufotenines metabolism. Biomed Pharmacother 2022; 153:113492. [DOI: 10.1016/j.biopha.2022.113492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022] Open
|
4
|
Rauter M, Nietz D, Kunze G. Cutinase ACut2 from Blastobotrysraffinosifermentans for the Selective Desymmetrization of the Symmetric Diester Diethyl Adipate to the Monoester Monoethyl Adipate. Microorganisms 2022; 10:1316. [PMID: 35889035 PMCID: PMC9325033 DOI: 10.3390/microorganisms10071316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/04/2022] Open
Abstract
Monoethyl adipate (MEA) is a highly valuable monoester for activating resistance mechanisms and improving protective effects in pathogen-attacked plants. The cutinase ACut2 from the non-conventional yeast Blastobotrys (Arxula) raffinosifermentans (adeninivorans) was used for its synthesis by the desymmetrization of dicarboxylic acid diester diethyl adipate (DEA). Up to 78% MEA with 19% diacid adipic acid (AA) as by-product could be synthesized by the unpurified ACut2 culture supernatant from the B. raffinosifermentans overexpression strain. By adjusting pH and enzyme concentration, the selectivity of the free ACut2 culture supernatant was increased, yielding 95% MEA with 5% AA. Selectivity of the carrier immobilized ACut2 culture supernatant was also improved by pH adjustment during immobilization, as well as carrier enzyme loading, ultimately yielding 93% MEA with an even lower AA concentration of 3-4%. Thus, optimizations enabled the selective hydrolysis of DEA into MEA with only a minor AA impurity. In the up-scaling, a maximum of 98% chemical and 87.8% isolated MEA yield were obtained by the adsorbed enzyme preparation with a space time yield of 2.6 g L-1 h-1. The high monoester yields establish the ACut2-catalyzed biosynthesis as an alternative to existing methods.
Collapse
Affiliation(s)
- Marion Rauter
- Orgentis Chemicals GmbH, Bahnhofstr. 3–5, Gatersleben, D-06466 Stadt Seeland, Germany;
| | - Daniela Nietz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, Gatersleben, D-06466 Stadt Seeland, Germany
| | - Gotthard Kunze
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, Gatersleben, D-06466 Stadt Seeland, Germany
| |
Collapse
|
5
|
Construction of NIR etchable nanoparticles via co-assembly strategy for appointed delivery. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Alavi M, Nokhodchi A. Micro- and nanoformulations of paclitaxel based on micelles, liposomes, cubosomes, and lipid nanoparticles: Recent advances and challenges. Drug Discov Today 2021; 27:576-584. [PMID: 34688912 DOI: 10.1016/j.drudis.2021.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/15/2021] [Accepted: 10/16/2021] [Indexed: 12/13/2022]
Abstract
The diterpenoid molecule paclitaxel (PTX), extracted from the Western yew tree, Taxus brevifolia, is a promising anticancer drug specifically in clinical use for ovarian and breast cancers. However, its wider use is hampered by adverse effects and emerging resistance in cancer cells. Micelles, liposomes, cubosomes, and lipid nanoparticles (LNPs) have the potential to reduce or even remove complications associated with the use of PTX. Herein, we provide an overview of micro- and nanoformulations of PTX based on micelles, liposomes, cubosomes and LNPs to improve the therapeutic effects of this drug both in vitro and in vivo.
Collapse
Affiliation(s)
- Mehran Alavi
- Department of Nanobiotechnology, Faculty of Science, Razi University, Iran.
