1
|
Wang Y, Ren Z, Wu H, Cao Y, Yu B, Cong H, Shen Y. Immobilized Drugs on Dual-Mode Imaging Ag 2S/BaSO 4/PVA Embolic Microspheres for Precise Localization, Rapid Embolization, and Local Antitumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43283-43301. [PMID: 39106313 DOI: 10.1021/acsami.4c07852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Transcatheter arterial embolization (TAE) in interventional therapy and tumor embolism therapy plays a significant role. The choice of embolic materials that have good biocompatibility is an essential component of TAE. For this study, we produced a multifunctional PVA embolization material that can simultaneously encapsulate Ag2S quantum dots (Ag2S QDs) and BaSO4 nanoparticles (BaSO4 NPs), exhibiting excellent second near-infrared window (NIR-II) fluorescence imaging and X-ray imaging, breaking through the limitations of traditional embolic microsphere X-ray imaging. To improve the therapeutic effectiveness against tumors, we doped the doxorubicin (DOX) antitumor drug into microspheres and combined it with a clotting peptide (RADA16-I) on the surface of microspheres. Thus, it not only embolizes rapidly during hemostasis but also continues to release and accelerate tumor necrosis. In addition, Ag2S/BaSO4/PVA microspheres (Ag2S/BaSO4/PVA Ms) exhibited good blood compatibility and biocompatibility, and the results of embolization experiments on renal arteries in rabbits revealed good embolic effects and bimodal imaging stability. Therefore, they could serve as a promising medication delivery embolic system and an efficient biomaterial for arterial embolization. Our research work achieves the applicability of NIR-II and X-ray dual-mode images for clinical embolization in biomedical imaging.
Collapse
Affiliation(s)
- Yumei Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Zekai Ren
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Han Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yang Cao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
2
|
Liu M, Yuan J, Wang G, Ni N, Lv Q, Liu S, Gong Y, Zhao X, Wang X, Sun X. Shape programmable T1- T2 dual-mode MRI nanoprobes for cancer theranostics. NANOSCALE 2023; 15:4694-4724. [PMID: 36786157 DOI: 10.1039/d2nr07009j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The shape effect is an important parameter in the design of novel nanomaterials. Engineering the shape of nanomaterials is an effective strategy for optimizing their bioactive performance. Nanomaterials with a unique shape are beneficial to blood circulation, tumor targeting, cell uptake, and even improved magnetism properties. Therefore, magnetic resonance imaging (MRI) nanoprobes with different shapes have been extensively focused on in recent years. Different from other multimodal imaging techniques, dual-mode MRI can provide imaging simultaneously by a single instrument, which can avoid differences in penetration depth, and the spatial and temporal resolution of multiple imaging devices, and ensure the accurate matching of spatial and temporal imaging parameters for the precise diagnosis of early tumors. This review summarizes the latest developments of nanomaterials with various shapes for T1-T2 dual-mode MRI, and highlights the mechanism of how shape intelligently affects nanomaterials' longitudinal or transverse relaxation, namely sphere, hollow, core-shell, cube, cluster, flower, dumbbell, rod, sheet, and bipyramid shapes. In addition, the combination of T1-T2 dual-mode MRI nanoprobes and advanced therapeutic strategies, as well as possible challenges from basic research to clinical transformation, are also systematically discussed. Therefore, this review will help others quickly understand the basic information on dual-mode MRI nanoprobes and gather thought-provoking ideas to advance the subfield of cancer nanomedicine.
Collapse
Affiliation(s)
- Menghan Liu
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Jia Yuan
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Gongzheng Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Nengyi Ni
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Qian Lv
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Shuangqing Liu
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Yufang Gong
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Xinya Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Xiao Sun
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| |
Collapse
|
3
|
Wu S, Fan K, Yang Q, Chen Z, Hou Y, Zou Y, Cai W, Kang L. Smart nanoparticles and microbeads for interventional embolization therapy of liver cancer: state of the art. J Nanobiotechnology 2023; 21:42. [PMID: 36747202 PMCID: PMC9901004 DOI: 10.1186/s12951-023-01804-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
The process of transcatheter arterial chemoembolization is characterized by the ability to accurately deliver chemotherapy drugs with minimal systemic side effects and has become the standard treatment for unresectable intermediate hepatocellular carcinoma (HCC). However, this treatment option still has much room for improvement, one of which may be the introduction of nanomaterials, which exhibit unique functions and can be applied to in vivo tumor imaging and therapy. Several biodegradable and multifunctional nanomaterials and nanobeads have recently been developed and applied in the locoregional treatment of hepatocellular cancer. This review explores recent developments and findings in relation to micro-nano medicines in transarterial therapy for HCC, emerging strategies to improve the efficacy of delivering nano-based medicines, and expounding prospects for clinical applications of nanomaterials.
