1
|
Patne AY, Mohapatra S, Mohapatra SS. Role of Nanomedicine in Transforming Pharmacotherapy for Substance Use Disorder (SUD). WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70008. [PMID: 40190158 PMCID: PMC11973540 DOI: 10.1002/wnan.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/28/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Abstract
The field of nanomedicine offers revolutionary potential to reshape the discovery and development of therapeutics for diverse human diseases. However, its application has been limited in improving Substance Use Disorders (SUDs), which represent a profound public health crisis, including major types such as opioid, alcohol, stimulant, and cannabis use disorders. Pharmacotherapy, a cornerstone of SUD management, has reduced morbidity, mortality, and the societal impact of addiction, though its efficacy has ranged from none to moderate. Thus, there is a major unmet need to transform SUD pharmacotherapy to curb the epidemic of addiction. This article explores the potential roles of nanomedicine-inspired precision-targeted drug delivery, sustained release, and combination therapies to increase therapeutic efficacy and minimize side effects. Additionally, it discusses innovative mechanisms that align with the neurobiological complexities of addiction and synergistic approaches that integrate nanomedicine with behavioral interventions, device-based therapies, and emerging modalities such as immunotherapy and neurostimulation. Despite these advancements, barriers such as treatment accessibility, adherence challenges, and inequitable resource distribution persist, particularly in underserved populations. By harnessing the transformative capabilities of nanomedicine and integrating it into holistic, equitable, and personalized care frameworks, this review highlights a path forward to revolutionize the SUD pharmacotherapy landscape. The article underscores the need for continued nano-SUD pharmacotherapy research and the development of strategies to alleviate the substantial burden of addiction on individuals, families, and society.
Collapse
Affiliation(s)
- Akshata Y. Patne
- Center for Research and Education in Nanobioengineering, Department of Internal Medicine, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
- Graduate Programs, Taneja College of Pharmacy, MDC30, 12908 USF Health DriveTampaFloridaUSA
| | - Subhra Mohapatra
- Center for Research and Education in Nanobioengineering, Department of Internal Medicine, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
- Department of Molecular Medicine, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
- Research ServiceJames A. Haley Veterans HospitalTampaFloridaUSA
| | - Shyam S. Mohapatra
- Center for Research and Education in Nanobioengineering, Department of Internal Medicine, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
- Graduate Programs, Taneja College of Pharmacy, MDC30, 12908 USF Health DriveTampaFloridaUSA
- Research ServiceJames A. Haley Veterans HospitalTampaFloridaUSA
| |
Collapse
|
2
|
Wrotek A, Badyda A, Jackowska T. Molecular Mechanisms of N-Acetylcysteine in RSV Infections and Air Pollution-Induced Alterations: A Scoping Review. Int J Mol Sci 2024; 25:6051. [PMID: 38892239 PMCID: PMC11172664 DOI: 10.3390/ijms25116051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
N-acetylcysteine (NAC) is a mucolytic agent with antioxidant and anti-inflammatory properties. The respiratory syncytial virus (RSV) is one of the most important etiological factors of lower respiratory tract infections, and exposure to air pollution appears to be additionally associated with higher RSV incidence and disease severity. We aimed to systematically review the existing literature to determine which molecular mechanisms mediate the effects of NAC in an RSV infection and air pollution, and to identify the knowledge gaps in this field. A search for original studies was carried out in three databases and a calibrated extraction grid was used to extract data on the NAC treatment (dose, timing), the air pollutant type, and the most significant mechanisms. We identified only 28 studies conducted in human cellular models (n = 18), animal models (n = 7), and mixed models (n = 3). NAC treatment improves the barrier function of the epithelium damaged by RSV and air pollution, and reduces the epithelial permeability, protecting against viral entry. NAC may also block RSV-activated phosphorylation of the epidermal growth factor receptor (EGFR), which promotes endocytosis and facilitates cell entry. EGFR also enhances the release of a mucin gene, MUC5AC, which increases mucus viscosity and causes goblet cell metaplasia; the effects are abrogated by NAC. NAC blocks virus release from the infected cells, attenuates the cigarette smoke-induced shift from necrosis to apoptosis, and reverses the block in IFN-γ-induced antiviral gene expression caused by the inhibited Stat1 phosphorylation. Increased synthesis of pro-inflammatory cytokines and chemokines is induced by both RSV and air pollutants and is mediated by the nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways that are activated in response to oxidative stress. MCP-1 (monocyte chemoattractant protein-1) and RANTES (regulated upon activation, expressed and secreted by normal T cells) partially mediate airway hyperresponsiveness (AHR), and therapeutic (but not preventive) NAC administration reduces the inflammatory response and has been shown to reduce ozone-induced AHR. Oxidative stress-induced DNA damage and cellular senescence, observed during RSV infection and exposure to air pollution, can be partially reversed by NAC administration, while data on the emphysema formation are disputed. The review identified potential common molecular mechanisms of interest that are affected by NAC and may alleviate both the RSV infection and the effects of air pollution. Data are limited and gaps in knowledge include the optimal timing or dosage of NAC administration, therefore future studies should clarify these uncertainties and verify its practical use.