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, Arundel Building, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| |
Collapse
|
7
|
Xia X, Tao J, Ji Z, Long C, Hu Y, Zhao Z. Increased antitumor efficacy of ginsenoside Rh 2 via mixed micelles: in vivo and in vitro evaluation. Drug Deliv 2021; 27:1369-1377. [PMID: 32998576 PMCID: PMC7580790 DOI: 10.1080/10717544.2020.1825542] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The aim of this work is to apply Solutol® HS15 and TPGS to prepare self-assembled micelles loading with ginsenoside Rh2 to increase the solubility of ginsenoside Rh2, hence, improving the antitumor efficacy. Ginsenoside Rh2-mixed micelles (Rh2-M) were prepared by thin film dispersion method. The optimal Rh2-M was characterized by particle size, morphology, and drug encapsulation efficiency. The enhancement of in vivo anti-tumor efficacy of Rh2-M was evaluated by nude mice bearing tumor model. The solubility of Rh2 in self-assembled micelles was increased approximately 150-folds compared to free Rh2. In vitro results demonstrated that the particle size of Rh2-M is 74.72 ± 2.63 nm(PDI = 0.147 ± 0.15), and the morphology of Rh2-M is spherical or spheroid, and the EE% and LE% are 95.27 ± 1.26% and 7.68 ± 1.34%, respectively. The results of in vitro cell uptake and in vivo imaging showed that Rh2-M could not only increase the cell uptake of drugs, but also transport drug to tumor sites, prolonging the retention time. In vitro cytotoxicity and in vivo antitumor results showed that the anti-tumor effect of Rh2 can be effectively improved by Rh2-M. Therefore, Solutol® HS15 and TPGS could be used to entrapping Rh2 into micelles, enhancing solubility and antitumor efficacy.
Collapse
Affiliation(s)
- Xiaojing Xia
- Department of Pharmaceutics, Zhejiang Pharmaceutical College, Ningbo, PR China
| | - Jin Tao
- Department of Pharmaceutics, Zhejiang Pharmaceutical College, Ningbo, PR China
| | - Zhuwa Ji
- Department of Pharmaceutics, Zhejiang Pharmaceutical College, Ningbo, PR China
| | - Chencheng Long
- Department of Pharmaceutics, Zhejiang Pharmaceutical College, Ningbo, PR China
| | - Ying Hu
- Department of Pharmaceutics, Zhejiang Pharmaceutical College, Ningbo, PR China
| | - Zhiying Zhao
- Department of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
8
|
Jin X, Yang Q, Cai N, Zhang Z. A cocktail of betulinic acid, parthenolide, honokiol and ginsenoside Rh2 in liposome systems for lung cancer treatment. Nanomedicine (Lond) 2020; 15:41-54. [PMID: 31868113 DOI: 10.2217/nnm-2018-0479] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: Lung cancer has a very high incidence rate, and thus, there is an urgent need for novel and effective therapies. Materials & methods: In this study, we proposed a potential treatment option by combining four natural products in liposome systems. Results: In vitro studies indicated that the combination of betulinic acid, parthenolide, honokiol and ginsenoside Rh2 exhibited a synergistic action. When these four natural products were loaded into liposome systems, we observed an increased effect. The relative action was also observed in vivo. The cisplatin group presented obvious kidney damage, whereas both cocktail therapy and cocktail liposome therapy were safer. Conclusion: Therefore, we propose cocktail liposome systems may provide a more efficient and safer treatment for lung cancer.
Collapse
Affiliation(s)
- Xin Jin
- Department of Hospital Pharmacy, Suqian Branch Jiangsu Province Hospital, 120 Suzhilu, Suqian, 223800, PR China
| | - Qing Yang
- Department of Hospital Pharmacy, Suqian Branch Jiangsu Province Hospital, 120 Suzhilu, Suqian, 223800, PR China
| | - Ning Cai
- Department of Hospital Pharmacy, Suqian Branch Jiangsu Province Hospital, 120 Suzhilu, Suqian, 223800, PR China
| | - Zhenhai Zhang
- Jiangsu Province Academy of Traditional Chinese Medicine, 100 Shizijie, Nanjing, 210000, PR China
| |
Collapse
|
9
|
Jin X, Lu X, Zhang Z, Lv H. Indocyanine Green-Parthenolide Thermosensitive Liposome Combination Treatment for Triple-Negative Breast Cancer. Int J Nanomedicine 2020; 15:3193-3206. [PMID: 32440118 PMCID: PMC7211433 DOI: 10.2147/ijn.s245289] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/14/2020] [Indexed: 12/31/2022] Open
Abstract
Background Certain patients with triple-negative breast cancer cannot tolerate the serious adverse effects of cytotoxic chemotherapy agents, which significantly affect the disease prognosis. Purpose Research into the combined use of photosensitizers and non-cytotoxic antineoplastic drugs for the safe treatment of triple-negative breast cancer is vital. Methods In this study, the photosensitizer indocyanine green and the natural drug parthenolide were co-loaded into thermosensitive liposomes. Under a near-infrared irradiation, indocyanine green reached excitation levels, releasing heat, and the liposome underwent a phase transition, releasing the drug were researched. Results Thus, indocyanine green and parthenolide exert synergistic antineoplastic effects. In the nude mice xenograft MDA-MB-231 tumor model, the tumor inhibition rate of indocyanine green-parthenolide thermosensitive liposomes was approximately 2.08-fold than that of paclitaxel and demonstrated a good initial safety evaluation. Conclusion Photosensitizers and non-cytotoxic antineoplastic agents in combination with nanoscale carriers should be further investigated for the treatment of tumors.