Collapse
Affiliation(s)
- Sitong Wu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Kevin Fan
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI, 53705, USA
| | - Qi Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Zhao Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yinghua Zou
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI, 53705, USA.
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
4
|
Yang SH, Ju XJ, Deng CF, Cai QW, Su YY, Xie R, Wang W, Liu Z, Pan DW, Chu LY. Controllable Fabrication of Monodisperse Poly(vinyl alcohol) Microspheres with Droplet Microfluidics for Embolization. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shi-Hao Yang
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chuan-Fu Deng
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Quan-Wei Cai
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yao-Yao Su
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Rui Xie
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wei Wang
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Da-Wei Pan
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
5
|
Yang X, Wang S, Zhang X, Ye C, Wang S, An X. Development of PVA-based microsphere as a potential embolization agent. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112677. [PMID: 35581062 DOI: 10.1016/j.msec.2022.112677] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022]
Abstract
The development of tissue adhesive embolization microspheres with imaging ability is one of the important methods to improve the efficacy of interventional embolization. This study reported the synthesis of iodine (I)-polyvinyl alcohol (PVA)@polydopamine (PDA) microspheres to achieve the computed tomography image, drug loading and controlled release, and the enhanced embolization of liver portal vein. The I-PVA@PDA microspheres with a diameter of 147.9 μm showed an excellent computed tomography imaging ability. Moreover, the introduction of PDA endowed the I-PVA@PDA microspheres with tissue adhesive ability and therefore the in vivo embolization effect was improved. The in vivo embolization results showed that focal necrosis of hepatocytes with necrotic cell fragments and inflammatory cell infiltration was observed in the liver tissue, proving that the I-PVA@PDA microspheres have an enhanced embolization effect than PVA particles. The I-PVA@PDA microspheres were further used to deliver and release of chemotherapeutic drugs (5-fluorouracil), which displayed an initial fast release (release amount: 29.74%) in the first 24 h and then a sustained release of 34.48% within 72 h. Moreover, as a universal platform, the PVA@PDA microspheres could combine with other imaging agents like Bi2S3, thus holding a great potential in the interventional treatment of different diseases.
Collapse
Affiliation(s)
- Xueqing Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Shizhen Wang
- Department of Basic Medicine, Jiangsu College of Nursing, No. 9 Keji Road, Huai'an 223005, PR China
| | - Xiang Zhang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named "Shanghai First People's Hospital"), No. 100 Haining Road, Shanghai 200080, PR China
| | - Changqing Ye
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China.
| | - Xiao An
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named "Shanghai First People's Hospital"), No. 100 Haining Road, Shanghai 200080, PR China.
| |
Collapse
|
6
|
Fabrication of Fe 3O 4@PVA microspheres by one-step electrospray for magnetic resonance imaging during transcatheter arterial embolization. Acta Biomater 2021; 131:532-543. [PMID: 34245893 DOI: 10.1016/j.actbio.2021.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 02/08/2023]
Abstract
Magnetic resonance imaging (MRI) has attracted increasing attention as a feasible alternative or adjunctive imaging modality for X-ray digital subtraction angiography because of the high tissue resolution and non-ionization radiation. In this study, a one-step electrospray method was developed to fabricate PVA microspheres encapsulated with in situ synthesized Fe3O4 nanoparticles. Fe3O4@PVA microspheres were mono-dispersed black spheres with a wide range of sizes (262-958 µm). The in situ-synthesized Fe3O4 nanoparticles were used as the contrast agent of MRI and the cross-linkers of PVA matrixes for the embolization purpose. In vivo evaluation of renal arteries of normal rabbits showed that Fe3O4@PVA microspheres had good embolic effect and enhanced capability of MRI. In vitro and in vivo biosafety assessment confirmed that Fe3O4@PVA microspheres had favorable biocompatibility. The DOX-loaded Fe3O4@PVA microspheres showed a typical drug-sustained release profile. These results suggest that the prepared DOX-loaded Fe3O4@PVA microspheres have the function of MRI, embolotherapy and chemotherapy. We expect our study could provide a simple and useful approach for the systematic design, fabrication, and application of a new type of magnetic microspheres as a triple-functional embolic agent for the development of MRI-guided TACE. STATEMENT OF SIGNIFICANCE: Due to the low tissue resolution and hazardous ionization radiation of X-ray digital subtraction angiography, it is beneficial to study MR imaging embolic microspheres for the development of MRI-guided TACE. In this study, a one-step electrospray method was firstly developed to fabricate PVA microspheres encapsulated with in situ synthesized Fe3O4 nanoparticles. Then, chemotherapeutic agent (DOX), contrast media of MRI (Fe3O4) and embolic agent (PVA matrix) were combined together in one body (DOX-loaded Fe3O4@PVA microspheres) to achieve the triple effects of chemotherapy, MR imaging and embolization. This triple-functional embolic agent offers potential for the future development of MRI-guided TACE.