Collapse
Affiliation(s)
- August Wrotek
- Department of Pediatrics, The Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| | - Artur Badyda
- Faculty of Building Services, Hydro- and Environmental Engineering, Warsaw University of Technology, 00-653 Warsaw, Poland
| | - Teresa Jackowska
- Department of Pediatrics, The Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| |
Collapse
|
3
|
McGill AR, Markoutsa E, Mayilsamy K, Green R, Sivakumar K, Mohapatra S, Mohapatra SS. Acetate-encapsulated Linolenic Acid Liposomes Reduce SARS-CoV-2 and RSV Infection. Viruses 2023; 15:1429. [PMID: 37515117 PMCID: PMC10385125 DOI: 10.3390/v15071429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 07/30/2023] Open
Abstract
Emergent Coronaviridae viruses, such as SARS-CoV-1 in 2003, MERS-CoV in 2012, and SARS-CoV-2 (CoV-2) in 2019, have caused millions of deaths. These viruses have added to the existing respiratory infection burden along with respiratory syncytial virus (RSV) and influenza. There are limited therapies for respiratory viruses, with broad-spectrum treatment remaining an unmet need. Since gut fermentation of fiber produces short-chain fatty acids (SCFA) with antiviral potential, developing a fatty acid-based broad-spectrum antiviral was investigated. Molecular docking of fatty acids showed α-linolenic acid (ALA) is likely to interact with CoV-2-S, NL63-CoV-S, and RSV-F, and an ALA-containing liposome interacted with CoV-2 directly, degrading the particle. Furthermore, a combination of ALA and a SCFA-acetate synergistically inhibited CoV2-N expression and significantly reduced viral plaque formation and IL-6 and IL-1β transcript expression in Calu-3 cells, while increasing the expression of IFN-β. A similar effect was also observed in RSV-infected A549 cells. Moreover, mice infected with a murine-adapted SARS-CoV-2 (MA10) and treated with an ALA-liposome encapsulating acetate showed significant reductions in plaque-forming units present in lung tissue and in infection-associated lung inflammation and cytokines. Taken together, these results demonstrate that the ALA liposome-encapsulating acetate can be a promising broad antiviral therapy against respiratory infections.
Collapse
Affiliation(s)
- Andrew R McGill
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA
- Center for Research and Education in Nanobioengineering, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Eleni Markoutsa
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA
- Center for Research and Education in Nanobioengineering, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Taneja College of Pharmacy Graduate Programs, MDC30, 12908 USF Health Drive, Tampa, FL 33612, USA
| | - Karthick Mayilsamy
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Ryan Green
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA
- Center for Research and Education in Nanobioengineering, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Kavya Sivakumar
- Taneja College of Pharmacy Graduate Programs, MDC30, 12908 USF Health Drive, Tampa, FL 33612, USA
| | - Subhra Mohapatra
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Shyam S Mohapatra
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA
- Center for Research and Education in Nanobioengineering, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Taneja College of Pharmacy Graduate Programs, MDC30, 12908 USF Health Drive, Tampa, FL 33612, USA
| |
Collapse
|
4
|
Dilnawaz F, Acharya S, Kanungo A. A clinical perspective of chitosan nanoparticles for infectious disease management. Polym Bull (Berl) 2023:1-25. [PMID: 37362954 PMCID: PMC10073797 DOI: 10.1007/s00289-023-04755-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/08/2023] [Accepted: 03/03/2023] [Indexed: 06/28/2023]
Abstract
Infectious diseases and their effective management are still a challenge in this modern era of medicine. Diseases, such as the SARS-CoV-2, Ebola virus, and Zika virus, still put human civilization at peril. Existing drug banks, which include antivirals, antibacterial, and small-molecule drugs, are the most advocated method for treatment, although effective but they still flounder in many instances. This calls for finding more effective alternatives for tackling the menace of infectious diseases. Nanoformulations are progressively being implemented for clinical translation and are being considered a new paradigm against infectious diseases. Natural polymers like chitosan are preferred to design nanoparticles owing to their biocompatibility, biodegradation, and long shelf-life. The chitosan nanoparticles (CNPs) being highly adaptive delivers contemporary prevention for infectious diseases. Currently, they are being used as antibacterial, drug, and vaccine delivery vehicles, and wound-dressing materials, for infectious disease treatment. Although the recruitment of CNPs in clinical trials associated with infectious diseases is minimal, this may increase shortly due to the sudden emergence of unknown pathogens like SARS-CoV-2, thus turning them into a panacea for the management of microorganisms. This review particularly focuses on the all-around application of CNPs along with their recent clinical applications in infectious disease management.