Collapse
Affiliation(s)
- Xin Jin
- Department of Hospital Pharmacy, Suqian First Hospital, Suqian 223800, People's Republic of China.,Department of Pharmaceutics, Suqian Clinical College of Xuzhou Medical University, Suqian 223800, People's Republic of China
| | - Xinyue Lu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Zhenhai Zhang
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine Affiliated with Nanjing University of Chinese Medicine, Nanjing 210000, People's Republic of China
| | - Huixia Lv
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
10
|
Jeon M, Lin G, Stephen ZR, Kato FL, Zhang M. Paclitaxel‐Loaded Iron Oxide Nanoparticles for Targeted Breast Cancer Therapy. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mike Jeon
- Department of Materials Science and Engineering University of Washington Seattle WA 98195 USA
| | - Guanyou Lin
- Department of Materials Science and Engineering University of Washington Seattle WA 98195 USA
| | - Zachary R. Stephen
- Department of Materials Science and Engineering University of Washington Seattle WA 98195 USA
| | - Frances L. Kato
- Department of Materials Science and Engineering University of Washington Seattle WA 98195 USA
| | - Miqin Zhang
- Department of Materials Science and Engineering University of Washington Seattle WA 98195 USA
| |
Collapse
|
11
|
Li W, Xue J, Xu H. Combined administration of PTX and S-HM-3 in TPGS/Solutol micelle system for oncotarget therapy. Int J Nanomedicine 2019; 14:1011-1026. [PMID: 30799919 PMCID: PMC6369847 DOI: 10.2147/ijn.s189864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background S-HM-3 is a tumor angiogenesis inhibitor with short half-life (25 min). In this present, TPGS/Solutol polymeric micelles was prepared to load together insoluble paclitaxel (PTX) and soluble S-HM-3, expecting to together deliver them to the tumor site with long-circulating, targeting function and combating multi-drug resistance (MDR). Materials and methods PTX and S-HM-3 loaded TPGS/Solutol micelles (PHTSm) were prepared by the method of thin-film evaporation, and characterized by dynamic light scattering, transmission electron microscope (TEM), atomic force microscopy (AFM) and releasing properties. The anticancer effect of the polymeric micelles system was evaluated and confirmed by experiments of in vitro cell uptake study, in vivo pharmacokinetics, and pharmacodynamics studies. Results Micelles exhibited smooth spherical morphology with 20~30 nm and low critical micelle concentration (CMC) value of 0.000124 mg/mL. Only about 30% of PTX were slowly released from micelles at 48h, which can beneficial to the long circulation in blood. The results of in vitro cell assay proved that S-HM-3 could be easier to get into MDA-MB-231 cell, and its angiogenesis inhibition ability was also enhanced after integrating into micelles. In particular, the results of in vivo studies showed that the half-life of S-HM-3 and PTX was significantly prolonged 25.27 and 5.54 folds, and their AUC0-∞ was enhanced 129.78 and 15.65 times, respectively. Meanwhile 83.05% tumor inhibition rate of PHTSm was achieved compared with 59.99% of PTX. Conclusions TPGS and Solutol micelles hold promising potential to resolve the conundrum of combined therapy of cytotoxic drug and angiogenesis inhibitor with different physicochemical property and anticancer mechanism in clinical use.