Collapse
|
7
|
Liu L, Liang X, Xu X, Zhang X, Wen J, Chen K, Su X, Teng Z, Lu G, Xu J. Magnetic mesoporous embolic microspheres in transcatheter arterial chemoembolization for liver cancer. Acta Biomater 2021; 130:374-384. [PMID: 34082098 DOI: 10.1016/j.actbio.2021.05.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
Transcatheter arterial chemoembolization (TACE) is the main treatment for liver cancer. Although many embolic agents have been exploited in TACE, embolic agents combining embolization, drug loading, and imaging properties have not yet been constructed. Herein, we report a new magnetic mesoporous embolic microsphere that can simultaneously be loaded with doxorubicin (Dox), block vessels, and be observed by magnetic resonance imaging (MRI). The microspheres were prepared by decorating magnetic polystyrene/Fe3O4 particles with mesoporous organosilica microparticles (denoted as PS/Fe3O4@MONs). The PS/Fe3O4@MONs were uniformly spherical and large (50 µm), with a high specific surface area, uniform mesopores, and a Dox loading capacity of 460.8 µg mg-1. Dox-loaded PS/Fe3O4@MONs (PS/Fe3O4@MON@Dox) effectively inhibited liver cancer cell growth. A VX2 rabbit liver tumor model was constructed to study the efficacy of TACE with PS/Fe3O4@MON@Dox. In vivo, PS/Fe3O4@MON@Dox could be smoothly delivered through an arterial catheter to achieve chemoembolization. Moreover, PS/Fe3O4@MON@Dox and residual tumor parenchyma could be distinguished on MRI, which is of great significance for evaluating the efficacy of TACE. Histopathology showed that PS/Fe3O4@MON@Dox could be deposited in the tumor vessels, completely blocking the blood supply. Overall, PS/Fe3O4@MON@Dox showed good drug loading, embolization and imaging performance as well as potential for use in TACE. STATEMENT OF SIGNIFICANCE: Transcatheter arterial chemoembolization (TACE) is the main treatment for liver cancer. Although many embolic agents have been exploited in TACE, embolic agents combining embolization, drug-loading, and imaging properties have not yet been constructed. In this work, we prepared magnetic mesoporous microspheres as a new embolic agent that can simultaneously load doxorubicin (Dox), block blood vessels and enable magnetic resonance imaging. Overall, this new embolic microsphere-mediated TACE strategy for liver cancer showed good therapeutic effects, and the PS/Fe3O4@MON@Dox embolic microspheres provide a new avenue for improving the efficacy of TACE for liver cancer and postoperative evaluation.
Collapse
|
8
|
Crețu BEB, Dodi G, Shavandi A, Gardikiotis I, Șerban IL, Balan V. Imaging Constructs: The Rise of Iron Oxide Nanoparticles. Molecules 2021; 26:3437. [PMID: 34198906 PMCID: PMC8201099 DOI: 10.3390/molecules26113437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, an important challenge in nanomedicine imaging has been the work to design multifunctional agents that can be detected by single and/or multimodal techniques. Among the broad spectrum of nanoscale materials being investigated for imaging use, iron oxide nanoparticles have gained significant attention due to their intrinsic magnetic properties, low toxicity, large magnetic moments, superparamagnetic behaviour and large surface area-the latter being a particular advantage in its conjunction with specific moieties, dye molecules, and imaging probes. Tracers-based nanoparticles are promising candidates, since they combine synergistic advantages for non-invasive, highly sensitive, high-resolution, and quantitative imaging on different modalities. This study represents an overview of current advancements in magnetic materials with clinical potential that will hopefully provide an effective system for diagnosis in the near future. Further exploration is still needed to reveal their potential as promising candidates from simple functionalization of metal oxide nanomaterials up to medical imaging.