Collapse
Affiliation(s)
- Fahima Dilnawaz
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha 752050 India
| | - Sarbari Acharya
- Department of Biology, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024 India
| | - Anwesha Kanungo
- Department of Biology, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024 India
| |
Collapse
|
5
|
Hajiaghapour Asr M, Dayani F, Saedi Segherloo F, Kamedi A, Neill AO, MacLoughlin R, Doroudian M. Lipid Nanoparticles as Promising Carriers for mRNA Vaccines for Viral Lung Infections. Pharmaceutics 2023; 15:1127. [PMID: 37111613 PMCID: PMC10146241 DOI: 10.3390/pharmaceutics15041127] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
In recent years, there has been an increase in deaths due to infectious diseases, most notably in the context of viral respiratory pathogens. Consequently, the focus has shifted in the search for new therapies, with attention being drawn to the use of nanoparticles in mRNA vaccines for targeted delivery to improve the efficacy of these vaccines. Notably, mRNA vaccine technologies denote as a new era in vaccination due to their rapid, potentially inexpensive, and scalable development. Although they do not pose a risk of integration into the genome and are not produced from infectious elements, they do pose challenges, including exposing naked mRNAs to extracellular endonucleases. Therefore, with the development of nanotechnology, we can further improve their efficacy. Nanoparticles, with their nanometer dimensions, move more freely in the body and, due to their small size, have unique physical and chemical properties. The best candidates for vaccine mRNA transfer are lipid nanoparticles (LNPs), which are stable and biocompatible and contain four components: cationic lipids, ionizable lipids, polyethylene glycols (PEGs), and cholesterol, which are used to facilitate cytoplasmic mRNA delivery. In this article, the components and delivery system of mRNA-LNP vaccines against viral lung infections such as influenza, coronavirus, and respiratory syncytial virus are reviewed. Moreover, we provide a succinct overview of current challenges and potential future directions in the field.
Collapse
Affiliation(s)
- Mena Hajiaghapour Asr
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Fatemeh Dayani
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Fatemeh Saedi Segherloo
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Ali Kamedi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Andrew O’ Neill
- Department of Clinical Medicine, Tallaght University Hospital, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Ronan MacLoughlin
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
- Department of Clinical Medicine, Tallaght University Hospital, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
6
|
Rodriguez-Izquierdo I, Ceña-Diez R, Serramia MJ, Rodriguez-Fernández R, Martínez I, Muñoz-Fernández M. Role of G2-S16 Polyanionic Carbosilane Dendrimer in the Prevention of Respiratory Syncytial Virus Infection In Vitro and In Vivo in Mice. Polymers (Basel) 2021; 13:polym13132141. [PMID: 34209827 PMCID: PMC8271643 DOI: 10.3390/polym13132141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
The respiratory syncytial virus (RSV) causes respiratory infection and bronchiolitis, requiring hospitalization mainly in infants. The interaction between RSV, envelope glycoproteins G and F, and cell surface heparan sulfate proteoglycans (HSPG) is required for binding and entry into the host cells. A G2-S16 polyanionic carbosilane dendrimer was identified as a possible RSV inhibitor. We speculated that the G2-S16 dendrimer adheres to the host cell-surface HSPG, acts through binding to HS receptors, and prevents further RSV infection. The G2-S16 dendrimer was non-toxic when applied intranasally to Balb/c mice, and interestingly enough, this G2-S16 dendrimer inhibits 85% RSV. Therefore, our G2-S16 dendrimer could be a candidate for developing a new possible therapy against RSV infection.
Collapse
Affiliation(s)
- Ignacio Rodriguez-Izquierdo
- Immunology Section, Head Inmuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital (HGUGM), Gregorio Marañón Health Research Institute (IiSGM), 28007 Madrid, Spain; (I.R.-I.); (R.C.-D.); (M.J.S.)
- Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain
| | - Rafael Ceña-Diez
- Immunology Section, Head Inmuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital (HGUGM), Gregorio Marañón Health Research Institute (IiSGM), 28007 Madrid, Spain; (I.R.-I.); (R.C.-D.); (M.J.S.)
| | - Maria Jesús Serramia
- Immunology Section, Head Inmuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital (HGUGM), Gregorio Marañón Health Research Institute (IiSGM), 28007 Madrid, Spain; (I.R.-I.); (R.C.-D.); (M.J.S.)
- Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain
| | - Rosa Rodriguez-Fernández
- Hospital de Pediatría, Gregorio Marañón University General Hospital (HGUGM), Gregorio Marañón Health Research Institute (IiSGM), C/Dr. Esquerdo 46, 28007 Madrid, Spain;
| | - Isidoro Martínez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28007 Madrid, Spain;
| | - Mariángeles Muñoz-Fernández
- Immunology Section, Head Inmuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital (HGUGM), Gregorio Marañón Health Research Institute (IiSGM), 28007 Madrid, Spain; (I.R.-I.); (R.C.-D.); (M.J.S.)
- Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain
- Correspondence: or ; Tel.: +34-91-462-4684
| |
Collapse
|