Collapse
Affiliation(s)
- Weiguang Li
- State Key Laboratory of Natural Medicines, The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, Department of Marine Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China,
| | - Jianpeng Xue
- State Key Laboratory of Natural Medicines, The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, Department of Marine Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China,
| | - Hanmei Xu
- State Key Laboratory of Natural Medicines, The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, Department of Marine Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China,
| |
Collapse
|
12
|
Basic principles of drug delivery systems - the case of paclitaxel. Adv Colloid Interface Sci 2019; 263:95-130. [PMID: 30530177 DOI: 10.1016/j.cis.2018.11.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 01/15/2023]
Abstract
Cancer is the second cause of death worldwide, exceeded only by cardiovascular diseases. The prevalent treatment currently used against metastatic cancer is chemotherapy. Among the most studied drugs that inhibit neoplastic cells from acquiring unlimited replicative ability (a hallmark of cancer) are the taxanes. They operate via a unique molecular mechanism affecting mitosis. In this review, we show this mechanism for one of them, paclitaxel, and for other (non-taxanes) anti-mitotic drugs. However, the use of paclitaxel is seriously limited (its bioavailability is <10%) due to several long-standing challenges: its poor water solubility (0.3 μg/mL), its being a substrate for the efflux multidrug transporter P-gp, and, in the case of oral delivery, its first-pass metabolism by certain enzymes. Adequate delivery methods are therefore required to enhance the anti-tumor activity of paclitaxel. Thus, we have also reviewed drug delivery strategies in light of the various physical, chemical, and enzymatic obstacles facing the (especially oral) delivery of drugs in general and paclitaxel in particular. Among the powerful and versatile platforms that have been developed and achieved unprecedented opportunities as drug carriers, microemulsions might have great potential for this aim. This is due to properties such as thermodynamic stability (leading to long shelf-life), increased drug solubilization, and ease of preparation and administration. In this review, we define microemulsions and nanoemulsions, analyze their pertinent properties, and review the results of several drug delivery carriers based on these systems.
Collapse
|
13
|
Jin X, Zhou J, Zhang Z, Lv H. The combined administration of parthenolide and ginsenoside CK in long circulation liposomes with targeted tLyp-1 ligand induce mitochondria-mediated lung cancer apoptosis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S931-S942. [PMID: 30307334 DOI: 10.1080/21691401.2018.1518913] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Combinations of natural products with low toxicities using tumor-targeting carriers may improve cancer treatment. The combined parthenolide and ginsenoside compound K (CK) within tLyp-1 liposomes, with the aim of improving the efficacy of lung cancer treatment. RESULTS In vitro studies in A549 human pulmonary adenocarcinoma cells demonstrated that parthenolide/CK tLyp-1 liposomes increased reactive oxygen species levels and induced mitochondrial apoptosis. It enters into cells via receptor-mediated uptake and micropinocytosis, followed by endosomal/lysosomal escape. In vivo studies illustrated that it produced a greater antitumor effect than combined administration of these compounds, with minimal toxicity. CONCLUSION The findings of this study indicated that combined application of natural products in nanocarriers could offer attractive therapeutic options.