Collapse
Affiliation(s)
- Bianca Elena-Beatrice Crețu
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (B.E.-B.C.); (I.G.)
| | - Gianina Dodi
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (B.E.-B.C.); (I.G.)
| | - Amin Shavandi
- BioMatter-Biomass Transformation Lab, École Polytechnique de Bruxelles, Université Libre de Bruxelles, 1050 Brussels, Belgium;
| | - Ioannis Gardikiotis
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (B.E.-B.C.); (I.G.)
| | - Ionela Lăcrămioara Șerban
- Physiology Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania;
| | - Vera Balan
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania;
| |
Collapse
|
9
|
Wang D, Wu Q, Guo R, Lu C, Niu M, Rao W. Magnetic liquid metal loaded nano-in-micro spheres as fully flexible theranostic agents for SMART embolization. NANOSCALE 2021; 13:8817-8836. [PMID: 33960346 DOI: 10.1039/d1nr01268a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Transcatheter arterial chemoembolization (TACE) has become one of the preferred choices for advanced liver cancer patients. Current clinically used microsphere embolic agents, such as PVA, gelatin, and alginate microspheres, have limited therapeutic efficacy and lack the function of real-time imaging. In this work, we fabricated magnetic liquid metal nanoparticle (Fe@EGaIn NP) loaded calcium alginate (CA) microspheres (denoted as Fe@EGaIn/CA microspheres), which integrate CT/MR dual-modality imaging and photothermal/photodynamic functions of the Fe@EGaIn NP core, as well as embolization and drug-loading functions of CA microspheres. Namely, such nano-in-micro spheres can be used as fully flexible theranostic agents to achieve smart-chemoembolization. It has been confirmed by in vitro and in vivo experiments that Fe@EGaIn/CA microspheres have advantageous morphology, favorable biocompatibility, splendid versatility, and advanced embolic efficacy. Benefiting from these properties, excellent therapeutic efficiency was achieved with a tumor growth-inhibiting value of 100% in tumor-bearing rabbits. As a novel microsphere embolic agent with promising therapeutic efficacy and diagnostic capability, Fe@EGaIn/CA microspheres have shown potential applications in clinical transcatheter arterial chemoembolization. And the preparation strategy presented here provides a generalized paradigm for achieving multifunctional and fully flexible theranostics.
Collapse
Affiliation(s)
- Dawei Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qirun Wu
- Department of Interventional Medical, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai 519000, China
| | - Rui Guo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chennan Lu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Niu
- Department of Radiology, First Hospital of China Medical University, Shenyang 110001, China
| | - Wei Rao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Chen G, Wei R, Huang X, Wang F, Chen Z. Synthesis and assessment of sodium alginate-modified silk fibroin microspheres as potential hepatic arterial embolization agent. Int J Biol Macromol 2020; 155:1450-1459. [DOI: 10.1016/j.ijbiomac.2019.11.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/04/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023]
|
11
|
Microfluidic Rapid Fabrication of Tunable Polyvinyl Alcohol Microspheres for Adsorption Applications. MATERIALS 2019; 12:ma12223712. [PMID: 31717907 PMCID: PMC6888467 DOI: 10.3390/ma12223712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 11/16/2022]
Abstract
Monodisperse polyvinyl alcohol (PVA) microspheres have been widely used for targeted drug delivery, embolization, and templates. However, the fast and facile fabrication of PVA microspheres with uniform size and internal structure and good sphericity remains a challenge. In this study, the PVA microspheres with uniformity in the size, shape, and internal structure were rapidly fabricated, using single-emulsion droplet templates by an on-chip approach. First, we designed a polydimethylsiloxane (PDMS) microfluidic chip integrated with three functional units, used for the droplet generation, mixing of reagents, and pre-curing of PVA microspheres, respectively. Then, we precisely controlled the generation of PVA aqueous droplets, mixing of reagents, and the gelation rate for the production of high-quality microspheres by adjusting the pH value, flow rate, and the channel structure. The prepared PVA microspheres are characterized with good sphericity, uniform internal structure, and narrow size distribution. The microspheres have good adsorption capacity and recyclability for small-molecule drugs, as demonstrated by the adsorption and desorption of methylene blue (MB). The adsorption behavior is well described by the pseudo-second-order model, and intraparticle diffusion is as fast as the external film diffusion.
