1
|
Obeso JL, Flores JG, Flores CV, López-Cervantes VB, Martínez-Jiménez V, de Los Reyes JA, Lima E, Solis-Ibarra D, Ibarra IA, Leyva C, Peralta RA. SU-101: a Bi(III)-based metal-organic framework as an efficient heterogeneous catalyst for the CO 2 cycloaddition reaction. Dalton Trans 2023; 52:12490-12495. [PMID: 37602766 DOI: 10.1039/d3dt01743e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
A non-porous version of SU-101 (herein n-SU-101) was evaluated for the CO2 cycloaddition reaction. The findings revealed that open metal sites (Bi3+) are necessary for the reaction. n-SU-101 displays a high styrene oxide conversion of 96.6% under mild conditions (3 bar and 80 °C). The catalytic activity of n-SU-101 demonstrated its potential application for the cycloaddition of CO2 using styrene oxide.
Collapse
Affiliation(s)
- Juan L Obeso
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico.
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - J Gabriel Flores
- Departamento de Ingeniería de Procesos e Hidráulica, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Ciudad de México, Mexico
- Área de Química Aplicada, Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, 02200, Ciudad de México, Mexico
| | - Catalina V Flores
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico.
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Valeria B López-Cervantes
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - V Martínez-Jiménez
- Departamento de Ingeniería de Procesos e Hidráulica, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Ciudad de México, Mexico
| | - José Antonio de Los Reyes
- Departamento de Ingeniería de Procesos e Hidráulica, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Ciudad de México, Mexico
| | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Diego Solis-Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Carolina Leyva
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico.
| | - Ricardo A Peralta
- Departamento de Química, División de Ciencias Básicas e Ingeniería. Universidad Autónoma Metropolitana (UAM-I), 09340, Mexico.
| |
Collapse
|
2
|
Liu C, Li C, Jiang S, Zhang C, Tian Y. pH-responsive hollow Fe-gallic acid coordination polymer for multimodal synergistic-therapy and MRI of cancer. NANOSCALE ADVANCES 2021; 4:173-181. [PMID: 36132946 PMCID: PMC9417272 DOI: 10.1039/d1na00721a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/28/2021] [Indexed: 06/01/2023]
Abstract
Tumor-microenvironment (TME) responsive nanostructures are attractive for drug delivery in clinical cancer treatment. The coordination polymer Fe-gallic acid (Fe-GA) is one of the promising drug carriers due to its pH-response, good biocompatibility, and minimal side effects. However, the hollow nanostructures of Fe-GA have not been reported until now, which seriously limits the quantity of drug delivery. Herein, hollow Fe-GA nanospheres were prepared for the first time with bovine serum albumin (BSA) combination (denoted as Fe-GA/BSA) under mild reaction conditions. Then, the antitumor drug doxorubicin (DOX) was loaded in the hollow Fe-GA/BSA to obtain Fe-GA/BSA@DOX. A series of experiments in vitro and in vivo indicated that the Fe-GA/BSA@DOX could efficiently respond to TME and release DOX and Fe(iii) ions. Furthermore, the Fe(iii) could consume overexpressed glutathione (GSH) in cancer cells and generate Fe(ii) to trigger the Fenton reaction, producing ·OH for chemodynamic treatment (CDT) of cancer. In addition, the Fe-GA/BSA@DOX could effectively convert near-infrared (NIR) light into heat by acting as a photothermal therapy (PTT) agent. Besides that, magnetic resonance imaging (MRI) data also showed that the Fe-GA/BSA had beneficial T1 and T2 imaging effects, demonstrating that the hollow Fe-GA/BSA has potential for multimodal synergistic cancer MRI diagnosis and therapies of drugs, CDT, and PTT.
Collapse
Affiliation(s)
- Congcong Liu
- Department of Chemistry, Analytical Instrumentation Center 105 North Road of Western Third Ring, Haidian District Beijing 100048 China
| | - Chengcheng Li
- Department of Chemistry, Analytical Instrumentation Center 105 North Road of Western Third Ring, Haidian District Beijing 100048 China
| | - Sen Jiang
- Department of Chemistry, Analytical Instrumentation Center 105 North Road of Western Third Ring, Haidian District Beijing 100048 China
| | - Cheng Zhang
- College of Life Science, Capital Normal University 105 North Road of Western Third Ring, Haidian District Beijing 100048 China
| | - Yang Tian
- Department of Chemistry, Analytical Instrumentation Center 105 North Road of Western Third Ring, Haidian District Beijing 100048 China
| |
Collapse
|
4
|
Wang C, Yan C, An L, Zhao H, Song S, Yang S. Fe 3O 4 assembly for tumor accurate diagnosis by endogenous GSH responsive T2/ T1 magnetic relaxation conversion. J Mater Chem B 2021; 9:7734-7740. [PMID: 34586149 DOI: 10.1039/d1tb01018b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Superparamagnetic iron oxide nanoparticles with high magnetization strength and good biological safety have been widely used as magnetic resonance imaging (MRI) contrast agents for tumors. However, the accuracy of tumor diagnosis is still low due to the lack of tumor targeting and the interference signals from normal tissues. Endogenous substances in tumor (such as high levels of GSH and pH) stimuli-responsive contrast agents could offer higher sensitivity for tumor diagnosis. Herein, based on the characteristic of overexpression of GSH in tumors, we propose an ultra-small Fe3O4 assembly as an endogenous GSH responsive MRI contrast agent. The ultra-small superparamagnetic Fe3O4 are bonded to the crosslinker cystamine to synthesize Fe3O4 nanoclusters, which exhibit a T2 imaging effect. When the contrast agent reaches the tumor tissue, the disulfide bond in cystamine is induced by GSH to break, the Fe3O4 nanoclusters are disassembled into ultra-small Fe3O4 nanoparticles, and the relaxation signal changes from T2 to T1, which is helpful for accurate diagnosis of tumors. In vivo experiments have shown that Fe3O4 nanoclusters can rapidly respond to overexpressed GSH in tumor sites for T2/T1 switchable imaging. This work not only designed an endogenous GSH responsive platform through simple synthesis methods, but also improved the accuracy of tumor diagnosis through the transformation of T2/T1 MRI signals.
Collapse
Affiliation(s)
- Chengbin Wang
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China. .,Fudan Univ, Dept Nucl Med, Shanghai Canc Ctr, 270 Dongan Rd, Shanghai, 200032, China
| | - Chenglin Yan
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China.
| | - Lu An
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China.
| | - Huifeng Zhao
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China.
| | - Shaoli Song
- Fudan Univ, Dept Nucl Med, Shanghai Canc Ctr, 270 Dongan Rd, Shanghai, 200032, China
| | - Shiping Yang
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|