Collapse
Affiliation(s)
- Xin Jin
- a Department of Hospital Pharmacy , Suqian Branch Jiangsu Province Hospital , Suqian , China.,b Department of Pharmaceutics, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , China
| | - Jianping Zhou
- b Department of Pharmaceutics, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , China
| | - Zhenhai Zhang
- c Jiangsu Province Hospital on Integration of Chinese and Western Medicine , Nanjing University of Chinese Medicine , Nanjing , China
| | - Huixia Lv
- b Department of Pharmaceutics, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
14
|
Identification of a Novel Anticancer Oligopeptide from Perilla frutescens (L.) Britt. and Its Enhanced Anticancer Effect by Targeted Nanoparticles In Vitro. INT J POLYM SCI 2018. [DOI: 10.1155/2018/1782734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective. Perilla frutescens (L.) Brittis is a dietary herbal medicine and has anticancer effect. However, little is known about its anticancer peptides. This study is aimed at identifying cytotoxic oligopeptides which are loaded by a drug delivery system, to explore its anticancer application. Methods. The oligopeptides were isolated from enzymatic hydrolysates of Perilla seed crude protein by using ultrafiltration, gel filtration chromatography, and reversed-phase high-performance liquid chromatography (RP-HPLC). The structure of the oligopeptide was determined using a peptide sequencer, and its anticancer effect was examined by the MTT assay. PSO (Perilla seed oligopeptide), the most potent anticancer oligopeptide, was loaded by chitosan nanoparticles (NPs) modified by hyaluronic acid (HA). Then, the particle size, zeta potential, encapsulation efficiency (EE), drug loading efficiency (LE), the cumulative release rates of NPs, and its cytotoxic effect on cancer cells were investigated. Results. Three fractions were isolated by the chromatography assay. The third fraction has a broad-spectrum and the strongest anticancer effect. This fraction was further purified and identified as SGPVGLW with a molecular weight of 715 Da and named as PSO. Then, PSO was loaded by HA-conjugated chitosan to prepare HA/PSO/C NPs, which had a uniform size of 216.7 nm, a zeta potential of 35.4 mV, an EE of 38.7%, and an LE of 24.3%. HA/PSO/C NPs had a slow release rate in vitro, with cumulative release reaching to 81.1%. Compared with free PSO, HA/PSO/C NPs showed notably enhanced cytotoxicity and had the strongest potency to human glioma cell line U251. Conclusion. This study demonstrated that PSO, a novel oligopeptide from Perilla seeds, has a broad-spectrum anticancer effect and could be encapsulated by NPs, which enhanced tumor targeting cytotoxicity with obvious controlled release. Our study indicates that Perilla seeds are valuable for anticancer peptide development.
Collapse
|
15
|
Wang J, Li Y, Wang L, Wang X, Tu P. Comparison of hyaluronic acid-based micelles and polyethylene glycol-based micelles on reversal of multidrug resistance and enhanced anticancer efficacy in vitro and in vivo. Drug Deliv 2018; 25:330-340. [PMID: 29350064 PMCID: PMC6058673 DOI: 10.1080/10717544.2018.1428385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Polyethylene glycol (PEG)-based block copolymer micelles and hyaluronic acid (HA)-based grafted copolymer micelles have been widely investigated in chemotherapy. In this study, to evaluate the differences among HA-based grafted polymer micelles, PEG-based block polymer micelles and the mixed of these two micelles in enhancing antitumor effects and overcoming MDR, two amphiphilic vitamin E succinate (VES) derivatives, HA VES (HA-g-VES) and PEG 2000 VES (TPGS2k), were applied as nanocarriers to prepare HA-VES micelles (HA-PMs), TPGS2k micelles (TPGS2k-PMs) and the mixed micelles (HA/TPGS2k-PMs) for the co-delivery of doxorubicin (DOX) and curcumin (Cur). With the addition of TPGS2k, the particle size of HA/TPGS2k-PMs (153.37 ± 1.00 nm) was smaller than that of HA-PMs (223.83 ± 1.84) but significantly larger than that of TPGS2k-PMs (about 20 nm). The loading efficiency of HA/TPGS2k-PMs was 7.10%, which was lower than HA-PMs (8.31 ± 0.15%) but higher than TPGS2k-PMs (4.38 ± 0.24%). In vitro, HA/TPGS2k-PMs and TPGS2k-PMs exhibited higher cytotoxicity and reversal MDR effects than HA-PMs in MCF-7/Adr cells. However, HA/TPGS2k-PMs, HA-PMs and TPGS2k-PMs all significantly improved the tumor biodistribution, the antitumor effects and reduced the side effects of DOX in 4T1-tumor-bearing mice, but these three micelles displayed no differences in vivo. Therefore, EPR passive targeting effects caused by PEGylated micelles and CD44 active targeting effects caused by HA-based micelles have no significant variance in the delivery of antitumor drugs by i.v.