Collapse
|
12
|
Abstract
The past decades have witnessed the development of a field dedicated to targeting tumor vasculature for cancer therapy. In contrast to conventional chemotherapeutics that need to penetrate into tumor tissues for killing tumor cells, the agents targeting tumor vascular system have two major advantages: direct contact with vascular endothelial cells or the blood and less possibility to induce drug resistance because of high gene stability of endothelial cells. More specifically, various angiogenesis inhibitors (AIs) and vascular disrupting agents (VDAs) that block tumor blood supply to inhibit tumor progression, some of which have been applied clinically, have been described. However, off-target effects and high effective doses limit the utility of these formulations in cancer patients. Thus, new strategies with improved therapeutic efficacy and safety are needed for tumor vessel targeting therapy. With the burgeoning developments in nanotechnology, smart nanotherapeutics now offer unprecedented potential for targeting tumor vasculature. Based on specific structural and functional features of the tumor vasculature, a number of different nanoscale delivery systems have been proposed for cancer therapy. In this Account, we summarize several distinct strategies to modulate tumor vasculature with various smart nanotherapeutics for safe and effective tumor therapy developed by our research programs. Inspired by the blood coagulation cascade, we generated nanoparticle-mediated tumor vessel infarction strategies that selectively block tumor blood supply to starve the tumor to death. By specifically delivering thrombin loaded DNA nanorobots (Nanorobot-Th) into tumor vessels, an intratumoral thrombosis is triggered to induce vascular infarction and, ultimately, tumor necrosis. Mimicking the coagulation cascade, a smart polymeric nanogel achieves permanent and peripheral embolization of liver tumors. Considering the critical role of platelets in maintaining tumor vessel integrity, a hybrid (PLP-D-R) nanoparticle selectively depleting tumor-associated platelets (TAP) to boost tumor vessel permeability was developed for enhancing intratumoral drug accumulation. In addition, benefiting from a better understanding of the molecular and cellular underpinnings of vascular normalization, several tumor acidity responsive nanotherapeutics, encapsulating therapeutic peptides, and small interfering RNA were developed to correct the abnormal features of the tumor vasculature. This made the tumor vessels more efficient for drug delivery. While we are still exploring the mechanisms of action of these novel nanoformulations, we expect that the strategies summarized here will offer a promising platform to design effective next-generation nanotherapeutics against cancer and facilitate the clinical translation of smart nanotherapeutics that target tumor vasculature.
Collapse
Affiliation(s)
- Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Chunzhi Di
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , Brisbane , QLD 4072 , Australia
| |
Collapse
|
13
|
Ma J, Chen K. Impact of metallic trace elements on relaxivities of iron-oxide contrast agents. RSC Adv 2019; 9:30932-30936. [PMID: 35529357 PMCID: PMC9072193 DOI: 10.1039/c9ra07227f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/23/2019] [Indexed: 12/04/2022] Open
Abstract
In this work, well-defined 3 nm-sized Ca2+, Fe3+, Na+, Mg2+, Zn2+, Ni2+, Co2+, and Cd2+ cation-adsorbed Fe3O4/γ-Fe2O3 nanoparticles were used as prototype systems to investigate the influence of metallic trace elements in body fluids on the relaxivities of iron-oxide contrast agents. It was found that surface-adsorbed cations formed a deterioration layer to induce pronounced relaxivity loss. Theoretical study showed that such relaxivity loss can be well described by a modified GCAS function, taking into account the harmonic cation oscillations around Fe3O4/γ-Fe2O3 nanoparticles. Quantum mechanics analyses revealed that even-parity and odd-parity states of harmonic oscillations are dominant in r1 and r2 relaxivities, respectively. Moreover, the harmonic oscillations of Na+ and Mg2+ cations around Fe3O4/γ-Fe2O3 nanoparticles are found to be classical forbidden, which are quite different from their counterparts located in the classical permissive area. Distribution of relaxivity loss can be well described by a modified GCAS function.![]()
Collapse
Affiliation(s)
- Ji Ma
- Lab of Functional and Biomedical Nanomaterials
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| | - Kezheng Chen
- Lab of Functional and Biomedical Nanomaterials
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| |
Collapse
|