Collapse
Affiliation(s)
- Jinling Wang
- a School of Chinese Materia Medica , Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine , Beijing , PR China
| | - Ying Li
- a School of Chinese Materia Medica , Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine , Beijing , PR China
| | - Lifang Wang
- a School of Chinese Materia Medica , Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine , Beijing , PR China
| | - Xiaohui Wang
- a School of Chinese Materia Medica , Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine , Beijing , PR China
| | - Pengfei Tu
- a School of Chinese Materia Medica , Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine , Beijing , PR China
| |
Collapse
|
16
|
Ke Z, Yang L, Wu H, Li Z, Jia X, Zhang Z. Evaluation of in vitro and in vivo antitumor effects of gambogic acid-loaded layer-by-layer self-assembled micelles. Int J Pharm 2018; 545:306-317. [DOI: 10.1016/j.ijpharm.2018.04.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 01/01/2023]
|
17
|
Shen H, He D, Wang S, Ding P, Wang J, Ju J. Preparation, characterization, and pharmacokinetics study of a novel genistein-loaded mixed micelles system. Drug Dev Ind Pharm 2018; 44:1536-1542. [PMID: 29848136 DOI: 10.1080/03639045.2018.1483384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hongxue Shen
- Anhui University of Chinese Medicine, Hefei, China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Dandan He
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Shuxia Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Pinggang Ding
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jianan Wang
- School of Pharmaceutical Sciences, Jining Medical University, Rizhao, China
| | - Jianming Ju
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
18
|
Qin J, Wei X, Chen H, Lv F, Nan W, Wang Y, Zhang Q, Chen H. mPEG-g-CS-Modified PLGA Nanoparticle Carrier for the Codelivery of Paclitaxel and Epirubicin for Breast Cancer Synergistic Therapy. ACS Biomater Sci Eng 2018; 4:1651-1660. [DOI: 10.1021/acsbiomaterials.7b01003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jingwen Qin
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, China
| | - Xiangjuan Wei
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Hongyang Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Feng Lv
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Wenbin Nan
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Yongxue Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Qiqing Zhang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Hongli Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
19
|
Jin X, Yang Q, Zhang Y. Synergistic apoptotic effects of apigenin TPGS liposomes and tyroservatide: implications for effective treatment of lung cancer. Int J Nanomedicine 2017; 12:5109-5118. [PMID: 28761344 PMCID: PMC5522679 DOI: 10.2147/ijn.s140096] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To develop an alternative treatment for lung cancer, a combination of two potent chemotherapeutic agents – liposomal apigenin and tyroservatide – was developed. The therapeutic potential of this combination was investigated using A549 cells. Apigenin and tocopherol derivative-containing D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) liposomes might improve the delivery of apigenin to tumor cells, both in vitro and in vivo. Importantly, compared to either agent alone, the combination of apigenin TPGS liposomes and tyroservatide exhibited superior cytotoxicity, induced stronger G2 arrest, and suppressed A549 cancer cell invasion at a lower dose. The proapoptotic synergistic effects were also observed in A549 cells using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, flow cytometry, and Western blot analysis. More importantly, in vivo results showed that the combination of apigenin TPGS liposomes and tyroservatide exhibited tumor-growth inhibitory effects in A549 cell-bearing mice. In conclusion, our study showed that this combination therapy could serve as a promising synergistic therapeutic approach to improve outcomes in patients with lung cancer.
Collapse
Affiliation(s)
- Xin Jin
- Department of Hospital Pharmacy, Suqian Branch Jiangsu Province Hospital, Suzhilu, Suqian, People's Republic of China
| | - Qing Yang
- Department of Hospital Pharmacy, Suqian Branch Jiangsu Province Hospital, Suzhilu, Suqian, People's Republic of China
| | - Youwen Zhang
- Department of Hospital Pharmacy, Suqian Branch Jiangsu Province Hospital, Suzhilu, Suqian, People's Republic of China
| |
Collapse
|